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Abstract 
An increasingly used approach for health monitoring is based on error localization techniques. They 

are applied on an analytical model of the nominally healthy structure and produce local values of 

discrepancies between the model and the measurements. In this way, damaged regions are identified, 

and the selection of the model parameters (to be updated) becomes easier. This helps the optimization 
procedure to reconciliate the model and the measurements, since the design space is reduced. Among 

the different techniques used to indicate regions where the analytical model presents parameter errors, 

one finds those that are based on output comparison: COMAC, MAC variation. These methods 

quantify the loose of correlation between paired modes associated to a degree of freedom. They assume 

that local model errors produce local changes in the modes (which is a case dependent assumption). 

They present the advantage of not requiring the use of expansion or reduction techniques but they are 

limited by the mode pairing process and by the norms used for the comparison. Another approach is 

to use the model equilibrium conditions. In this category, one finds the force residual technique and 

the method based on the minimization of errors on constitutive equations (MECE). A drawback of 
these techniques is that they require a matching process a priori. The aim of this paper is to analyze 

the limitations of this last class of techniques to locate model errors. 

Nomenclature 

IS, M 
Pi-*, ?J*, WV* 
M*, v*, q* 

Al-S, AM 
V 

AZ 
AU 

AW 

n 

Q 

U 

FE model matrices 

perfectly identified expanded 
vectors, frequency, matrices, 
modal displacements 

errors of the model matrices 

expanded experimental shape 

LW - w,2AM 

error in the expanded vector 

error in the identification 

of the experimental eigenfre- 

quency 

residual force when 21 and w, 

are applied, fr = Zv 

K - o,zM 
SEREP variables 

MECE modal displacements 

model modal matrix 

measured partition of dofs 

noise term 

control parameter 

instrument shape vector 

stiffness matrix of the sub- 

structure s 

pseudo inverse of Qr 

1. Introduction 

Error localization methods may be based (or not) 

on a numerical model. Non model based tech- 

niques assume that local model errors produce 

local changes in the responses. They are limited 

by the number of sensors and may be used by 

comparing modal indicator variations with regard 

to a previous healthy situation. Evolution of the 

damage influence on the response can be tracked 

in this way, but it cannot assess if the structure 

is still reliable or safe. However, they present the 

advantage of not requiring the expensive process 

of building a model. Reference [6] presents an 

extensive survey. 

Model based damage identification methods 

allow to detect not only the location of changes 

in the structure, but also its nature, and its am- 

plitude level. The engineer may have a better 



understanding of the physics behind the damage, 

and is able to exploit the rich knowledge base 

used to build the model. 

In this contribution, some limitations of the 

model based error localization process are high- 

lighted. In order to be self contained, first a brief 

explanation of the expansion techniques is pre- 

sented. Then the error localization technique is 

explained. Four causes for poor localization re- 

sults are discussed. Several numerical and exper- 

imental examples will help the reader to focus on 
the main idea,s. 

2. Theoretical Background 

Let us assume that the model structure errors are 

negligible (equations are correct, discretization is 

adequate), but that model parameter errors (ma- 

terial properties, geometric properties) exist. Un- 

der these conditions,the equilibrium equation for 

an eigenmode of the experimental structure may 

be written as 

K+ v* = w,2* iV* v+ (1) 

The validity of the approach is crucial for the 

rest of the developments. The only way to assess 

that equation (1) holds (at least to some extent 
and for a limited frequency range) is by using lin- 

earity checks, verifying the quality of the model 

using correlation techniques like MAC, verifying 

that identified modal shapes are at most slightly 

complex quantities, etc. The assumption of such 

a structural model tells implicitly that the “dam- 

aged” experimental structure shows a linear be- 

havior and that dissipative effects do not influ- 

ence normal modes. 

The relation with the initial FE model matri- 

ces K, M can be established through the follow- 

ing relations 

K* = K + AK (2) 

M*=M+AM (3) 

v*=v+nv (4 

WV* = w, + nw (5) 

The approximation to the experimental mode, v, 

is found by assuming that the numerical model 

is close to the true structure. Using a standard 

formulation, it can be shown that the idea is to 

minimize the residues of the equilibrium equation 

in some adequate metric: 

min (2 v)T 0 (2 v) = f,T 0 fr (6) 

Hemez [2] uses the identity matrix as weight, 

MECE uses the static flexibility matrix [5], Alvin 

[4] uses the squared static flexibility matrix. 

In order to solve problem (6), the experimental 

data is exploited by requiring that the expanded 
vectors should be similar to the reference mea- 

sured shapes: 

min (01 - V)T E (vl - V) (7) 

While a large list of expansion techniques con- 

strain the equation (7) to vanish and solve just 

(6), here, the relaxed expansion methods will be 

considered: the System Equivalent Reduction Ex- 

pansion Process -SEREP- expansion [l], and the 

MECE expansion [5]. 

2.1 SEREP expansion[l] 

Instead of solving (6) and (7) simultaneously, only 

(7) will be considered. Let the vector of mea- 

sured coordinates V be expressed in terms of the 

reduced model modal base: 

_ 
v=:Qil q*+n (8) 

If an approximation 4” for the true vector q* is 

available, the expanded vector v can be expressed 
as: 

v=@q (9) 

From equation (8), the modal displacements may 

be estimated by 

Alternatively, 

pressed in terms 

where 

i+d$V (10) 

the expanded vector can be ex- 

of the SEREP operator: 

fi=Tv (11) 

T=Q@ (12) 

The SEREP operator allows to define the reduced 

system matrices: 

fi = pTMp 

(13) 

I? = TT K T 



2.2 MECE expansion [5] 

If metric 0 = .K-’ is chosen to solve problem 
(6) and E = I?- in equation (i’), both equations 

can be considered simultaneously by solving the 

optimization problem 

min (2 21)T 0 (2 v) + 01 (vr - V)T Z (vr - v> 

(14 
The MECE expansion problem (14) may be 

expressed as 

min (v - u) _K (v - u) + cx (vl - V) I? (111 - u> 

(15) 
subject to 

I< u =w,2Mv (16) 

where u is an instrument shape vector. In or- 
der to solve the problem, the expanded vector is 

also ex 

modal 

pressed as a combi nation of the nu merical 

base. In equation (15) ii- assures a good 
balance between the two terms, but other weight 

matrices may be used. 

Equation (15) can also be written as 

min (v - u)T K (v - u) + O! (G - v)T K- (G - v) 

(17) 
If K and M are expressed in terms of the numer- 

ical modal base, the following result is obtained 

h 

(Q) 
a! 

- 
i- 

(1- (bJ,/,i)2)2 + a 
(4”) * z (18) 

For each mode, MECE not only takes into ac- 

count the correlation and the relative energy 
between the analytical and experimental eigen- 

modes, as SEREP, but also the frequency shift, 

weighted with a. If there is no frequency shift, 

the frequency dependent coefficient is always 1. 
As can be seen for the majority of the modes, 

both methods will lead to almost the same modal 

displacements. SEREP can be regarded as a sim- 

plified MECE solution. Equation (18) provides a 

cheap way to get the MECE expanded vectors. 

2.3 Error localization 

Error localization methods seek for the locations 

on the structural model where discrepancies be- 

tween experimental and numerical results may 

be present (damage, if health monitoring is the 

aim). The convenient introduction of the instru- 
ment vector u in equation (16) allows the defini- 

tion of an error indicator that quantifies a residual 

strain energy (element-by-element, substructure- 

by-substructure): 

e, = ( U- v> Ii’, (u - v> (19) 

where III, is the stiffness matrix of the sub- 

structure s. 

3 . Limitations of the MECE local- 

ization 

In this section, some limitations for a correct error 

localization using the MECE technique will be 

highlighted. It will be seen that even excluding 

the effects of noise on the measurements, several 

perturbing situations appear. 

3.1 Energy dispersion 

It is easy to show from equation (6) and (16) that 

the residual displacement is the solution of the 

equivalent static problem: 

I 
Ii ( v - u> = fT (20) 

To simplify the analysis, let us assume that no 

noise is present in the measures, and that expan- 
sion is perfect. Then the following equality holds: 

v = v* 

so that 
7 

Ii ( V- U> =nzv* (21) 

Looking at this equation as a standard static 

problem, it appears that the excitation force vec- 

tor AZ v* is applied only on the dofs associated 
to the erroneously modeled substructures. The 

solution to problem (21) results in propagated 

deformations all over the structure in general. 

For this reason, the strain energy error indicator 

(19) will show residual energies all throughout the 

structure. 

Figure 1: 3-dofs structure 

This fact can be illustrated on the 3-dofs struc- 

ture represented in figure 1. In this example, all 



springs and masses have a unitary value. The ex- 

perimental structure has been simulated by stiff- 

ening the spring between dofs 1 and 2 (100% 

stiffness increase). Only dofs 2 to 4 are sup- 

posed to be measured. Modes have been “iden- 
tified” without noise. Expansion in this case is 

not needed. Error localization shows normalized 

values as shown in figure (2). All 3 “identified” 

modes allow to locate the error, but a situation 
appears: even having no expansion errors, nor 

noise, residual energy is dispersed all over the 

structure. 

Figure 2: (U--V)TKg(U--21) 
(u-7J)Tl-c(u-v) 

For each mode, the wrongly modeled substruc- 

ture (spring between dofs 1 and 2) concentrates 

75% ; of the residual energy while the other el- 

ements keep 8.33% each. This situation can be 
understood by condensing the system matrices 

to the dof where the residual force actuates. It 

is seen that the wrongly modeled spring carries 

75% of the statically condensed stiffness, while 

the rest just 25%. Then, the ratio between the 

residual energy of the rest of the structure and 

the energy on spring 1 is a constant: 

(22) 

In the following, this ratio will be called the 

“attachment ratio”. 

In general, each substructure of a model will 

be “attached” in a particular way to the rest of 

the structure producing different values for the 

ratio. The ideal situation to have consistent lo- 

calization would be to have a zero ratio at all dofs 

of each element. 

3.2 Non excitation of model errors 

It can be easily shown that the force residue de- 

fined in equation (6) is a sum of two terms: 

-f,=znv+nzv* (23) 
where the first term is dependent on the crite- 

rion used for expansion and the second one is a 

constant. 

If errors are localized, the non spurious com- 

ponent of the residual force is a sparse vector, 

almost full of zeros. Non null values are depen- 

dent on the ability of the real vector v to deform 

the substructures that present errors (AZ): 

nzv*>>o (24 
On the other hand, the effects of the spuri- 

ous components of the expanded vector are easily 

amplified since they are weighted by the whole 

dynamic stiffness matrix, generating force com- 

ponents all over the structure. 

Figure 3: 4-dofs structure 

A potentially dangerous situation for error lo- 

calization is to identify a group of modes that do 

not excite the error: 

nzv*z50 (25) 
In this case, u - v comes only from expan- 

sion errors; so that localization becomes system- 

atically erroneous. This mode is blind to model 

errors. The problem is that in real life, the spu- 

rious part nv is always present at some level, so 

that erroneous localization results may happen. 

To clarify the idea, an example very similar to 

the one previously described is considered. The 

structure initially is the same as in the first exam- 

ple. Here, the fixation at dof 5 has been removed 

and an extra mass of 0.001 has been added at the 

free end . (figure 3). The “experimental” struc- 

ture presents the same error as before: a doubled 

stiffness constant on spring 1. Modes have been 

“identified” on dofs 2 to 5, without noise. Expan- 

sion is not needed either. The error localization 

shows normalized values as shown in figure 4. 



Elemsti 4 

Figure 4: w 

For modes 1 to 3, the indicator concentrates 

100% of the residual energy on the erroneous ele- 

ment. This can be understood by statically con- 

densing the structure to dof 2, where the residual 

force applies. The attachment ratio in this case 
is ideal e rest/e1 = 0. Mode 4 is more interesting 

since only the small mass at the end vibrates, ex- 

citing exclusively the spring between dofs 4 and 

5 (figure 5), so that equation (25) holds. As the 
error does not excite the mode, the indicator is 

ineffective to locate the error for this particular 

mode. 

\ /’ 
\ ’ 
v 

\; 2nd Mode 
. 

I 
1 2 3 4 5 

Dof index 

Figure 5: 4 dofs model eigenmodes 

A necessary condition for a correct localization 

is that the physical part of the expanded vector 

excites the “wrong” substructure in a non neg- 

ligible way; and in good ratio regarding to the 

spurious part of the expanded vector. The level 

for negligible is not clear, since the true expanded 

vector is not known. 

By averaging the normalized residual energies 

for all the identified modes (a common approach), 

the correct error can still be found. In a general 

situation this would not be necessarily the case. 

It is common to identify only the low frequency 
global modes. For a robust localization, it is nec- 

essary that the error excites a majority of the 
modes in order to filter out the spurious error 

zones which are always present to some extent in 
the localization equation (19). 

3.3 Poor expansion base 

From equation (16) 

u = Is-l w; ii!l v (26) 

If the spectral development of K-l is used, u can 

also be expressed as 

which can be simplified into 

NS w- 2 
lJ,= .2 cc 1 Gi 4i 

i=l Wi 

This results allows to express the content of the 

residual vector u - U, whose strain energy distri- 

bution will be used for error localization: 

u-U=g(l- (z)‘)Qi 4i (27) 

Since v - u is built by combining a limited set 

of mode shapes, its energy content will be limited 

to what the used modes are able to represent. 

Equation (27) produces a smooth distribution 

of residual energy. It seems necessary to enrich 

the expansion base with vectors able to repro- 

duce the residual force in a more accurate way. 

An analysis of the energy distribution of the ex- 

pansion base allows an a priori estimation of lo- 

calization limitations. 

3.4 Inaccurate expansion 

A cause of problems for an expansion using the 

projections into the FE modal base happens when 

a subset of numerical modes is badly represented 

in the set of measured dofs. Two situations may 

appear: 



l two or more reduced modes are (almost) 

identical; 

l one or more modes are (almost) not existent 

in the set of measured dofs. 

For the first case, Qi in equation (8) will 
present at least two vectors which are linearly de- 

pendent. The pseudo inverse in equation (10) will 

disperse the (q); values in order to minimize the 

distance ]@ig - VI. SEREP will provide an er- 
roneous projection. MECE will also suffer this 

situation due to the use of equation (18). 

For the second case, any correlation between 
the measured mode and the almost not existent 

mode will produce a high modal displacement 

value in that direction, as shown in figure 6, where 

the mode ~~ is a poorly represented numerical 

mode shape. 

r_ _______ .__-.- .--.-- 
+j+ - 

Figure 6: Poor expansion base 

This idea is illustrated on an experimental lab- 

oratory structure consisting of a reinforced con- 

crete beam with dimensions 6m x 0.2m x 0.25m 

(figure 7). The beam was damaged by applying 
static loads and presents cracks along the lower 

face. The boundaries can be considered to be 

“free-free” conditions. Excitation is applied in 

one of the corners so that flexion and torsion 

modes are excited. Accelerations are measured 

on both sides of the top face of the beam at 62 

points. 10 experimental modes are identified. A 

detailed explanation of the setup can be found in 

reference [7]. 

Figure 7: Beam model 

A 3D FE model of the beam was developed us- 

ing 60 x 2 x 2 shell elements. A MECE expansion 

using equation (18) was performed using a modal 

base consisting of the first 20 modes of the model. 

In order to evaluate the quality of the expansion, 

the experimental expanded modes are compared 

to their FE counterparts by using the MAC as 
shown in figure 8. Something appears wrong in 

the expansion since the expanded modes are dom- 

inated by only 3 FE modes and are highly linearly 

dependent. The diagonal dominant pattern of the 

MAC matrix has been lost. 

Figure 8: Erroneous expansion results 

Considering the problems previously intro- 

duced, first the linear independence of the re- 
duced numerical base is analyzed using the MAC 

as shown in figure 9. There, the FE reduced base 
is compared against herself: each mode is quite 

independent of the rest. 

Figure 9: Reduced FE base (correlation) 

A second test is performed to verify if all 

modes are well represented in the measured set of 

dofs. Figure 10 compares the norm of the reduced 

numerical modes, starting from mass normalized 

complete modes. It is observed that 9 of the 20 

modes are very poorly present. This situation is 

expected since these modes are all perpendicular 

to the measurements plane (axial deformations 

and second plane flexion shapes). 

The problem is easily solved in this case by re- 

moving all these modes from the expansion base. 

Now the MAC between the expanded experimen- 

tal vectors and the numerical modes retrieves its 

diagonal dominant form (figure 11). 

This example shows how the combination of 

a poor sensor setup and an ill conditioned ex- 



Figure 10: Reduced FE base (norm) 
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Figure 11: Improved expanded base compared to 

FE base 

pansion base may induce severe expansion/error 

localization results. In the literature, there exists 

methods to assure an optimal configuration of a 
limited set of sensors in order to provide a well 

defined base [3]. 

4. Civil engineering structure ex- 

ample 

The case has been exploited in details in the liter- 
ature [6]. It is the I-40 bridge over the Rio Grande 

river in New Mexico. Figure 12 shows the model 

of the bridge subject to its first mode shape. 

The real structure was tested in its undamaged 

state using ambient and force excitations. Dam- 

age was induced by cutting through one of the 

main girders in four increasing states (figures 13 

and 14). Modal analysis was performed in each 

state using a set of 26 accelerometers placed along 

the two sides of the bridge deck. 

According to the evolution of the frequencies 

and MAC values, it is observed that no signifi- 

cant changes appear in the eigenfrequencies and 

the MAC until the last state of damage (figures 15 

and 16). Mode shapes which show nodal behav- 

Figure 12: FE model of the bridge-1st mode 

Figure 13: Bridge cross section 

1 

I 
Figure 14: Section of the damaged girder 

ior near the damage location are not significantly 

perturbed at all states (modes 3 and 5). Only 

modes 1 and 2 show an important change for the 

last state of damage. 

cl 1 2 3 4 5 

Figure 15: MAC evolution 

Results of the MECE error localization are 

shown in figure (17) for the first mode and for 



Figure 16: Frequency evolution 

the last state of damage. The zone where the cu 

was produced is clearly indicated. 

Figure 17: Error localization for the first mode 

For previous states of damage, the localization 
is not so clear. The main girders concentrate al- 

most all of the residual energy but it is dispersed 

all over their length. The evolution of the resid- 

ual energy against the damage situation is sum- 

marized in figure 18. On the y-axis the maximal 

value of residual energy is shown. It is observed 

that the indicator is insensible to the first 3 dam- 

age situations. 

1 2 3 4 
Damage state 

Figure 18: Evolution of the error indicator 

It may be assumed that localization difficul- 

ties arise, in first place, due to the violation 

of equation (1). This is so, since bridges are, 

to some extent, time-variant systems (humidity, 

temperature changes, non viscous damping,..). 

Measurements change from test to test so that 

the identified modal properties are not constant. 

It results that difficulties described in section 4 

become more important: several experimental 

modes shapes are quite insensitive to the devel- 

opment of the damage in the measured dofs (sec- 

tion 3.2). The sensor configuration and the lim- 

ited size of the expansion modal base also limit 

the quality of the localization (section 3.3). The 

noisy environment and the modal analysis tech- 

nique may induce an unstable estimation of the 

expansion coefficients (section 3.4). Of course the 

energy dispersion problem (section 3.1) appears 

also, but this is an implicit phenomenon of the 

localization technique. 

Compared to other localization approaches al- 

ready used [6], the MECE results show the same 

sensitivity to the damage state. But, since a 
model has been used, it is clear that a dominant 

stiffness error has appeared on the girder. Model 

updating would lead to an improved model of the 

bridge. From a correlated model, it is possible to 

establish if the bridge is still reliable, and/or the 

modifications that it needs to attain a given level 

of security. This is not the case for the non model 

based techniques. 

5. Final remarks 

Several problems related to the use of model 
based error localization techniques have been 

highlighted. Topics like model structure valid- 

ity, error localization dispersion, model error ex- 

citation, richness of the expansion modal base 

and reliability of the expansion due to noise and 

sensor setup have been examined and illustrated 

through several numerical and experimental ex- 

amples. 

In the near future, topics like the direct appli- 

cation of forced responses, the optimization of the 

sensor setup to assure a reliable expansion, the 

enrichment of the expansion modal base for im- 

proved localization results and the development 

of an a priori indicator of localization limitations 

are foreseen. 
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