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We investigate the transport properties ot cold bosonic atoms
in a triple-well potential that consists of two large outer wells,
which act as microscopic source and drain reservoirs, and a
small inner well, which represents a quantum-dot-like scat-
tering region. Bias and gate “voltages” are introduced in
order, respectively, to tilt the triple-well configuration and
to shift the energetic level of the inner well with respect to
the outer ones. By means of exact diagonalization consider-
ing a total number of 6 atoms in the triple-well potential, we
find diamond-like structures for the occurrence of single-atom
transport in the parameter space spanned by the bias and
cate voltages, in close analogy with the Coulomb blockade in
electronic quantum dots.

Motivation

Interaction blockade experiments in double-well superlattices
created by two optical lattices with the wavelengths

A1 = 1530 nm and Ay = 0.5A; = 765 nm

S. Folling et al., Nature 448, 1029 (2007)

P. Cheinet et al., PRL 101, 090404 (2008)
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Triple-well lattice

\

—— add a third lattice with wavelength A3 = 0.5\,
Effective potential (for k = 47 /)\):

V(x) = Vo|— cos(kx) + cos(2kx) — cos(4kx)]
—V, cos(kz) — Vpsin(kx)

V) tilts the triple-well potentials: — “bias voltage”
V, pulls down the central well: — “gate voltage”

— analogy with Coulomb blockade for electrons:

e load the lattice at given gate voltage V, and vanishing bias
with a well-defined number of particles per triple-well site,

e ramp up the bias voltage until a given final value V,

e measure the populations in the left, central, and right wells.

Specifically we consider

¢ °'Rb atoms

e main periodicity 27 /k = Ay = 765 nm

e main lattice strength V = 20r°k* /m

o effective 1D interaction strength g = 4r°k/m
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Ground-state populations

Exact numerical diagonalization (based on the Lanczos algo-
rithm) of the many-body Hamiltonian
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e assuming 6 atoms per triple-well site and

e neglecting hopping between adjacent triple-well sites
(— periodic boundary conditions in z: —7w < kx < 7).
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Single-atom transport

e prepare the lattice with 6 atoms per triple-well site,
e make the time-dependent ramping V;(t) = st,

e decompose the time-dependent many-body wavefunction
within the instantaneous eigenbasis.

Numerical calculation for V, = 0.25Vj and s = 0.0021°k* /m?:
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Landau-Zener probability for nonadiabatic transitions at
avolded crossings:

P = exp|—2nAE?/(hs)]

—— choose the ramping speed such that it is

e too fast for the unwanted anticrossings
Ni:NooNp < Ny £ 1:Ne:Np F 1
with energy scale 0 F ~ 0.001%°k* /m for No = 0,

e but slow enough for the “good” anticrossings
Ny NooNp < Ny =2 1:Neo F1:Np or Ni:No £+ 1:Np F 1
with energy scale AE ~ 10 x 0 F:
OE° < hs < AE”
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Atomic “Coulomb” diamonds

Plotted are the bias voltages V}, at which a single-atom trans-

fer takes place between adjacent wells. The size of the circles

marks the extent of the corresponding avoided crossings.
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Bose-Hubbard model

Consider a simplified Bose-Hubbard model for the system
with the on-site energies £y p = Ey =V, and B¢ = £y — V},
with the local interaction energies E(<]L/ RIC) _ Ey ~ 027V,
and with negligible tunnel coupling between adjacent wells.

Local particle-addition energies:
prp=Eo£Vo+ NppEy and pf = Ey — Vi + NeEy

—— avoided crossings of N;:Nc:Ngr < Np £ 1:Ng F 1:Np:
%:El—Eo—‘/g—l—(Nc—NL::DEU
—— avoided crossings of N;:Nc:Nr < Ni:No £ 1:Np F 1:
—%:El—EQ—%+(N0—NR::1) o

Main differences to Coulomb diamonds in quantum dots:

e open ends for empty dot and empty reservoirs

e asymmetry between balanced (N; = Ng) and unbalanced
(N, = N £ 1) populations in the reservoirs

—— microscopic nature of the reservoirs
Perspectives

— extract local interaction energy Ep from the distance be-
tween the diamond structures

— single-atom pumping (3:0:3 — 2:0:4) following a closed
curve in V, — V} space

—s atomic transistors
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