
1

Small-angle scattering and scale-dependent heterogeneity

Cedric J Gommes *

Department of Chemical Engineering, University of Liège B6A, 3 Allée du six août,
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Abstract

Although small-angle scattering is often discussed qualitatively in terms of material

heterogeneity, when it comes to quantitative data analysis this notion becomes some-

how hidden behind the concept of correlation function. In the present contribution, we

define a quantitative measure of heterogeneity, we show how it can be calculated from

scattering data, and we discuss its structural significance for the purpose of material

characterisation.

Conceptually, the procedure consists in using a finite probe volume to define a local

average density at any point of the material; the heterogeneity is then quantitatively

defined as the fluctuations of the local average density when the probe volume is

moved systematically through the sample. Experimentally, we show that the so-defined

heterogeneity can be estimated by projecting the small-angle scattering intensity onto

the form factor of the chosen probe volume. Chosing probe volumes of various sizes

and shapes enables one to comprehensively characterise the heterogeneity of a material

over all its relevant length-scales. We derive general results for asymptotically small

and large probe in relation to the material surface area and integral range. We also
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show that the correlation function is equivalent to a heterogeneity calculated with a

probe volume consisting of two points only.

The interest of scale-dependent heterogeneity for practical data analysis is illus-

trated with experimental SAXS patterns measured on a micro- and meso-porous

material, on a gel, as well as on a semi-crystalline polyethylene sample. Using dif-

ferent types of probes to analyze a given scattering pattern enables one to focus on

different structural characteristics of the material, which is particularly useful in the

case of hierarchical structures.

1. Introduction

The general aim of small-angle scattering data analysis can be put as converting

reciprocal-space data into real-space structural information. The underlying mathe-

matics were developed by the founders of the field and they stand in a single sentence,

namely: the scattered intensity is the Fourier transform of a density correlation func-

tion (Porod, 1948; Guinier & Fournet, 1955; Debye et al., 1957). The relevant density

differs according to the specific type of scattering - electron or scattering length den-

sities for x-rays or neutrons, respectively - but the mathematics are the same. The

apparent simplicity of that statement hides a wealth of difficult questions related

notably to the numerical evaluation of correlation functions from scattering data

(Glatter, 1977), the determination of non-trivial structural information (Tchoubar

& Méring, 1969), the development and adjustment of structural models to scattering

patterns (Pedersen, 1997; Svergun, 1999), the SAXS analysis of hierarchical structures

(Gupta et al., 2006; Gommes et al., 2016), the enumeration of structures compatible

with a given correlation function (Gommes et al., 2012a), etc. Any new, albeit math-

ematically equivalent, perspective on small-angle scattering may shed a new light on

all these questions as well.
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The perspective we develop in the present paper is that of the material’s heterogene-

ity. Although the word heterogeneous is often encountered in the context of small-angle

scattering, it is generally used merely as a synonym for biphasic (or multiphasic). In

that context, small-angle scattering is sometimes discussed as if it originated from the

presence of interfaces (Ciccariello, 1988). An alternative and more general definition

of heterogeneity is the one used in the field of geostatistics (Matheron, 1971; Chilès &

Delfiner, 1999). In that context, heterogeneity is a synonym for spatial variability.

Putting aside for a while the specific context of small-angle scattering, let us con-

sider the general question of how to characterize quantitatively the heterogeneity of

a structure. For the purpose of illustration, Figure 1 displays two structures hav-

ing different heterogeneities. We shall refer to the white phase as the solid and the

black phase as the pore, but the discussion is quite general. The two structures were

designed to have identical volume fractions and specific surface areas (see Supporting

Information), but they strongly differ by the spatial distribution of the solid. In the

clipped Gaussian field model (Figure 1a),the solid regions are almost homogeneously

distributed in space. By contrast, in the case of the Boolean model (Figure 1b) the

solid forms clusters, which leads to pores with a broad size distribution. It is this type

of difference that we wish to describe quantitatively, by defining a suitable measure

of structural heterogeneity.
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Fig. 1. Two qualitatively different structures (a and b) analysed with the same probe
volume Π (red disk). When the local average-density ρπ is calculated within the disk,
the value fluctuates according to the actual position of the disk. The histogram
(c) shows the values taken by ρπ when the disk is moved throughout the entire
structure. We use the variance of the distributions of ρπ as a quantitative measure
for the heterogeneity of the structure.

An equivalent way to look at the question of heterogeneity consists in assessing to

what extent a local characteristic of the structure is representative of the whole. To

be more specific consider a local probe volume Π centred on a given point x of the

material. In the case of Figure 1 the probe volume is the red disk. Averaging the density

of the material inside the probe volume provides a local density, which depends on the

particular position x of the probe; we refer to it as ρπ(x). For the structure in Figure

1a the local density is almost independent of the position x of the disk because the

structure is homogeneous. On the contrary, for the structure in Figure 1b the disk may

fall entirely inside a black region or be almost filled with white. This results in strong

density fluctuations, which have to be interpreted as a very heterogeneous structure.

This is confirmed by the histograms of ρπ shown in Figure 1 , which were obtained

by moving the disk systematically over the entire structures. The average value of

both distributions are identical and they coincide with the overall solid fraction (30 %
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for both structures a and b) but the variances are distinctly different. We define the

heterogeneity of a structure as the variance σ2{Π} of the local average-density ρπ(x),

calculated over all possible values of x.

This definition of σ2{Π} enables one to characterise the heterogeneity of a material

over a variety of length scales, via the use of probe volumes Π with different sizes. This

is illustrated in Figure 2 where the heterogeneity of a given structure is characterised

with probe volumes consisting of disks having different radii. To keep the discussion

general, we refer to the densities of the solid (white) and pore (black) as ρS and ρP ;

their volume fractions are φS and φP = 1 − φS . If the disk is much larger than any

characteristic size of the structure (Figure 2-b3) , the values of the local average-density

ρπ are distributed narrowly around the global average φSρS + φPρP . The narrowness

of the distribution means that the structure is homogeneous on the scale of the disk.

In the other extreme case where the disk is much smaller than any characteristic size

of the structure, (Figure 2-b1) it generally falls entirely in one of the two phases. The

local average-density ρπ then takes either the value ρS or ρP with probabilities φS

and φP , respectively. Because this corresponds to a binomial statistical distribution,

the corresponding variance is

lim
R→0

σ2{Π} = (ρS − ρP )2φSφP (1)

which coincides with the expression of Porod’s invariant (Glatter & Kratky, 1982;

Sivia, 2011). In the particular case of Figure 2 with ρP = 0, ρS = 1, φS = 0.3 and

φP = 0.7 the limiting value is σ2{Π} ' 0.21. The variance takes smaller values for all

finite disk sizes. The curve obtained by plotting the variance σ2{Π} as a function of

the disk size (Figure 2c) provides a comprehensive characterisation of the structure

heterogeneity over all length scales.
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Fig. 2. When the procedure of Figure 1 is applied to a given structure (a) with probe
volumes of increasing sizes (red, green, and blue disks with radii R), the corre-
sponding distributions of the local average-density ρπ are size-dependent (b1 to
b3). Considering the variance of the distributions as a function of the probe size (c)
provides a comprehensive characterisation of the structure heterogeneity over all
length scales. The three points in c were obtained numerically from the structure
shown in a, and the solid line was obtained analytically from the known correlation
function of the structure via Eq. (7). The main result of the paper is Eq. (14), which
enables one to calculate the heterogeneity curve σ2{Π} starting from the scattering
pattern.

The purpose of the present paper is twofold. On one hand, we show how scale-

dependent heterogeneity curves, similar to Figure 2c can be obtained experimentally

from small-angle scattering patterns. On the second hand, we analyze the significance

of these curves in term of the underlying structure. In a first section of the paper,

we derive a mathematical relation between the variance of ρπ and the SAS intensity,

which is valid for any type of probe volume. The simplest probe volumes we consider

are spheres of various radii, which are the natural three-dimensional equivalent of the

disks used in Figs. 1 and 2; we also discuss other types of probes that are easier to

handle in reciprocal space. Afterwards, we build on Eq. (1) and explore further the

structural significance of σ2{Π}-versus-size for probes that are asymptotically small

or large compared to the characteristic size of the structure. This enables us to devise

new SAS data analysis procedures to measure surface areas, integral ranges, and to

determine size distributions. Finally, in the discussion section, the methods are applied
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to experimental SAXS patterns measured on a micro- and mesoporous materials, on

a gel, as well as on a semicrystalline polyethylene sample.

2. Theoretical section

2.1. General relation between scale-dependent heterogeneity and scattering patterns

In the introduction section, we have defined the local average density ρπ using a

disk-shaped probe volume (see Figs. 1 and 2). Local averages can, however, be defined

with any type of probe volumes and we write

ρπ(x) =

∫
dVy Π(y − x)ρ(y) (2)

where Π(.) can be any function that is integrable in three dimensions. Because the

function Π(.) need not be defined on a finite support, we no longer refer to it as a probe

volume in the rest of the paper but as a probe function, or simply as a probe. For the

sake of convenience, the probes that we consider in the paper are all normalised to

one, namely
∫

Π(y)dVy = 1. With this particular normalisation the definition of ρπ

can be interpreted in terms of a low-pass filtering operation that is common to signal

and image processing. By this process the filtered density map ρπ(x) is obtained by

replacing the value at point x by the average value of ρ in some neighbourhood centred

on x. In that sense, the passing from ρ(x) to ρπ(x) is equivalent to a moving-average

operation. An equation similar to Eq. (2) has also been introduced by Ruland (1971)

to analyze the scattering from structures with interfaces having a finite thickness. For

our present purpose, however, it has to be stressed that ρπ(x) does not correspond to

any real density function. It is used here as a mathematical procedure to define the

heterogeneity.

The particular case of a sphere with radius R corresponds to the following probe

ΠR(y) =
3

4πR3
Θ(R− |y|) (3)
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where Θ() is Heavyside’s step function, which is equal to 1 if its argument is positive

and to 0 otherwise. Another possibility consists in defining a Gaussian probe with

variance a, namely

Πa(y) =
1

(2πa2)3/2
exp

(
−|y|2
2a2

)
(4)

With a Gaussian probe, points in the structure contribute less to the average value

ρπ(x) if they are far away from x, but there is no sharp cutoff distance. As we shall

see later, this smooth transition in real space makes Gaussian probes easier to handle

in reciprocal space. Throughout the rest of the paper we shall consider other types of

probes. The present section is general and it applies to any of them.

The average value of ρπ(x) when x is uniformly distributed over the entire sample

can be calculated directly from Eq. (2), yielding

〈ρπ〉 = 〈ρ〉 (5)

where 〈.〉 denotes the average over all values of x. Throughout the paper, the brackets

can also be interpreted as the expected value if the probe is positioned randomly in the

structure. As discussed in the introduction section, the variance of ρπ(x) characterises

the heterogeneity of the structure at the particular scale of the probe Π. It is defined

as

σ2{Π} = 〈ρ2
π〉 − 〈ρπ〉2 (6)

In this notation, the curled brackets {.} highlight the fact that the variance has a

functional dependence on the probe.

In order to relate the variance σ2{Π} to the properties of the probe and to ρ(x),

one may introduce the definition of ρπ through Eq. (2) into Eq. (6), and calculate

explicitly the averages as integrals over x. This leads to the following result

σ2{Π} =

∫
χρ(r)Ωπ(r) dVr, (7)
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where

χρ(r) = 〈(ρ(x + r)− 〈ρ〉) (ρ(x)− 〈ρ〉)〉 (8)

is the correlation function of the density, and

Ωπ(r) =

∫
Π(x + r)Π(x) dVx (9)

is the self-convolution of the probe. Equation (7) is a classical result of geostatistics

(Serra, 1982; Chilès & Delfiner, 1999). It seems to have been obtained first by Matheron

(1971) and later rediscovered by Lu & Torquato (1990) in the context of theoretical

materials sciences. That relation has been applied in a wide variety of contexts, notably

astronomy (Pietronero et al., 2002), materials engineering (Kanit et al., 2003), and

statistical physics (Torquato & Stillinger, 2003). In the present paper, we explore the

significance and consequences of that general result in the particular field of small-

angle scattering.

Because the only characteristic of ρ(x) that enters Eq. (7) is the correlation function

χρ(r), it is possible to express σ2{Π} in terms of the scattered intensity alone. Before

doing that, we shall first recall of few general results of elastic scattering theory (Sivia,

2011), if only to introduce some notations. The SAS intensity I(q) is the Fourier

transform of the correlation function χρ(r), namely

I(q) =

∫
exp (iq · r)χρ(r)dVr (10)

where the relevant ρ is either the electron density (SAXS) or the scattering length den-

sity (SANS). Calculating the inverse Fourier transform of this equation and evaluating

it for r = 0, one finds

χρ(0) =
1

(2π)3

∫
I(q) dVq (11)

where dVq is the volume element in reciprocal space, which converts to 4πq2 dq in

the case of isotropic scattering patterns. By the definition of χρ in Eq. (8), the value

IUCr macros version 2.1.6: 2014/10/01



10

χρ(0) is the variance of the density 〈(ρ− 〈ρ〉)2〉. This quantity is generally referred to

as Q, and it is given by Eq. (1) in the particular case of a two-phase structure. In the

context of scattering studies, it is common to normalise the correlation function by Q

and introduce Debye’s correlation function γ(r) as

γ(r) = χρ(r)/Q (12)

which satisfies γ(0) = 1.

The relation between the heterogeneity σ2{Π} and the SAS intensity I(q) for any

probe is obtained by expressing χρ(r) in Eq. (7) as the inverse Fourier transform of

I(q). This leads to

σ2{Π} =
1

(2π)3

∫
I(q)Pπ(q) dVq (13)

where Pπ(q) is the Fourier transform of Ωπ(r). In general, powder scattering patterns

are measured experimentally, in which case I(q) depends only on the modulus of the

scattering wave vector q = |q|. In this case the relation becomes

σ2{Π} =
1

(2π)3

∫ ∞
0

I(q)Pπ(q) 4πq2dq (14)

where Pπ(q) is the orientation-average of Pπ(q), which can be thought of as the form

factor of the probe Π. Equation (14) is central in the present paper. It shows how

the heterogeneity curves σ2{Π}, equivalent to the right panel of Figure 2, can be

calculated from experimental small-angle scattering data, for any type of probe. In

order to calculate the heterogeneity of a structure as defined in Figure 1 , one has to

multiply the experimental scattering pattern by the form factor of the chosen probe

and to integrate over the entire reciprocal space. For further purposes, the real-space

structure and the form factors of the spherical and Gaussian probes are shown in

Figure 3a and 3b. The analytical expressions are given in Table 1.
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Fig. 3. Three probe functions Π considered in the present work (left, real space),
together with their form factors Pπ(q) (right, reciprocal space).The insets are the
same plots on double logarithmic scales. From top to bottom: the sphere (a), the
Gaussian (b), and the q-sphere (c). See Table 1 for the properties of these probes.
The size L of the probe is the radius for the sphere, the standard deviation for the
Gaussian, and the inverse cutoff frequency for the q-sphere.

The central result of the paper, Eq (14) can also be obtained on the following more

intuitive grounds, by following the approach used by Ruland (1971) to analyse the

scattering by systems with interfaces having a finite thickness. Because a multiplication

in reciprocal space converts to a convolution in real space, the product I(q) × Pπ(q)

can be thought of as the SAS pattern corresponding to the filtered density (ρ ∗Π)(x),

where ∗ is a convolution product. The latter convolution is nothing but ρπ(x) defined

in Eq. (2) as a moving-average filter. Equation (14) then follows directly from Eq. (11)

applied to the SAS of the filtered density distribution, or equivalently from Parseval’s

theorem.
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Sphere Gaussian q-Sphere
Π(y) Eq. (3) Eq. (4) Eq. (27)

Pπ(q) 9 [sin(qR)− qR cos(qR)]
2
/(qR)6 exp

(
−q2a2

)
Θ(ν − q)

Size L Radius R Standard deviation a Inverse cutoff 1/ν

α
(0)
π 1 1 1

α
(1)
π 35/36 4/

√
π 4/π

α
(2)
π 6/5 6 0

α
(3)
π 32/21 32/

√
π −16/π

β
(0)
π 3/(4π) 1/(8π3/2) 1/(6π2)

β
(1)
π −9/(16π) 0 0

β
(2)
π 0 −1/(16π3/2) −1/(30π2)

β
(3)
π 9/(32π) 0 0

Table 1. Characteristics of a the main probes used in the text, with notably their real-space

structure Π(y) and their form factor Pπ(q). The constants α
(n)
π and β

(n)
π are defined by Eqs.

(23) and (32). These values are required to determine the surface area and the integral range

from the slopes of the relevant scale-dependent heterogeneity curves.

2.2. Scale-dependent heterogeneity as a generalised correlation function

It order to put the concept of heterogeneity σ2{Π} in a broader perspective, it is

interesting to consider the particular probe consisting in only two points at a distance

r from one another.This can be formalised as

Π2r(y) =
1

2

[
δ

(
y − r

2

)
+ δ

(
y +

r

2

) ]
(15)

where δ() is Dirac’s function.

In order to keep the discussion simple, we shall restrict the analysis of the present

section to the same two-phase system as in the introduction, comprising a solid phase

S and pore space P , having densities ρS and ρP , and volume fractions φS and φP .

In that case the variance of ρ(x) is given by the classical form of Porod’s invariant

Q = (ρS − ρP )2φSφP as in Eq. (1).

The second-order spatial statistics of biphasic systems are conveniently described by

the so-called stick probability functions PSS(r), PPP (r), PSP (r), which are equal to the

probabilities that pairs of points at distance r from one another belong both to phase

S, both to phase P , or one to each phase (Goodisman & Brumberger, 1971; Ciccariello
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et al., 1981; Torquato, 2000). The latter probabilities are related to the correlation

function γ(r) by

PSS(r) = φS [φPγ(r) + φS ]

PPP (r) = φP [φSγ(r) + φP ]

PSP (r) = φSφP [1− γ(r)] (16)

These relations can be obtained by noting that PSS(r) + PSP (r) = φS for any value

of r, and that a similar relation holds when inverting phases S and P .

With these notations in mind, the values taken by ρπ for the two-point probe Π2r

are the following

ρπ =


ρS with probability PSS(r)
(ρS + ρP )/2 with probability 2× PSP (r)
ρP with probability PPP (r)

(17)

The factor 2 in second case accounts for the fact that PSP (r) = PPS(r). Using these

probabilities, the heterogeneity σ2{Π} can be calculated explicitly as 〈ρ2
π〉 − 〈ρπ〉2,

which eventually leads to

σ2{Π} = Q
1 + γ(r)

2
. (18)

This equation shows that the correlation function and the heterogeneity are linearly

related to one another. In other words, the two functions carry the same structural

information.

The meaning of Eq. (18) is conveniently analysed from a statistical perspective.

Imagine that we want to estimate the true global density 〈ρ〉 of the material, and that

we do it by picking up a single point randomly in the structure. The error on that single

measurement would be extremely large, because the estimated density would be either

ρS or ρP . The variance of that one-point estimation is exactly Q. A better estimation

of 〈ρ〉 consists in taking two random points and calculating their average value for the

purpose of reducing the variance. The variance of this two-point estimation depends
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on the distance r between the two points, as predicted by Eq. (18). If the two points

are very close to each other, the variance is not reduced because the two points are

likely to belong to the same phase (γ ' 1). On the contrary, the variance is the

lowest if the points are far apart because this minimises their correlation (γ ' 0),

so that the variance is reduced by a factor of two. It is therefore natural that the

heterogeneity with two-point probes be directly related to the correlation function

γ(r). The same type of reasoning applies to the three-point probes, consisting of three

Dirac’s measures put at the vertices of an equilateral triangle with side r. We show

in the Supporting Information that the heterogeneity is σ2{Π} = Q(1 + 2γ(r))/3 for

that particular probe.

The reason why γ(r) appears in such a simple form in Eq. (18) as well as for the

three-point probe, is that the only distance that exists between all the points that

make up the probe is r. In the case of a sphere with radius R, all distances from

r = 0 to r = 2R are possible between pairs of points in the probe. In that case, it is

natural for the heterogeneity to be a linear combination of the values of γ(r) evaluated

at all possible distances, from 0 to 2R. This is the meaning of Eq. (7), because the

self-correlation Ωπ(r) can be thought of in terms of a pair-distribution function of the

probe Π.

For the purpose of analysing the relation of the two-point probe Π2r(y) with small-

angle scattering via Eq. (14), it is also interesting to calculate its form-factor. It is

calculated as the rotationally-averaged square modulus of the Fourier transform of

Eq. (15), which leads to

Pπ(q) =
1

2

(
1 +

sin(qr)

qr

)
. (19)

With that particular expression, Eq. (14) reduces to the classical form of an inverse

Fourier transform. It has to be stressed, however, that Eq. (14) is more general in that

it applies to any type of probe. From that perspective the correlation function γ(r),
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as it appears in Eq. (18) is just one among many other types of heterogeneities that

are related to the SAS intensity I(q). Any type of probe can in principle be used to

generate a heterogeneity curve σ2{Π} versus size, which carries the same structural

information as γ(r), only expressed differently.

3. Structural significance of the heterogeneity

The structural significance of the heterogeneity σ2{Π} is conveniently discussed based

on a well-defined structure. For that purpose, the present section is illustrated with

the hierarchical model of porous material shown in the inset of Figure 4. That model

comprises both micro- and meso-pores. On the mesopore-scale, the structure has pores

with approximate size 100 Å, which fill 50 % of the volume. The remainder volume is

occupied by a solid that is itself microporous, i.e. with pores smaller than 20 Å. The

latter micropores fill 30 % of space. This results in a material with an overall porosity

of 65 %. Based on the parameters of the model the total surface area is 364 m2/cm3,

of which 132 m2/cm3 are due to the mesopores and the remainder to the micropores.

The mathematical details are available in the Supporting Information.
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Fig. 4. SAS pattern I(q) of the two-scale model of porous material used to illus-
trate the theoretical aspects of the paper. The structure comprises both mesopores
and micropores (see Supporting Information for details). A particular realisation is
shown in the inset.

As we discussed when introducing Eq. (2) the quantity ρπ(x) can be interpreted as

a low-pass filtered version of ρ(x), where the density at each point of the material is

replaced by the average value calculated in a neighbourhood defined by the probe Π(y).

This is illustrated in Figure 5 with a 2D realisation of the same model as in Figure 4,

in which the grey level stands for the density. The density map of the material ρ(x) is

biphasic and comprises only the values 0 and 1 with sharp boundaries. When the size

of the probe Π is progressively increased, the filtered density ρπ(x) progressively looses

all its features starting from the smallest: first the boundaries are blurred, then the

smallest objects are smoothed out, and all the structure of ρ(x) is eventually filtered

out for very large probes. The scale-dependent heterogeneity curve σ2{Π}-versus-size,

as shown in Figure 2c is an objective measure of what is left of the structure after

applying a filter of a given size.
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Fig. 5. Example of a biphasic structure (a) corresponding to a 2D realisation of the
model in Figure 4, and the resulting ρπ(x) obtained with disk-like (b1-c1), Gaussian
(b2-c2) and q-spherical (b3-c3) probes. The size of the probe is L = 1.5 nm (b1-b3)
and L = 3.5 nm (c1-c3). See Table 1 for the exact meaning of the size L for the
three different windows.

It is a common procedure in image analysis, and particularly in mathematical mor-

phology, to characterise a structure by analysing how it is modified further to the

application of a given filter (Soille, 1999). The measurement of size distributions via

opening granulometry typically follows that general scheme (Serra, 1982). In the con-

text of image analysis the most efficient filters are non-linear and one generally mea-

sures the volume of objects. If one wants to apply the same type of procedure to SAS

data analysis, one can only apply linear filters because the structural data is available

in the reciprocal space. Moreover, the only measurement that one can make on the

filtered structure is the variance σ2{Π} via Eq. (14). Although these constraints con-

siderably limit the potential of the method, they are inherent to scattering methods.

Moreover, they do not preclude the measurement of important structural characteris-

tic of the material, as we now discuss.
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3.1. Asymptotically small probes

We start our discussion of the structural significance of σ2{Π} in the case where

the probe is smaller than the characteristic size of the structure. For that purpose,

consider again a biphasic structure with pore and solid phases P and S and interface

area APS , analysed with a spherical probe with radius R. If the radius R is much

smaller than the radii of curvature of the interface, the density maps ρ(x) and ρπ(x)

are different only in a small layer of thickness 2R on both sides of the interface. The

effect of the filtering is to replace the density in that layer, which was initially either

ρS or ρP , by values that are evenly distributed between ρP and ρS . The histogram

in Figure 2-b1 is representative of that situation. Because the volume fraction of the

layer that is affected by the filtering is proportional to APS ×R, one expects that the

decrease of σ2{Π} with R should be proportional to the interface area of the material.

This analysis can be made quantitative by particularising the general expression of

σ2{Π} in Eq. (7) to the case of small probes. Assuming a probe much smaller than

the characteristic size of the structure is equivalent to assuming that the function

Ωπ(r) decreases to 0 much faster than χρ(r), or than γ(r) = χρ(r)/Q. In Eq. (7), the

correlation function γ(r) can therefore be approximated as a limited Taylor develop-

ment because all higher-order terms are significant only for values of r where Ωπ(r) is

vanishingly small. The approximation is

γ(r) ' 1 + γ(1)r +
1

2
γ(2)r2 +O(r3) (20)

where γ(n) is the nth derivative of γ(r) evaluated at r = 0. Using this expression, the

general relation between σ2{Π} and γ(r) becomes

σ2{Π}
Q

= µΩ
0 + γ(1)µΩ

1 +
1

2
γ(2)µΩ

2 + . . . (21)

where we have used the notation µΩ
n for the moments of Ωπ(r), i.e.

µΩ
n =

∫ ∞
0

rnΩπ(r) 4πr2dr (22)
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Quite generally, the moment of order n is proportional to the nth power of the probe

size L. It is therefore convenient to introduce the proportionality constant as

µΩ
n = α(n)

π Ln . (23)

In the case of the spherical probe we chose L as the radius, and for the Gaussian probe

we identify L with the standard deviation. The corresponding values of α
(n)
π for the

spherical and Gaussian probes are calculated in the Supporting Information, and they

are given in Table 1 for n = 0 to 3. Because of the normalisation
∫

Π(y)dVy = 1, all

the probes of the present paper satisfy α
(0)
π = 1.

The derivatives of the correlation function for small values of r, γ(n), carry structural

information about the interfaces of the material. For any system comprising two phases

P and S, the first derivative γ(1) is proportional to the interface area APS (Debye

et al., 1957), namely

γ(r) ' 1− 1

4

APS
φPφS

r + . . . , (24)

and the following terms depend on the smoothness and curvature of the interface

(Kirste & Porod, 1962; Ciccariello, 1995). We shall be mainly interested here in the

linear term in γ(r), which leads to the following linear relation between the scale-

dependent heterogeneity and the probe size

σ2{Π}
Q

' 1− α
(1)
π

4

APS
φPφS

L+ . . . (25)

which enables one to estimate the specific surface area from the initial slope of the het-

erogeneity curves. Although different heterogeneity curves are obtained with different

types of probes, the different values of απ given in Table 1 enable one to obtain the

same surface area APS independently of the probe. For the purpose of data analysis,

one can therefore select the type of probe that minimises the impact of experimental

uncertainties. In particular, we now discuss how the estimation of surface area can be

made insensitive to scattering data extrapolation by using an appropriate probe.
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Figures 6a and 6b display the size-dependent heterogeneity σ2{Π} calculated from

the SAXS pattern in Figure 4 with the spherical and Gaussian probes. The solid

black line corresponds to Eq. (25) with the known surface area APS of the model, and

the value of α
(1)
π corresponding to the probe. A practical difficulty when calculating

σ2{Π} from the SAS patterns via Eq. (14) is the evaluation of the integral, which

requires extrapolating the data outside of the experimentally measured q-range. This is

illustrated by the insets of the figure: when no extrapolation is used (black symbols) the

heterogeneity σ2{Π} behaves quadratically close to the origin so that it is impossible

estimate the specific surface area. On the other hand, when the scattering data I(q) is

extrapolated with a q−4 Porod law before evaluating the integral, the values of σ2{Π}

are found to be in fair agreement with Eq. (25).

IUCr macros version 2.1.6: 2014/10/01



21

0 5 10
0.5

1

10
1

10
2

10
3

10
−6

10
−3

10
0

0 5 10
0.5

1

10
1

10
2

10
3

10
−6

10
−3

10
0

0 5 10
0.5

1

10
1

10
2

10
3

10
−6

10
−3

10
0

0

1

σ
2
{Π

}/
Q a

0

1

σ
2
{Π

}/
Q b

0 20 40 60 80 100 120 140 160
0

1

L (Å)
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Fig. 6. Scale-dependent heterogeneity curves σ2{Π} calculated from the SAXS data in
Figure 4 using Eq. (14) for spherical (a), Gaussian (b) and q-spherical (c) probes.
The insets display a magnified view of the origin (left) and the same data on double
logarithm scales (right). In the first case, the circles are obtained after extrapolating
the data by a Porod law to calculate σ2{Π}. The solid black line is the linear small-
probe approximation Eq. (25), the blue line is Eq. (39), and the red line is the
large-probe approximation Eq. (33).

The extrapolation of I(q) is a customary procedure when analysing experimental

data, e.g. for the evaluation of the total scattered intensity Q. However, it is always

open to the criticism that one is forcing the data into a Porod law, which might not

actually be present. For evaluating the specific surface area via the slope of σ2{Π},

the sensitivity to extrapolation can be reduced by using a probe that is more compact

in reciprocal space than the sphere. This is notably the case for the Gaussian, which

leads to values of σ2{Π} that are not very dependent on the data extrapolation (see

inset of Figure 6b). The extrapolation can be altogether avoided by using a probe that

IUCr macros version 2.1.6: 2014/10/01



22

is compact is reciprocal space. The simplest such probe has the following form factor

PJ(q) = Θ(ν − q). (26)

where Θ() is Heavyside’s step function. Because this equation describes a sphere in

reciprocal space with radius q = ν, we refer to this probe as a q-sphere. The filtering

operation corresponding to this probe (i.e. for generating the corresponding density

map ρπ(x)) is a perfect low-pass filtering of the structure with all spatial frequen-

cies larger than ν removed. Because the probe is compact in reciprocal space it is

necessarily extended in real space. The real-space structure is obtained via a Fourier

transform of Eq. (26), which leads to

Jν(y) =
3ν3

2π2

sin(ν|y|)− (ν|y|) cos(ν|y|)
(ν|y|)3

(27)

Under that form, it is apparent that the cutoff frequency ν is related to the real-space

size of the probe via the inverse relation L = 1/ν. The real- and reciprocal-space

structures of the probe are shown in Figure 3c.

The scale-dependent heterogeneity of the model in Figure 4 based on q-spheres is

shown in Figure 6c. It exhibits a sharp linear portion for small values of L, the slope

of which nicely matches Eq. (25). The sharpness of the linear regions is desirable

from the point of view of data analysis because it makes the slope estimation more

accurate. Mathematically, the sharpness results from the fact that the second moments

µΩ
2 is equal to zero for the q-sphere (see the values of α

(2)
π in Table 1). The quadratic

term in Eq. (21) is therefore always equal to zero for a q-sphere, which increases the

linearity of σ{Π}. Finally, we note that in addition to not requiring any scattering data

extrapolation, the practical estimation of σ2{Π} from SAXS data I(q) is particularly

simple in the case of q-spheres. Indeed, Eq. (14) reduces to

σ2{Π}(ν = q) =
1

2π2

∫ q

0
I(q)q2dr (28)
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which can easily be calculated from an experimental scattering pattern. Therefore,

from the point of view of surface area determination, q-sphere is clearly more conve-

nient a probe than both the sphere and the Gaussian.

The model in Figure 4 was designed to have a hierarchical structure displaying two

families of pores, micro- and meso-pores, which are also visible in the 2D realisation in

Figure 5a. It is interesting to see whether that feature is apparent in the heterogeneity

curves σ2{Π}. It seems that the q-spherical probe is more efficient than the sphere

and Gaussian in that respect too. A second linear portion at intermediate values of L

is clearly visible in Figure 6c, which is unclear in Figs 6a and 6b. We shall come back

to the quantitative analysis of that second linear region in the section devoted to the

estimation of size distributions.

3.2. Asymptotically large probes

We have shown in the previous section how the small-probe behaviour of σ2{Π}

enables one to determine the specific surface area from scattering data. We now turn

to the structural information that can be obtained with probes that are much larger

than the characteristic size of the structure. This is the typical situation sketched in

Figure 2 b3. As we shall see, the relevant information in the heterogeneity curve is the

so-called integral range of the structure. This is a central characteristic in the field of

geostatistics (Lantuejoul, 1991) but it is seldom discussed in the context of scattering

studies.

In the case of large probes the relation between the scale-dependent heterogeneity

σ2{Π} and the correlation function can be simplified by approximating the integral

in Eq. (7) via a limited Taylor development for the probe self-correlation Ωπ(r). This

is justified here because γ(r) decreases faster than Ωπ(r), so that higher-order terms

in Ωπ(r) are significant only when γ(r) is vanishingly small. The Taylor development
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leads to following series

σ2{Π}
Q

= Ω(0)µγ0 + Ω(1)µγ1 +
1

2
Ω(2)µγ2 + . . . , (29)

Compared to the case of small probes Eq. (21), the roles of the moments and of

the derivatives are now inverted: the relevant moments are those of the correlation

function

µγn =

∫ ∞
0

rnγ(r) 4πr2dr (30)

and the derivatives are those of the probe’s self-correlation

Ω(n) =

[
dnΩπ(r)

drn

]
r→0

(31)

Because the normalisation of the probes are equivalent to µΩ
0 = 1, the nth derivative

Ω(n) is proportional to the power L−(3+n). In particular, the moment of order 0 Ωπ(r =

0) is inversely proportional to the volume of the probe, i.e. to L−3. We define the

proportionality constant β
(n)
π as follows

Ω(n) = β(n)
π /L3+n . (32)

The values of β
(n)
π are calculated in the Supporting Information and they are reported

in Table 1 for the main probes discussed in the paper. Using this notation, the scale-

dependent heterogeneity behaves as

σ2{Π}
Q

= µγ0
β

(0)
π

L3
+ µγ1

β
(1)
π

L4
+ . . . , (33)

in the asymptotic limit of large probes. Equation (33) describes how the variances of

the distributions shown in Figure 2 decreases when larger probes are used. From the

point of view of data analysis, this shows how the scale-dependent heterogeneity can

be used to estimate the moments of the correlation function.

The 1/L3 decrease of σ2{Π} predicted from Eq. (33) is apparent when the scale-

dependent heterogeneity is plotted on double logarithmic scales (see the insets of
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Figure 6). The leading term is proportional to µγ0 , i.e. to the integral of the correlation

function γ(r). In the field of geostatistics, this is a quantity that is referred to as the

integral range of the structure (Lantuejoul, 1991). Because it is not a usual concept

in the context of scattering studies, we shall discuss its meaning is some detail. In

the context of statistical physics and assuming thermal equilibrium, this integral is

related to the compressibility of the system (Chandler, 1987). That quantity, however,

has a universal geometrical meaning that is independent of any assumption on the

system. Dimensionally, the integral range µγ0 is a volume. To understand its structural

significance consider the case of a spherical probe, for which L3/β
(0)
π is equal to the

probe volume Vπ = 4πR3/3. With that in mind, the leading term in Eq. (33) can be

written as

σ2{Π} ' Q

N
(34)

with N = Vπ/µ
γ
0 . This equation is best understood in the same spirit as our discussion

of Eq. (18), namely by considering σ2{Π} as the variance of a density estimation. In

that context Q is the variance associated with a one-point estimation of the material

density. From the perspective variance reduction through averaging, Eq. (34) means

that the entire volume of the probe counts as much as N individual and uncorrelated

point-wise measurements of the density. In other words, from a statistical point of

view every volume µγ0 of the material counts as much as one point only. In that sense

the integral range is the natural scale of the structure (Lantuejoul, 1991). Typically,

if one is interested in a representative volume element of a structure, it has to be

many times larger than µγ0 (Kanit et al., 2003). The integral range is obtained from

scattering pattern as

µγ0 = lim
q→0

I(q)

Q
(35)

which results from estimating Eq. (10) for q = 0.

Interestingly, the integral range µγ0 need not always take finite values. For example,
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some fractal structures have a correlation function γ(r) that decreases more slowly

than 1/r3, which leads to infinite values for µγ0 . Another interesting case is when µγ0

becomes vanishingly small. All periodic structures have that property, but this is not

limited to periodic structures. Disordered point patterns with a vanishing integral

range have received some attention in the context of theoretical physics and they are

referred to as being hyperuniform (Torquato & Stillinger, 2003; Zachary & Torquato,

2009). We shall illustrate this concept in the discussion section.

In terms of scattering, if the SAS pattern I(q) scales like qν for small values of q,

where ν is a constant, it results from Eq. (14) that the heterogeneity behaves like

σ2{Π} ∼ 1/L3+ν (36)

for large values of L. Any positive value of ν is therefore characteristic of a structure

with vanishing integral range.

3.3. Interpretation of σ2{Π} in terms of size distributions

We have shown in the last two sections that the small-probe and large-probe limits

of the scale-dependent heterogeneity σ2{Π} provide two different characteristic sizes

of the underlying system, namely: the specific surface area and the integral range. The

former and the latter are local and global characteristics of the structure, respectively.

We now show how the σ2{Π} curves for intermediate probe sizes can be analysed in

terms of size distributions.

It has to be stressed that the very concept of size is defined unambiguously only

for geometrically simple structures. For example, a diameter can be used only when

the structure can be idealised in terms of objects (particles or pores) that are almost

spherical. In the case of complex structures like Figure 4, which cannot even be decom-

posed into isolated solid objects or pores there is no unique definition of size (see e.g.

Serra (1982)). We propose here to define the size of an object, however complex, as the
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size L of the probe Π that is needed to filter that object out of the structure. With this

definition, the estimated size of a structure depends on the particular type of probe

chosen - spherical, Gaussian, or other - but this is merely a matter of definition.

To illustrate the relation between the scale-dependent heterogeneity σ2{Π} and

the size, consider again the hierarchical structure in Figure 5a. In order to formalise

the analysis, we shall denote the characteristics of the small and large scales with

superscripts (s) and (l), respectively. Moreover, we still refer to the white phase as the

solid S and to the black phase as the pore P . The structure in Figure 5a comprises large

solid regions that span across the entire image. The corresponding volume fraction at

that scale is φ
(l)
S ' 0.5. These large regions, however, are not homogeneous on a small

scale because they are made up of finer structures. The volume fraction of the solid

S within these larger regions is φ
(s)
S ' 0.7. The overall volume fraction of the solid in

the entire structure is therefore φS = φ
(l)
S φ

(s)
S ' 0.35. We now analyze in detail the

geometrical characteristics of this hierarchical structure that contribute to the σ2{Π}

curve, when the size L of the probe is progressively increased. Here again, we discuss

this in terms of the filtered density map ρπ(x) defined in Eq. (2).

When the probe is much smaller than the smallest objects in the structure, the effect

of the filtering is only to blur the interfaces as in Figure 5b1 for the spherical probe

and b2 for the Gaussian probe. This is the range of L where Eq. (25) applies, with

APS being the total surface area resulting from both the small-scale and large-scale

structures. With larger probes, however, the entire small-scale structure is blurred out

by the filtering operation, which is particularly clear in the case of the Gaussian probe

in Figure 5b2. In that range of L the small-scale structure is irrelevant. However, we

expect Eq. (25) to remain valid but the relevant surface area is that of the large-

scale structure A
(l)
PS only. Moreover, the relevant invariant Q is that of the large-scale
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structure too, namely

Q(l) =
[
(ρS − ρP )φ

(s)
S

]2
φ

(l)
S (1− φ(l)

S ) (37)

This expression results from the classical form in the right-hand-side of Eq. (1), with

the contrast term evaluated between the average density of the solid (after averaging

out the small-scale structure) ρP [1−φ(s)
S ]+ρSφ

(s)
S and ρP . Because the invariant of the

entire structure can be written explicitly in terms of the small-scale and large-scale

structures as

Q = [ρS − ρP ]2 φ
(l)
S φ

(s)
S (1− φ(l)

S φ
(s)
S ) (38)

the relevant expression of σ2{Π} for intermediate probe sizes is finally

σ2{Π}
Q

' φ
(s)
S − φS
1− φS

− α
(1)
π

4

[φ
(s)
S ]2

φS(1− φS)
A

(l)
PSL+ . . . (39)

For obtaining this expression we have used the fact that the volume fraction of the

solid can be written as φS = φ
(s)
S φ

(l)
S . The blue lines in Figure 6 correspond to Eq.

(39), with the exact values of φ
(s)
S , φS and A

(l)
PS of the model in Figure 4, and the

values of α
(1)
π of the relevant probe. For all the probes, the line corresponding to Eq.

(39) is found to be tangent to the heterogeneity curves σ2{Π} as it should.

It has also to be noted that the validity of Eq. (39) is not limited to two-scale struc-

tures, provided one understands the superscripts (s) and (l) as referring to whatever

structure is smaller or larger than the considered probe size L. If Eq. (39) is under-

stood as the tangent of the σ2{Π} curve, the quantity φ
(s)
S is related to the pore size

distribution because only the pores smaller than L are blurred out in ρπ and con-

tribute to φ
(s)
S . Similarly, A

(l)
PS is to be understood as the surface area of the structures

larger than L, which are the only ones to be still present in ρπ for probes of that size.

To make the relation to size distribution explicit, we define FV (L) as the cumulative

pore-volume distribution. In other words, φP×FV (L) is the volume fraction of all pores
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smaller than L. Because φS + φP = 1, this quantity is related to φ
(s)
S via

φ
(s)
S = 1− (1− φS)FV (L). (40)

With that relation in mind, the first term on right-hand side of Eq. (39) is equal

to 1 − FV (L). This means that the pore-size distribution can be obtained from the

intercept of the tangent to the scale-dependent heterogeneity σ2{Π}. The slope of the

tangent is proportional to distribution of the surface area as a function of pore size.

We define FS(L) as the cumulative surface distribution as

A
(l)
PS = APS(1− FS(L)). (41)

where A
(l)
PS is calculated from the slope of Eq. (39), knowing the corresponding value

of φ
(s)
S determined from the intercept.

The volume and surface distributions obtained in this way depend naturally on the

type of probe chosen for the analysis. This reflects the fact that there is no unique

definition of size for geometrically complex structures. The size distributions obtained

from the SAXS pattern in Figure 4 using either a spherical or a Gaussian probe are

shown in Figure 7a and 7b. The distributions exhibit a two-step increase. A first family

of small pores - with L ≤ 20 Å(Gaussian) and L ≤ 30 Å(spheres) - accounts for about

φP = 0.30 and APS = 0.02 Å−1 for both probes. These values coincide reasonably

with the known volume fraction and surface area of the micropores in model of Figure

4. It is also not surprising that for the same structure, the size L defined with a

Gaussian probe is smaller than with a spherical probe. This originates in the fact that

the spherical probe is compact while the Gaussian has a tail extending far beyond the

standard deviation L. The horizontal shifting of the distributions in Figure 7 merely

results from a different definition of the size. The important observation is that the

shape of the curves, i.e. the relative contribution of the micro- and meso-pores to the

surface area and to the volume, is independent of the probe.
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Fig. 7. Size distributions derived from the scale-dependent heterogeneity via Eq. (39).
Cumulative distributions of the volume fraction (a) and of the specific surface area
(b) against probes size L in the case of a spherical (blue line) and Gaussian probes
(green line).

Finally, it has to be stressed that the q-spherical probe cannot be used to determine

size distributions. It was implicit in the discussion so far that increasing the size

L of the probe results in smoother values of the filtered density map ρπ(x). This

is not necessarily the case with the q-sphere because its real-space structure contains

oscillating positive-and-negative features (see Figure 6c). As a consequence, the values

of ρπ are not necessarily bounded by ρP and ρS . This is notably the case in Figure

5-b3, and it is responsible for the presence of inflection points in the heterogeneity

curve σ2{Π} in Figure 7c. Using blindly that curve to estimate FS(L) and FV (L)

would lead to non-monotonic functions, which cannot be interpreted as cumulative

distributions.

4. Discussion

We have derived general mathematical results concerning the structural significance

of the scale-dependent heterogeneity σ2{Π}, and we have illustrated them on the par-
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ticular case of a mathematical model of porous material comprising two families of

pores (Figure 4). A variety of different scale-dependent heterogeneity curves can be

obtained from scattering data depending on the particular type of probe function Π

that is used. However, we have shown that all these curves can be analysed consistently

in terms of specific surface areas and integral ranges provided the relevant character-

istics of the probe are taken into account (see Table 1). Therefore, the choice of any

particular probe for analysing scattering data in terms of scale-dependent heterogene-

ity is merely a matter of convenience. In that respect the classical correlation function

- corresponding to a probe Π consisting of two points only- is just one among many

mathematically equivalent functions. And it is not a particularly convenient one from

the point of view of data analysis.

The most convenient probe in many respects is the one we referred to as a q-sphere,

the real-space structure of which is given by Eq. (27). First, the evaluation of the

corresponding σ2{Π} curve is straightforward via Eq. (28). This can be calculated on

a spreadsheet and it does not require any extrapolation of the scattering data outside

of the experimentally measured angular. Second, because the coefficient α
(2)
π of the

q-sphere is equal to zero (Table 1) the σ2{Π} curves exhibit sharp linear regions, the

slopes and intercepts of which can be determined unambiguously. The only situation

we encountered in which the q-sphere was not suitable is the determination of size

distributions, which requires a probe function that is compact is real-space, such as the

sphere. In the present discussion section, we show how the concept of scale-dependent

heterogeneity can be used to analyse experimental small-angle scattering data. We

discuss here three different nanostructured materials, the SAXS data of which are

plotted in Figure 8.
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Fig. 8. Three qualitatively different SAXS patterns used to illustrate the usefulness
of scale-dependent heterogeneity for practical data analysis. (a) micro- and meso-
porous silica SBA-15, (b) silica alcogel obtained from the hydrolysis and condensa-
tion of TEOS, and (c) low-density semicrystalline polyethylene sample. The insets
display the same data on double logarithmic scales.

The first material is so-called SBA-15 ordered micro- and meso-porous silica, synthe-

sised by liquid-crystal templating (Zhao et al., 1998). The structure of that material is

sketched in Figure 9: it consists in an hexagonal array of cylindrical mesopores having

approximate diameter of 2R = 8 nm, with the silica between the mesopores containing

micropores (i.e. with sizes smaller than about 2 nm). Nitrogen adsorption and des-

orption was measured on the very sample shown in Figure 8a (Gommes et al., 2015).

The BET specific surface area of this material is SBET =775 m2/g and the total pore

volume is Vp = 0.79 cm3/g. Using the value of the pore volume from nitrogen adsorp-

tion, and assuming a specific mass ρs = 2.2 g/cm3 for the solid phase of that material,

the overall solid fraction of SBA-15 is calculated as

φS =
1

1 + ρsVp
' 0.37 (42)

This numerical value is used hereafter for the SAXS data analysis.
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Fig. 9. Sketch of the structure of SBA-15 porous silica, exhibiting a hexagonal array
(with lattice parameter a) of cylindrical mesopores with radius R. The solid line
highlights the unit cell. The space between mesopores contains disordered microp-
ores.

The second material (Figure 8b) is a silica alcogel synthesized from the hydrolysis

and polycondensation of tetraetyoxysilane (TEOS) in ethanol (Gommes et al., 2007).

Because the word silica gel is sometimes abusively used to describe the porous material

obtained after desiccating such a gel, it is useful to stress that the material investigated

here is still soaked in the solvent in which it was synthesised. As a consequence, the

scattering pattern of the material does not exhibit Porod scattering with exponent 4.

Instead, an asymptotic power-law scattering with an exponent close to 2 is observed,

which is typical of gels. The solid fraction of the gel, assuming that the condensa-

tion reactions have proceeded to the point where the solid consists in dense SiO2, is

estimated from the overall composition of the starting solution to be φS ' 0.15.

Finally, the third and last material (Figure 8c) is a semicrystalline low-density

polyethyene (LDPE) sample (Basiura, 2005). In that material, the SAXS intensity

results from the electron density contrast between the nanometer-sized crystalline and

molten regions. In order to keep the same notation as in the theoretical part of the

paper, we refer hereafter to the crystalline and molten phases as S and P , respectively.

Using calorimetry, the crystallinity (i.e. the volume fraction of the crystalline phase)

of that material is estimated to be φS ' 0.2 (Basiura, 2005).

The scale-dependent heterogeneities σ2{Π} calculated from the SAXS patterns in
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Figure 8 with q-spherical probes are plotted in Figure 10. The curves of the SBA-15

and LDPE samples display a clear linear portion close to L = 0, from which the

following values are obtained for the specific surface areas: APS = 403 m2/cm3 for

SBA-15 and APS = 241 m2/cm3 for LDPE.
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Fig. 10. Scale-dependent heterogeneity curves estimated from the scattering data in
Figure 8 with a q-spherical probe, i.e. with eq. (28): (a) SBA-15, (b) TEOS and (c)
LDPE. The solid red lines are fits of the linear portions of the plots, when applicable
(see text). The insets display the same curves on double logarithmic scales. The two
lines in each inset are power laws with exponents −3 and −4.

An interesting feature of the σ2{Π} curves of SBA-15 is the presence of a second

linear region for L ' 10 Å, in much the same way as in Figure 6c. This results from

the hierarchical structure of the material, which comprises both meso- and micro-

pores (see Figure 9). Using Eq. (39) to analyse the slope and intercept of that second

linear region, one obtains the values φ
(s)
S = 0.79 and A

(l)
PS = 253 m2/cm3. The first

value is the solid fraction of the silica wall between neighbouring mesopores. That

value compares reasonably with estimates obtained by a variety of techniques on the

same type of material, which all point a wall porosity of the order of 30 % (Hofmann

et al., 2005; Gommes et al., 2009; Prass et al., 2009). Concerning the value of A
(l)
PS ,

it corresponds to the surface area of the structures that remain in the density map

ρπ(x) after filtering with a q-spherical probe of size L ' 10 Å. The relation between
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L and the actual size of the structures is probe-dependent. From Figure 3c, the actual

width (diameter) of the q-spherical probe in real space is about 4L. In the particular

case of SBA-15, it is therefore safe to assume that micropores (i.e. with width smaller

than 20 Å) do not contribute to the linear region at L ' 10 Å. The surface area A
(l)
PS

corresponds therefore to that of the mesopores only. In order to verify this, one can

relate the mesopore surface area A
(meso)
PS to the radius R of the mesopores, using the

geometrical model in Figure 9. This leads to

A
(meso)
PS =

2πR

a2
√

3/2
(43)

where the numerator is the perimeter of mesopore circular section and the denominator

is the area of the hexagonal unit cell. The value of the lattice parameter a is obtained

from the position of the first peak in the scattering pattern via q = 4π/(a
√

3) (Förster

et al., 2005), which leads to a = 113 Å for the data in Figure 8a. Using that value of a

and A
(l)
PS = 252 m2/cm3 leads to the mesopore radius R = 45 Å. This value compares

beautifully with the estimated radius from nitrogen adsorption of 40 Å as mentioned

earlier, as well as with the value R = 43 Å obtained via a thorough modelling of the

scattering pattern (Gommes et al., 2016).

In order to compare the total surface area APS = 403 m2/cm3 to the BET surface

area measured from nitrogen adsorption, one has to convert it first to m2/g. This

requires dividing by the bulk density of the material φSρs = 0.81 g/cm3. The corre-

sponding value is APS = 497 m2/g, which is significantly smaller than the 775 m2/g

according to BET. The difference points to a significant molecular-scale roughness

of the surface, which increases the BET area beyond its geometrical value (Gregg &

Sing, 1982).

It has to be stressed that despite the hierarchical structure of SBA-15, with both

micro- and meso-pores, its SAXS pattern in Figure 8a does not exhibit a double

Porod plateau that would enable one to discriminate simply the surface area of the
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two types of pores (Ciccariello, 1988). The scattering pattern is dominated by the

Bragg peaks resulting from the hexagonal periodicity of the mesopore structure at

intermediate values of q. This makes a classical Porod analysis difficult. By contrast

the two linear regions in the σ2{Π} plot are very clear in Figure 10a. It is because the

present analysis focuses on the heterogeneity, rather than on the periodicity, that the

hierarchical structure of the material is made apparent.
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Fig. 11. Size distributions of the SBA-15, TEOS and LDPE samples derived from the
scale-dependent heterogeneity via Eq. (39). Cumulative distributions of the volume
fraction (main graphs) and of the specific surface area (insets) against probe size
L. A spherical probe was used for the calculations.

The main structural characteristics of the SBA-15 sample are also visible in the size

distributions plotted in Figure 11a. Those distributions were obtained as in Section

3.3, based on the scale-dependent heterogeneity curve with a spherical probe. The

volume and surface distributions FV (L) and FS(L) exhibit a riser around L = 50 Å ,

which corresponds to the size of the mesopores. The riser is better defined in the case

of the surface distribution (inset), which exhibits a two-step increase. The first one

saturating around L ' 20 Å shows that half of the surface area is due to micropores

in SBA-15.

In the case of the gel sample (TEOS, Figure 10b) no linear region can be detected

in the heterogeneity curve: the curve becomes steeper and steeper when L becomes

vanishingly small. Mathematically, this results from the asymptotic scattering of that
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sample following a power law of the type I ∼ q−2. Because this decrease is slower

than q−3, the integral in Eq. (14) does not converge for infinitely small probes. The

traditional way to describe this type of scattering in the SAXS literature is in terms of

a mass fractal, i.e. with fractal dimension smaller than 3 (Schmidt, 1991). The fact that

the heterogeneity diverges for small L’s, points at the appearance of new structures

each time the observation scale is reduced. In a sense, this is the very essence of a

mass fractal. The overall fractal structure of the TEOS sample is also visible in the

size distributions FV (L) and FS(L) (Figure 11b), which are extremely steep for small

values of L.

Finally, in the case of the semicrystalline LDPE (Figure 10c) the surface area APS =

241 m2/cm3 can be converted to thicknesses of the crystalline and amorphous domains.

Assuming a lamellar structure, as usual for this type of material, leads to the average

thicknesses lS = 2φS/APS ' 17 Å for the crystalline domains and lP = 2φP /APS ' 66

Å for the amorphous regions. The two-step increase of FS(L) (inset of Figure 11c)

should not be interpreted here in terms of a hierarchical structure. In the case of

LDPE the first riser around L ' 20 Å is a consequence of the flattening of the Porod

scattering for large values of q (inset of Figure 8c). This flattening results from the

scattering of the polymer melt, and not from the substructure of the crystals. The size

distributions should therefore be interpreted carefully.

The most striking and interesting characteristic of the heterogeneity curve of the

LDPE sample is not apparent for small probes but for large probes (see inset of

Figure 10c). Unlike SBA-15 and TEOS for which σ2{Π} scales like L−3, the scaling

is proportional to L−4 for LDPE. As mentioned in Section 3.2, this type of scaling is

characteristic of structures with a vanishing integral range, namely∫ ∞
0

γ(r)4πr2 dr = 0 . (44)

In reciprocal space, this statement is equivalent to stating that the scattered intensity
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I(q) extrapolates to 0 for small values of q. This is indeed the case for angular range

from q ' 0.01Å−1 to q ' 0.5Å−1, corresponding to left side of the broad scattering

maximum in Figure 8c. At very small angles (for q < 0.01Å−1) the scattered intensity

increases again, which leads to a flattening of the σ2{Π} curve in the inset of Figure

10c around L = 100 Å.

a b

c d

Fig. 12. Examples of hyperuniform structures, that is with vanishing integral range
(µγ0 = 0 ): (a) periodic structure, (b) crystalline structure with random orientation
of the motif, (c) disordered system with strongly correlated sizes (see text), and
(d) diffusion-limited systems in which each high-density region is surrounded by a
depleted region. In (c) the red lines are the limit of the Poisson-Voronoi cells from
which the structure is built; in (d) the grey scale symbolises the electron density.

In order to discuss the structural meaning of a vanishing integral range, four qualita-

tively different structures having that property are displayed in Figure 12. Fundamen-

tally, having µγ0 = 0 means that when a large probe (size L) is moved systematically

through the structure, the variance of the total number of electrons inside the probe

does not scale proportionally its volume L3 (like a Poisson process would), but to its

outer surface area L2(Torquato & Stillinger, 2003). This is notably expected in the

case of a periodic structure such as Figure 12a, for which all the unit cells are identical.

In that case, the reason for the fluctuations of the number of electrons is that some
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unit cells are intersected by the outer surface of the probe, so that a random fraction

of their electrons are inside. The number of intersected unit cells scales like the area of

the intersecting surface, i.e. as L2. The exponents L−3 or L−4 shown in the insets of

Figure 10 result from converting the total number of electrons to an electron density.

The same reasoning applies to structures obtained by repeating a motif with random

orientation, as shown in Figure 12b.

The first two examples in Figure 12 show that the only thing that matters to ensure

µγ0 = 0 is the density within each cell of the lattice. Building on that observation, it

is possible to construct disordered (non-periodic) structures with a vanishing integral

range. Consider for example the structure in Figure 12c. It was obtained in two steps

by performing first a Poisson-Voronoi tessellation (Lantuéjoul, 2002), whereby the

plane is decomposed into a set of convex regions with finite areas (red cells). As a

second step each Voronoi cell is occupied by a particle, the size of which is chosen

in such a way that it fills exactly 10 % of cell. This two-step procedure leads to a

disordered polydisperse system with strong correlations between the size of particles:

isolated particles are large and clustered particles are small. With such a structure,

the fluctuation of the number of electrons in a random probe volume results from

the Voronoi cells that are intersected by the surface of the probe. The cells that lie

entirely within the probe do not contribute to the fluctuations. Although the structure

in Figure 12c is disordered, its integral range is zero.

It is interesting to note that the geometrical construction based on Poisson-Voronoi

cells is physically similar to the nucleation-and-growth scenario of phase separation.

In that context, nuclei are formed randomly in space and they subsequently grow

when molecules in their neighbourhood attach to them. This process naturally leads

to disordered structures with strong correlations between the size of the particles

and their spatial distribution. Clustered particles are necessarily small because the
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molecules initially in their neighbourhood had to be shared among many particles.

For the same reason, isolated particles are comparatively larger. A similar mechanisms

is expected in the case of polymer crystallisation. In that context, crystalline regions

grow by expelling entangled polymer chains that necessarily become concentrated in

the surrounding region, which eventually prevents further crystal growth. It is beyond

the scope of the present paper to discuss thoroughly these questions, but this would

be a plausible explanation for the vanishing integral range of the structure of LPDE.

Models similar to Figure 12b are expected to be relevant for a variety of materials. A

classical example is the one-dimensional so-called migration model discussed by Serra

(1982), which was proposed independently by Fratzl et al. (2005) in the context of

SAXS analysis of mineral platelets in bones.

Yet another type of structure with µγ0 = 0 that can be encountered in materials

science corresponds to the case of diffusion-limited growth, whereby a growing phase

is surrounded by a boundary layer that is depleted of the molecules that it is made

of. In Figure 12c, the grey level symbolises the concentration, or the electron density.

Because the number of electrons is conserved during the growth, the total number of

electrons in a given region of space is unchanged if an initially homogeneous system

is replaced by a denser phase surrounded by a depleted layer. Therefore it is only

the phases and boundary layers that are intersected by the probe’s outer surface

that contribute to the fluctuations of the number of electrons. This type of situation

is accordingly expected to yield scattering patterns that extrapolate to 0 for small

values of q, which is indeed observed experimentally for metal nanoparticles growing

inside a glass matrix (Craievich et al., 2002).

5. Conclusions

The structural information contained in small-angle scattering patterns can be con-
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veniently analysed in terms of scale-dependent heterogeneity. The general procedure

that we proposed to quantify heterogeneity consists in estimating the average density

of the material within a given probe volume, and analysing the density fluctuations

when the probe is moved systematically through the material. The correlation func-

tion γ(r) is a particular case corresponding to a probe consisting of only two points at

distance r from one another, but the procedure is quite general. We have considered

spherical probes, Gaussian probes, as well as probes defined as spheres in reciprocal

space. In all cases, it is the linear size of the probe that sets the scale of the anal-

ysis. All the corresponding measures of heterogeneity are mathematically equivalent

because they contain the same type of geometrical information. For the purpose of

scattering data analysis, using one type of probe instead of another is merely a matter

of convenience.

Although the correlation function is conceptually the simplest measure of hetero-

geneity, from which all the others can be easily derived, it is not necessarily the most

convenient from the point of view of scattering data analysis. An extremely con-

venient probe in that respect is the sphere in reciprocal space. The corresponding

scale-dependent heterogeneity can be calculated easily from experimental scattering

patterns, without invoking indirect Fourier transforms or extrapolating the data out-

side of the measured angular range. Despite the simplicity of the analysis, we have

shown how it enables one to determine surface areas and volume fractions of materials

with complex and hierarchical structures.

From an almost philosophical perspective, it is interesting to note the similarity

between the structural analysis of scale-dependent heterogeneity curves and the gen-

eral procedure of morphological analysis advocated by Serra (1982). In the spirit of

mathematical morphology any structure can be characterised by measuring how it is

affected by the application of a given filter. It is therefore the filter that determines the
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nature of the measurement. In the context of image analysis non-linear filters are gen-

erally applied, such as morphological opening or closing, and volumes are measured.

The transformation of the density map ρ(x) into ρπ(x) via Eq. (2) is a filter too.

The difference with mathematical morphology is that only linear filters are possible

for scattering data analysis because their effects have to be calculated in reciprocal

space. This parallel sheds an interesting light on the so-called phase problem of crys-

tallography, i.e. on the question of the missing structural information when only the

scattering pattern of a structure is known (Gommes et al., 2012b). From a practical

point of view, we have shown that linear filters were sufficient to analyse the surface

areas and densities of hierarchical micro- and meso-porous materials. Moreover, the

different perspective offered by the concept of heterogeneity and fluctuations enabled

us to analyse structures in a new light, using for instance the unifying concept of

integral range and hyperuniformity.

The present contribution raises many questions and opens the way to a variety of

further developments. For example, it is in principle possible to design probe volumes

such that the leading term in σ2{Π} for small probes would be related to the curva-

ture of the interfaces rather than to their area. Mathematically speaking, this would

require a probe with µΩ
1 = 0. Can that be used to design data analysis procedures to

estimate non-trivial structural characteristics? All probes considered here are equiv-

alent to low-pass filters; would there be an interest in considering high-pass filters as

well? This would be equivalent to considering probes with
∫

Π(x)dVx = 0. As another

example, we considered here only the one-way calculation from the scattering pat-

tern to the heterogeneity, which proved mathematically simple for any type of probe.

Can we design a family of probes such that the reverse transformation, from the het-

erogeneity to the scattering pattern, would be simple too? If that were the case, we

could imagine novel numerical procedures to reconstruct structures that match any
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given scattering dataset. Would there be an interest in inferring the entire distribu-

tion of average densities ρπ starting from the measured average and variance, say by

maximum-entropy methods? Could structural information be obtained in that way?

Is there a relation between the heterogeneity calculated with a rod-like probe and

the concept of chord length distribution? Etc. We hope to investigate some of these

questions in future work.
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Synopsis

We define a quantitative measure for the scale-dependent heterogeneity of a structure, which
can be calculated from small-angle scattering data. That measure generalises the notion of
correlation function, and it leads to novel data analysis procedures.
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