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Task Description

The Société Européenne des Satellites (SES) has in charge 7 geostationnary satellites,
6 of which being co-located. All satellites are controlled in real-time from Betzdorf
(Luxembourg) and tracked from different antenna systems. These tracking
measurements are used to realise a precise determinations of spacecraft trajectories,
which are used to subsequently compute the required orbit correction manoeuvres.

The software ORBIT [Mon 96] of the German Space Operation Center (GSOC) is
used by SES to realise these orbit determinations. It is based on a Least Squares
method which processes observations through a dynamic model and an observation
model, and provides estimation of the satellites positions and velocities. Ordinarily,
the tracking system consists in a single antenna providing one range and two angles
measurements. Nevertheless, as range measurements are much more accurate than
angle measurements, SES has recently developed a trilateration tracking system using
four ranging stations. In addition, both the single- and multi-stations tracking systems
developed by SES offer the advantage of providing a continuous flow of data.

The dynamic and observation models are only accurate to a certain level as it is not
possible to exactly model all forces acting on the satellite and all effects perturbing
measurements, so additive observation noise and unmodeled forces are generally
taken into account. However, the improvement of the tracking system realised by SES
allows a significant decrease of the observation errors and thus reinforces the relative
importance of forces not modelled in the propagation model.

In parallel to the tracking system improvement, SES has explored a second method of
orbit determination, the Kalman Filtering. This method is suited to handle noise in the
dynamic propagation model, contrary to the Least Squares method, and allows a
sequential treatment of the tracking data. The Kalman Filter has been implemented
last year at SES [Wel 97], based on the ORBIT software.

The purpose of the present work is to compare the implemented Least Squares and
Kalman Filtering methods when measurements are acquired via a trilateration tracking
system. For this purpose a simulator process has been developed. It allows to compare
the differences between a reference trajectory and estimations obtained with the two
methods, for different observation and propagation models. Statistical analysis of the
results based on Monte Carlo methods is applied to compare the evolution of the
Least Squares and Kalman Filter estimates, and determine if one of these methods is
better suited for trilateration measurements.

Additionally, an article for the 13" International Symposium on Space Flight
Dynamics at the Goddard Space Flight Center, NASA, has been published [Hal 98]. It
extends the present comparison to both single- and multi-stations tracking systems.




List of Symbols.:

Cartesian position vector (3 components)
state vector (6 components)

trajectory vector, state vector & estimated parameters (m components)
observation vector (# components)
propagation noise vector (m components)
observation noise vector (n components)
control vector (3 components)

time variable

estimation error covariance matrix
propagation noise covariance matrix
identity matrix

zero matrix

Dirac delta function

bty @ © = O R v 2 4 g N @ x =
O

expectation operator

() probability density function

(1) conditional probability density function
Pr probability of an event

tr() trace of a matrix

= by definition
| . Euclidean norm

- determinant of a matrix

~y

vector or matrix transposed

scalar or matnx inverse

N’
L

partial derivative of y with respect to x

Q
=

derivation with respect to time

Sl ple o T

estimate of x

estimate of x at the time ¢ given observations through time ¢ ;

> ot
p——

. i
-+ T
——

conditional covariance matrix at 7 given observations through £

! Letters in bold denotes vectors or matrices.
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Chapter 1.
Statement of the problem

1.1. Propagation and observation models

The propagation model

The propagation model describes mathematically the evolution of a body submitted to
different external forces. In orbital dynamics, one generally considers the movement
of a satellite as a mass point whose movement is described by classical mechanics, the
mass being negligible relatively to the masse of planets. The satellite movement is
thus described by a first order differential equation for the 6-components state vector
x(?) . This dynamic equation can be written

x(?) = £[x(),p(2), ] + w(t) (11)

where p(7) contains the parameters of the dynamic model (acceleration vector of
eventual manoeuvres, solar radiation pressure coefficients,...), and w(z)is the process
noise and represents all unmodeled forces.

Due to the random acceleration term w(¢), the state vector is itself a random variable

which is defined by its probability density function p(x(t)). When all forces acting on
the body are supposed to be completely known, this term is null and the orbit is
determined by the only six components of the state vector at time t, and parameter
values.

The observation model

The measurements may also be described by mathematical relations, called the
observation model. It consists in a relation between the measurements and the state
vector and may be represented by the following equation, called measurement
equation

2(t,) =h[x(t,), 9,2, ]+ v(z,) (1.2)

where z(¢,) is the observation vector containing M types of measurement at time ¢,
(k=1,...,N), v(,) represents an additive zero-mean Gaussian white noise due to the

imperfection of tracking measurement systern, and q contains the different parameters
of this model.

Note : The statistics of dynamic and observation noises are supposed to be known.
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1.2.  Orbit determination and prediction

Orbit propagation

The problem of orbit propagation consists in computing, for any time #, the solution of
the equation (1.1), assuming that the parameter vector p and an initial conditions
X(z, ) are perfectly known.

Orbit determination

When the term w(#) is null, the problem of orbit determination consists in computing

the minimum error estimate of a vector y(z,) = {x(ro ).p- q} using the set of N x M

time-discrete measurements z,(z,), i =1,..., M , influenced by random errors. This
problem is a parameters estimation problem, and is generally solved by a Least
Squares algorithm.

With the additive process noise w(t), the orbit determination consists in a recursive

determination of an estimate y(z‘ k) , using a set of k time-discrete observations z,(z, ),

with 7, <¢, <..¢,, influenced by random errors. This problem is known as a filtering
problem, and was first solved by Kalman [Kal 60] for discrete linear systems. The
combination of continuous propagation equations and discrete observations, with the
applications of the linear theory to non-linear filtering problems have been discussed
by Jazwinski {Jaz 70] and Gelb [Gel 74].

1.3. Least Squares and Kalman estimators
Both Kalman Filter and Least Squares algorithms are by essence linear estimators
which, by linearisation around a reference trajectory, are applied to the non-linear

estimation problem. The optimality criterion in both cases is the minimisation of the
mean squared estimation error. The associated conditional error covariance matrix

P(1lr, )d=f E[(y(z) -, ))(y(z) - (e, )j T} (1.3)

which is computed for both parameter estimation and filtering, may be used
practically to formulate this optimality criterion

. E( {y(r) _ ;,(I|tk )}T {y(t) - g’(’f|fk )B
< min E[z‘r{y(r) - (i, )Hy(r) - (e, )}TJ

< minz{P(cf, )} (14)

min

‘ﬂo—%ﬁﬁ
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The Iterated Least Squares (LS) and the Extended Kalman Filter (EKF), presented in
Chapter 3, constitute the theoretical basis of both implementations used at SES. If
both algorithms are mathematically equivalent in the linearised formulation without
propagation noise, they nevertheless differ in the way they cope with the non-
linearity’s of the equations of motion. LS proceeds by iterating the linearisation
process several times over the whole series of tracking data, whereas the EKF
performs a new linearisation at each new time step. The LS algorithm which treats the
whole batch of observations at each iteration is thus called a batch estimator, while
the Kalman algorithm which processes observations one by one is called a sequential
estimator.

Amother major practical difference is that the LS algorithm estimates the state vector
at a fixed epoch, the estimate and its covariance matrix being subsequently propagated
to other times by numerical propagation. On the contrary, the EKF algorithm provides
an estimate at each measurement time as it processes sequentially new observations.
This way of proceeding is well suited for real-time software applications where the
actual filter update is triggered by the arrival of a new measurement and where the
constant knowledge of the instantaneous state of the system is the only information
needed to be maintained.

Because of the iterative nature of the LS algorithm, it may be expected to be less
effective in terms of computational load. However, it can use multi-steps numerical
integrators more effictently since the reference trajectory remains the same over the
whole batch of observations at each iteration. On the other hand, the EKF has to
restart the integrator at each measurement update time, and restarting a self-starting
Integration algorithm may require an amount of computational effort which outweighs
the gains realised by using a single-pass method.

A great advantage of the Kalman Filter lics in its ability to take process noise into
account. If i most applications the performance of computers allow a precise
modelling of the orbital motion of geostationnary satellites, so that neglecting
unmodeled forces in the LS process is fairly well justified, in satellite using thrusting
devices over long periods of time may require the incorporation of process noise to
reflect the randomness of this thrust.

1.4. Monte Carlo Simulations

The true trajectory of a satellite is mever exactly known. In order to compare the
estimation errors of the implemented LS and EKF algorithms, we must compute
differences between a reference trajectory, which is supposed to be a true traj ectory
This trajectory is observed via the observational function h and various additive
observation noise, the batch of corresponding observations being processed by both
algorithms, and outgoing estimations being compared to the reference trajectory.

To realise a correct comparison of both methods, a dedicated simulator which realises
the above operations must be used in a systematic and automatic approach which

13




allows Monte Carlo simulations, where statistical properties of the system are
analysed from a great number of simulated realisations.

Important note :

The reference trajectory of these simulations has not the same meaning as the one
used for linearisation of the non-linear model equations. The former is generated
independently of estimations and is only used to construct artificial tracking data and
realise comparisons, while the latter is used for linearisation in the estimation
algorithms.

1.5. Structure of this work

This diploma thesis is composed of three main parts.

e The theoretical description of both propagation and observation models in Chapter
2, and both LS and Kalman Filter methods are described in Chapter 3. They are
based on lectures of several authors as [Roc 98], [Soo 94], and [Zar 87] for models,
and [Bra 93], [Fra 98], [Gre 93], [Boz 79] and [Wel 97] for estimation methods.

o The simulation process and statistical analysis post process are described in
Chapter 4 and Chapter 5 respectively. The simulation software uses different
notions described in [Mon 96], [Fra 96] and [Wei 97], and statistical analysis is
based on considerations coming from [Fra 92], [Dag 921, [Spi 61], [Ban 95] and
[Wau 95]. '

¢ The simulation results and conclusions presentation in Chapter 6 and Chapter 7,
and detailed simulation cases are presented in Annexes.

Note :

The description of both models in Chapter 2 is given for the completeness of the
work. Nevertheless, they are not necessary to understand the comparison of both
estimation methods if one accepts ( 1.1 ) and ( 1.2 ) as dynamic and observation
models. In that case, the reading of this chapter may be skipped.
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Chapter 2.

Satellite orbit and tracking data

2.1. Satellite orbit

In this part, the dynamic model is detailed through the development of both sides of
equation ( 1.1).

2.1.1. Newtonian movements

Earth orbiting satellites are generally considered as negligible mass points, whose

position vector is r=(x,y,z)" in inertial geocentric coordinates. The satellite is
submitted to forces and its movement follows the Newton second law

mr=3F (2.1)

This second order equation may be written as the first order differential equation
d(r®) [ 1
_(. Jz ') (22)
ar\r@)) \mmYF

def{ Y(I
where x(1) =(-( )J is the state vector containing position and velocity vectors, m the
ri

mass of the satellite and Z F the sum of all forces acting on the satellite [Zar 87].

The solution of this equation gives, with initial conditions and all forces completely
known, the state vector at any time ¢, that is the orbir of the satellite.

2.1.2. Keplerian movements

For a perfect spherical Earth gravitational force acting on the satellite, the right-hand
side of the second Newton law simplifies in a one body central force

mp
lr(f)!a I'(t) ( 2.3 )

wherep = GM,,,, , G being the universal gravitation constant and M, , the mass of

F() = -

the Earth. This force derives from the potential U = _E , and the trajectory generated
Is

by the resulting second order differential equation is a conic, that is an ellipse, a
parabola or an hyperbola depending on the initial conditions [Roc 98]. This movement
1s called Keplerian and has the following properties
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2.

It is plane, and its kinetic moment C is constant because C = E(r A r) =0, where

r is the position vector whose origin is at centre of the Earth.

d4 .
The aerial speed is constant P Erz 6= 5 where #1s the angle between r and

an axe in the plane of the movement.

The variables 7 and @ are related throughout the orbit equation

I u
;=—C—2[1+ecos(e—eo)] (24)
where e and 0, are integration constants. In the case of an ellipse, ¢ is negative
2

and this equations may be written as£ =1+ecos(8), where p = —-; .
Is

The conic is determined by the conservation of energy equation

2
pr_ B _ B (25)
r a
where Vis the velocity and a = a P 5
-

The conic is an ellipse, a parabola or an hyperbola when e is positive, null or
negative.

1.3. Orbital and equinoctial elements

When the orbit is a non-perturbed ellipse, the movement is periodic and can be
described by six parameters, the classical orbital elements. They correspond to the
ellipse equation

p

rz_m—1+ecos(8) =a(l-ecosE) (2.6)

whose orbiting period is 7 = 27\/a>/u .

16

a is the semi-major axis of the ellipse, and characterises its size.

2 2
. Na* —b ; .
e 1s the eccentricity defined as e = ————  and characterises the orbit shape.
a

i 1s the inclination of the orbit plane, and represents the angle between the orbit
and the equatorial plane.

Q is the right ascension of the ascending node, and represents the position of the
intersection of these two planes.

 is the argument of the perigee, and gives the position of the perigee of the orbit.

E is the eccentric anomaly, and gives the position of the satellite at one time of its
period. It can be replaced by M which is the mean anomaly, and 1s defined
asM =FE -esinE.




We have thus the six parameters {a, e, i, Q, o, M } to define a satellite orbit. In
the two body problem (i.e. Earth and satellite), it is possible to make a transformation
between them and the components of the Cartesian state vector

{a,e,,Q.0, M} < {x, y.2,%, },z} (2.7)

2.1.4. Perturbations

When the trajectory is perturbed, orbital parameters can also be defined as in (2.7),
but they vary with time and are called osculatory elements. One generally uses these
parameters rather than the components of the state vector because of their intuitive
meaning for orbit perturbation.

Perturbations of a geostationnary satellite trajectory are due to other forces than the
point Earth attraction. It is thus necessary to include them into the equation of motion.
The more forces are taken into account, the better the propagation model, i.e. the
equation of motion. Nevertheless, it is not possible to model all forces acting on the
satellite, and a last force term containing all unmodeled forces may be introduced. In
that way, the second member of the Newton second order differential equation
becomes

Z F= FEarﬂ] + FSun + FMoon + FSol.Ra{i + FThrusts + FUnmodeled ( 2‘8 )
where the attraction of the Earth is more general than a simple two body attraction,
and where the other main perturbing terms are due to the Sun and Moon attractions,
the effects of atmosphere, the solar radiation pressure, and the unmodeled forces.
These perturbations may be divided into two classes, the gravitational and non
gravitational ones.

1 Gravitational perturbations

The gravitational accelerations acting on a satellite only depend on the mass
distribution around it. They all have a common origin, the Newtonian force

GmM
f=— (2.9)
¥
They may be written in the conservative potential form
f=VU (2.10)

M
where U(r) = G——
F
*  Earth geopotential, gravity field of an aspherical body

The first important force perturbing the orbit is due to the anisotropy of the main
aftracting body, i.e. the Earth here. This anisotropy may be reflected by the
decomposition of its gravitational potential in a spherical harmonic form

17




Ur) = GTMi Z R: P_(sin ¢)[Cm cos(mA) + S, sin(mx)] (2.11)

n=0 m=0 ¥

where the two groups of numbers €, and S, are given by the integrals

2 (n-m)! ;5"
= EEZ +:§ ! f ;n P, (sind"ycos(mA )p(s)d’s
(2.12)
2 (m—m)! ps"
- Eg: +:;! J g Bun (i) sin(m p(5)d%s

and are called unnormalised geopotential coefficients, r, # and ¢ are the geocentric
distance, longitude and latitude, R and M the mean equatorial radius and mass of the
attracting body, P,, are Legendre Functions, and p(s) is the mass distribution function.

A perfect propagation model would contain all these terms. Nevertheless, a good
model generally only includes a maximum of 30 terms.

The coefficients with m =0 are the zonal coefficients, and describe the part of the
potential which does not depend on the satellite’s longitude. All the S, coefficients
vanish whereas C,,coefficients are renamed - J, . The other coefficients are known as
tesseral coefficients for m < n, and sectorial coefficients for m=n.

All these coefficients are usually time dependent because of the variations with time
of the Earth mass distribution (oceanic and terrestrial tides). Nevertheless these
variations are very small and Earth potential can be considered constant. One thus
generally speaks about these coefficients in terms of their mean during a period T of
observation, i.e. the stationary part of the terrestrial potential

lT
== t
Con =7 | Cue()d
L7 (2.13)
Som =703 t)dt
=7 IS0

s Sun and Moon potentials

The second and third important perturbations are due to the Sun and Moon mass point
attractions. The resulting accelerations in a frame centred on the Earth’s centre of
mass are given by

(

e r -1 r
Sun Sun
Ysum = GMSHH[ - 3]

3
rS:urz - r[ r.S'r.m -

(2.14)

.. r —-Tr r
Moon Moon

¥ oon = GMMaorz 3 3
1]

Moon Moon
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where Mgy, , My, and rg, , Iy, are respectively the mass and position of the Sun
and Moon.

Note : The effects of the other planets are negligible so their contribution is included
in the unmodeled force term.

1. Non gravitational perturbations

The non gravitational perturbation forces do not depend on the mass of the satellite,
the corresponding accelerations are thus inversely proportional to this mass. The most
important non gravitational accelerations of geostationnary satellites are due to the
Solar Radiation Force (SRF) and the thrust forces imposed for manoeuvres. The SRF
perturbations is due to an exchange of impulsion at the satellite surface and is called
surface force. Moreover these perturbations are modelled in satellite local axes.

. Solar radiation pressure

This perturbation is due to the absorption and reflection by the satellite surface of
photons coming directly from the Sun or reflected by the Earth, the albedo effect
being generally neglected for geostationnary orbits .

For a surface receiving photons and absorbing them perpendicularly to the surface,
there 1s a variation of the momentum given by

— === (2.15)

where d is the distance between the satellite and the Sun, ¢ the speed of light, S is the
surface of the satellite, and ¢ 1s the power of the incident photon flux. It represents a

pressure of p, . =———=—-=4510°N/m’ for satellite at the distance
! c

d =14U =149.610° km of the Sun, where ¢ = 3.0210” W/ Steradian .

A part of the absorbed photons are re-emitted and then produce a supplementary
variation of the momentum. Indeed only a part of the incident photons are absorbed,
the rest 1s reflected. For a completely reflecting surface, the impulse transferred in a
direction perpendicular to the surface would be twice as large as for complete
absorption, ¥, ., =2F,, . =2p,, .. Ae where e is a unit vector pointing from the

Sun to the satellite.

In reality the surface only reflects a part &€ of the incoming radiation, and the
perturbation force is

F=p, Al+g)e (2.16)

where € depends on the satellite surface material. So the perturbation acceleration due
to the solar radiation pressure is

v S r R
Fsoiat =~Cp = Passo =S (AU)? (2.17)

rSun
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where C, =1+¢ is the radiation pressure coefficient, ry, is the Sun vector position,
and AU is the astral unity.

Formula ( 2.17 ) applies to satellites with a constant Sun-facing surface. Alternatively
for a surface facing the Sun perpendicularly to the equator, it 1s necessary to multiply
the whole expression by cos(8y,,) who renders the variation of the cross-sectional
area due to the variation of the Sun declination8,, . In that case the solar radiation
pressure model becomes

Y sorrad = —C, %COS(@SM )P ass.0 rsm3 (4 U)2 (2.18)

|rSun

Both models account for the dependence of the solar radiation pressure from the Sun-
Earth distance which leads to a seasonal variation of about 3%, and eclipses are
treated assuming a conical shadow modelling with umbra and penumbra shadow
regions.

In addition to the main radiation pressure component of these models, which always
points away from the Sun, the perpendicular component can also be taken

.. S e
Fsoirass ==Co — Puygg S (4U) (2.19)

IrSun
where ey, | is a unit vector perpendicular to rg,, in the equatorial plane, and C 2,18

used to model the corresponding solar radiation pressure component.

] Manoeuvres

The orbit corrections of the satellite are considered as perturbations which can be
modelled as

r = (). u(?) (2.20)

where u(t) is the acceleration thrust vector in the satellite frame, and E(t) is the
rotation matrix from the satellite reference frame to the inertial reference frame and
depends of its orientation in space, that is its attitude.

One generally considers constant thrusts between the times fg4,; and fepg, so the
corresponding acceleration is given by

0 for t<t
r=9E(f)u fort, <t<t_, (2.21)
0 for t>1t_,

If the manoeuvre duration is negligible compared to the orbital period, it is said
impulsive and may be described in term of velocity increment Av and burn centre time
tman as

r=8(t—1 )Av. (2.22)

man
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111.  Unmodeled forces

Various forces are not taken into account in the propagation model the solar radiation
pressure on antenna reflectors and some satellite body components, the variations of
solar activity, the gravitational attraction of the other planets, the effect of solar wind,
the forgotten terms in the geopotential of the Earth, and the relativistic effects. All
these forces cannot be completely modelled, because it is not possible to know all
parameters of possible models, and because it would require a finite-elements
modelling of the geometry of the satellite.

The effect of all these unmodeled forces can nevertheless be included in an additive
process noise, whose statistics is supposed to be white Gaussian.

s . def . .
This white Gaussian force rumosics = Inose = W() is defined by its mean and

correlation functions

(2.23)

{E[w(z)] =0

E[w(w? (%) = Q)81 - 1)

where Q(t) is the spectral density matrix by analogy with the power spectral density
function which is the Fourier Transform of the correlation function., w(¢) and w(z),
¢ # 1, being supposed not correlated.

2.1.5. Propagation model

The Newton equation of motion may be written in the functional form ( 1.1 ) in term
of the state vector x(f) in an inertial coordinate system, where f includes all
deterministic modeiled forces described in paragraphs 2.1.1 to 2.1.3, and w(t) is the
white Gaussian process noise described in paragraph 2.1.4 and which is assumed not
correlated with the state vector x(t)

Ex(tyw()]=0 vi,7. (2.24)

Furthermore, the equation ( 1.1 ) is a stochastic differential equation with an additive
Gaussian forcing function, and is called the Langevin equation.

The coordinate system used refers generally to the Earth’s Mean Equator and
Equinox of J2000 ( EME2000 ), where J2000 denotes the epoch of Universal Time

(UT), 12" on January 1, 2000. The integration of this equation is realised in this
system, whereas the independent variable used for dynamic calculations is the in
Terrestrial Time (TT), see paragraph 2.2,

The state vector X is a random multivariable which is assumed to be Gaussian itself. It
is thus known at a certain time ¢ with an uncertainty defined by its covariance matrix
P(t), the effect of the additional random acceleration w(t) being to increase the
clements of this matrix P(t) when the state vector is propagated using the propagation
equation.

21



2.2. Tracking data

The modelling of ground based measurements requires the knowledge of the satellite
position with respect to a local topocentric frame. This frame is defined with respect
to an origin point on the solid Earth, and the local East, North and Zenith directions.

It 1s thus necessary to have transformations from the inertial EME2000 coordinates,
wherein the integration of the equation of motion is carried out, to the local
topocentric coordinates. With these transformations, measurements realised in the
local topocentric frame can be related to an observation model, and used thereafter for
orbit determination.

2.2.1. Time notions

The transformation between terrestrial and celestial reference frame requires a detailed
knowledge of the Earth’s rotation. In view of know irregularities in the Earth’s
rotational motion, a continuous monitoring is coordinated by the International Earth
Rotation Service (IERS) [McC 96], which regularly publishes information on change
in the Universal Time, Coordinated Universal Time and polar motion.

The notion of time in physics and astronomy involves a variety of concepts which
may be classified as Dynamic Time, Atomic Time and Universal Time.

* Dynamic time is the independent variable in equations of motion. Within the
framework of Newtonian physics, the Ephemeris Time (ET) represents an uniform
time scale that forms the basis for computation of solar system ephemeris’. A
distinction is made between the independent time variable for geocentric
description of ephemerides and for equations of motion with respect to the
barycentre of the solar system. The former time scale is therefore called Terrestrial
Dynamical Time (TDT) or simply Terrestrial Time (TT), and now replaces the ET.

e For scientists, the standard unit of measurement of time intervals is the SI (Systeme
International) second, which is defined as a fixed value (from the frequency of the
hyperfine ground-state transition of Cesium 133 atoms). The International Atomic
time (or Temps Atomique International, TAI) is a practical time standard that
conforms as closely as possible to the definition of the SI second. TAI corresponds
closely to dynamic time and the difference between both time scales is considered
constant within the measurement accuracy of atomic clocks

IT =TAI +32.184s (2.25)

* Atomic and dynamic times represent a completely uniform measure of time. Civil
time, in contrast, is based on the length of a solar day and thus depends both of the
Earth’s rotation around its axis and its revolution around the Sun. Both effects are
taken into account in the definition of the Universal Time (UT1). This UT1 is

' The concept of global time is however partially abandoned in the general theory of Relativity which
establishes a close relation between time and reference frame in which it is measured.
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related to the Greenwich Mean Sidereal Time © (which is in fact the Greenwich
hour angle of the mean vernal equinox) through a relation involving the number of
Julian centuries of Universal time elapsed from the 1 January 2000. Since Sidereal
time may be obtained from meridian transit observations, this relation provides a
way to determine practically the UT1. Any irregularity in the Earth’s rotation is
then directly reflected into the UT1 through the changes in the Greenwich mean
sidereal time. In order to take into account these changes in the mean solar day
while mamtaining the uniformity of the atomic clocks, the Co-ordinated Universal
Time (UTC) is now used as standard measure for civil time-keeping. UTC is kept
in close agreement with the UT1 scale by the introduction of leap seconds (one
second step on January 1 and/or July 1). The difference between UTC and TAI is
thus always an integer number of seconds, and the UTC may then be considered as
an atomic time.

e T TA

Figure 2.1

In addition to these different time scales, a practical way to have a continuous time
scale which is always positive is to use the Julian Dates (JD). This scales indeed
counts the number of days since January 1, 4712 BC at 12h including a fraction of
days. Today, the Julian date number is well over two millions and it is more practical
to start counting at Oh UT. The Modified Julian Daie (MJD) is then defined as

MJID = JD — 24000005 {(2.26)

The changes to civil calendar is realised throughout tables, or numerical algorithms.

2.2.2. Coordinate transformations

1. True of date, Earth fixed and Geometric topocentric coordinates

The rotational transformation from the Earth-Mean-Equator EME2000 frame to an
Earth-Fixed frame is by convention split into precession, nutation, polar motion and
rotation around the pole-axis [McC 96]. The rotation of the Earth is considered as an
uniform rotation around its z axis, the angle8(¢) describing this rotation.
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e The precession of the Earth is the secular effect of the gravitational attraction from
the Sun and the planets on the equatorial bulge of the Earth. The main effect is a
rotation of the mean-of-date system in the negative sense in the ecliptic plane by
one turn in approximately 26000 years, which is equivalent to a rotation of
0.014° per vear.

* The nutation is a short-periodic effect of the gravitational attraction of the Moon
and to a lower degree the planets on the Earth’s equatorial bulge. It has a certain
periodicity with the contributions from the Moon’s orbital period, and the
maximum of any of the two nutation angles is 0.006° .

¢ The polar motion is the motion of the Earth’s pole relative to the fixed Earth. It
moves in a path that looks like a spiral with a period slightly less than a vear for an
order of 20 meters on the Earth’s surface.

The precession and nutation rotation matrices P(¢)and N(#) transform the EME
coordinates to the so-called True-Of-Date coordinates (TOD)

Yrop = N(O).P(t).1p,,. (1) (2.27)

where the precession and nutation matrices are given by

{P:: R,(-z).R ,(6).R,(~c) (2.28)

N=R, (~e—Ae).R, (Ay).R (g)

with R_,R , and R _denoting elementary rotations around the x, y and z axes, and

where the parameters z,0,¢,e,As,Awcan be computed using the IAU1976
(International Astronomic Unity) theory of precession and the IAU1980 theory of
nutation [McC 96].

The polar motion transformation IT(¢)and the Earth rotation ©(t) transform the TOD
coordinates into the Earth-Fixed coordinates (EF)

I =11().00).1,,,(2) (2.29)

where the two transformation matrices are given by

cosO(¢) snB(¢r) 0O
® =R _{6(1)) = | —sinO() cosb(r) 0
0 0 1
(2.30)
1 G X,
M=R,(-x,)R(-»,)=| 0 1 -y,
-X, ¥, 1

In these transformations, () is based on the IAU relation between sidereal time and
UT1, the TT-UTC and UT1-UTC time differences as well as the values x »»Y,can be

extracted from IERS time and polar motion tables.
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Ground station locations are given in this EF coordinates system through geodetic
latitude @, longitude A and height 1 above the geoid. The EF station vector R zr 18 thus
given by

. COS(.COSA, COS®.COSA
R, =(1-esin® ©) 2 Ry, cOSQ.SIDA | +A| cosq.sink (2.31)
(1 —e*)sino sing

where R, , is the Earth’s radius and e is the Earth oblateness.
For a given ground station, the Topocentric Geometric coordinates (TG) of the

satellite are thus obtained by rotation of the EF station-satellite vector into the local
horizon frame

S70(2) = D A1 ()~ R | = ©.A[TI().0(0).N@). P(¢). 1y (1) - R, |

= D A[U@).rpe () -R | (2.32)
where
U() = TI(£).0(1).N(¢). P(2) (2.33)
and
( cosh sinA O
A=|-sinA cosh 0O
0 0 1
. (2.34)
0 1 0
®=:-sing 0 coso
i cos@ 0 sno
1. Astrometric topocentric coordinates

A rigorous modelling of radiometric tracking data requires to properly take into
account the signal propagation time. A general measurement process should include
the fact that a signal is sent to the satellite at a ground transmit timet ¢ .and that the

satellite transmits its signal at the satellite transmit timet, ,, and that the ground
receives it at the ground receive timet ¢ -The downlink signal path is thus

ddoxn = rEME (rs_r ) - U ! (rg_r )R EF ( 2'35 )

It links the position of the observer at the ground receive timer ¢ - and the position of
the satellite at the satellite transmit time f, - Due to non-linear motion of the satellite
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and the ground station in the inertial frame, the satellite transmit time and the satellite
state vector X(Z, , yhave to be computed iteratively, beginning from the ground receive

time, so as to satisfy simultaneously equation (2.35) and the basic relation

[ =2, . ~2,.) (2.36)

down
where the light timeist=¢,  —t, ,, and ¢ is the speed of light in a vacuum.

Stmilarly, the uplink path should satisfy the two relations

d, =Trpe(t, ) - UT(rg_,).REF (2.37)

=t ) (2.38)

The Topocentric Astrometric coordinates (TA) represents the direction, in a geometric
inertial system, from which an observed signal reaches the station, and can be written
as

Sp = (D'A'{U(tg_r )z (1) — REF} (2.39)

The difference between astrometric and geometric coordinates is known as the light
time correction.

ili.  Apparent topocentric coordinates

Apparent Topocentric coordinates (AT) indicate the direction from which an incident
signal is perceived by an observer on the rotating Earth. A rigorous description of this
phenomenon is known as stellar aberration and requires the theory of Special
Relativity. However, since the velocity of the observing stations in the geocentric
inertial system is relatively small against the velocity of the electromagnetic waves,
the correction

Sarlte) = PArer (6, ) ~Roe(t, ) + TR 1, )]

=s.,(t, ) +T.®.AR,, (t,)=55,(, )+1.0.AU(, )R, (2.40)

to the astrometric topocentric coordinates is sufficient.

Note :

From the above equations for astrometric and apparent topocentric coordinates, the
partial derivatives of the apparent coordinates with respect to the geometric EME2000
position vector of the satellite can be approximated by

08 4 (2 gr)

~O.AU(, ) (2.41)
OF gy (¢ g_r) o
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2.2.3. Tracking systems

1. Range measurements

Range measurements always involve measurements of the propagation time of an
electromagnetic signal path between the satellite and the ground station. They are
given in terms of the uplink and downlink distances from the ground station up to the
satellite and from the satellite back to the ground station

la

=c(t

down

= oot ) =Rt )| = e, —2.)

(242)
= “rmp (t,..)— Ry, (tgﬁr) = C-(fs_: - igmr)

d,,

* 2-way range

This method uses the average uplink and downlink path from the ground station up to
the satellite and back down to the station

d

) (2.43)

+|a,,

_ l(hd
p - 2 down

where partials derivatives with respect to the True of date position vector® are given
by

8p2_way5 1 ( dTup deown J ( 2. 44 )

Orroplt, ) "2 “drup Hdeown

¢ Trilateration

The trilateration tracking system is similar to the navigational and surveying
technique of triangulation. Both techniques determine the relative position between
two points by using the geometry of triangles, trilateration using only distance
measurements.

A simple example of trilateration is the location of a point in two dimensions relative
to a coordinate system. Two points determine a two dimensional coordinate system,
the line between the two reference points being defined as the X axis and its
perpendicular at one of them, and in the plane of the three points, being the Y axis.

To determine the location of the third point, all three distances between the points
must be known, the altitude of the third point being the Y coordinate. By applying
Pythagoras’s Theorem to each of the two triangles formed, two equations for Y are
formed, and then give the relation for X

? These derivatives are used in the nurerical implementations of both estimation methods.
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(L~ L>+ L2
2L,

L -X*=1~(L,-X) o X= (2.45)

and then for Y
1
Yz(Lzz—Xz)2 (2.46)

where L,, L, and L, are represented on the next figure

Subject point

L= Alitude Ls

I/

¥ : .
: ™~
/ : ™
! "~
. ! \'.

X
Reference point 1 Reference point 2

Therefore, the two coordinates of the subject point are found from the three length
measurements. Extending this technique to three dimensions requires a third reference
point to define the three dimensional coordinate system and the Z axis is defined by a
right handed coordinate system between X and Y axes.

The four points are the summits of a tetrahedron whose sides are precisely measured,
Locating the subject point very precisely can then be done in a way similar to the two-
dimensional problem.
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This method is implemented for satellite keeping with a network composed of ground
stations measuring distances to the satellite with a range measurement method, and
whose mutual distances are very well known. Moreover, such tracking systems are
generally composed of more than three stations as basically required to a redundancy
of data to improve orbit estimations and characterise the transponder delays of
satellite.

Note :

For SES, the trilateration system is not exactly so simple, as measurements are not
simultaneous. A propagation of measurements is thus required for OD, and the
residuals are in terms of range instead of Cartesian coordinates.

1. Angular measurements

Angular measurements track the satellite by controlling the receiving antenna to
maximise the signal level. The antenna turn around two axes to follow the satellite
movements, uswally i an azimuth-elevation mounting’. A local topocentric
coordinate system centred on the antenna, and pointing to North-East-Zenith, is
generally introduced, where the apparent satellite position is denoted s = (s,,s, ,5,)

The azimuth is the direction of the projected station-satellite line on the horizontal
plane, counted clockwise from local North

s
tan 4 =% (2.47)
S.ﬂ
é4d 04 s _( s, -5, OJ Os (2.48)
Ogys 08 Orpy A5 +s? s’ +s,2 ) O, )

and the elevation is the angle between the station-satellite direction and the horizontal
plane

S

Z

fan £ = ——%—— (2.49)
NS +s)?
OE 0E Os

= — = [ —%eS: = 5,5, VSi’!z +S62 s
arEME 0s 6rEME HS”2 1/5,,2 + Se2 HS”2 1fSn2 + .S'e2 ”5”2 K
The station keeping is then realised with two these angular measurements and a range

measurement since the satellite position relatively to the ground station is determined
with two angles and a distance.

(2.50)

rEME

*. Other kind of mounting also exists, like the XY-mounting and the equatorial mounting, but they are
not used by SES.
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111.  Refraction and bias

All radiometric measurements need to be corrected for the atmospheric refraction, as
the effect of the refractive index of the atmosphere causes both a bending of the signal
path and a change of the signal’s group velocity within the atmosphere.

The effect of atmospheric refraction essentially contains two terms. The tropospheric
term is mainly a function of the meteorological conditions (temperature, pressure and
humidity) but is independent of the wavelength. The ionospheric refraction term, on
the other hand, is proportional to the square of the signal’s wavelength and is directly
function of the free electron density in the atmosphere. The tropospheric term may
thus be considered as a known bias perturbing measurements which is simply
subtracted [Mon 96], but as the ionospheric term varies randomly it cannot be easily
taken into account in the treatment of measurements data and constitute a randomn
error source m the observation model.

Finally, all measurement types can be affected by other constant biases,
conventionally subtracted from the values of the observations. These biases can be
considered as parameters of the observation model to be estimated, in which case the
needed measurements partial derivatives are given by

oh,
S =-0, (2.51)
Oq ; d

where i and j are indices running over the different possible measurements types (Le.
azimuth, elevation and range), and over measurements collected at different sites (Iike
for trilateration) or with different equipment.

2.2.4. Observation model

All measurement types can be written to the functional form ( 1.2 ) where the values

z(t,), k=1,...,N , are the measurements data, h[y(rk ).t k] 1s the observational model
at time ¢, which depends on the type of measurement (range or angle) and
corresponds to the relations of paragraph 2.2.3, and v(z, ) represents an additive white
Gaussian noise (like the ionospheric refraction effect) with zero-mean and covariance

R(z,)
E =
[v)]=0 (257)
E[v(t,)v (¢, +1)] = R(t,)50)
and is supposed not correlated with the state vector x(7)
E[x(tyv(n)] =0 wi,x (2.53)
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Chapter 3.

Estimation and filtering methods

3.1. Introduction

3.1.1. Models

The satellite orbit is characterised the dynamic equation ( 1.1 ) which can be written

¥(0) = [y(0),¢] + w(o) (31)
where the parameters p and q and the state vector x are grouped in the trajectory
x(2)
vector (or solve for) y(t)=| p |[Fra98].
q

On the other hand, the set of measurements z(¢,), k=1,..., N are related to this
trajectory vector through the measurement model ( 1.2 ) which can be written

2(t,) = by ()2, |+ v(z,) (32)
3.1.2. Linearisation about a reference trajectory

Both observation and measurement modelling form a non-linear problem. If a
reasonable reference trajectory is available and if the actual trajectory is sufficiently
close to this reference throughout the time interval of interest, both above equations
can be expanded in a Taylor’s series about this reference trajectory Y,.r to obtain linear

equations

y(®) = £y, ]+ W) = 1]y, (0,1 + FO[y(0) -y, )]s tw(0)
() = h[Y(fk)atk ] +v(t,) = h[yr@" ()t ] +A(7, )[Y(tk) ~ Y. )]““---"'V(rk)

Y O=F Oy, )+ w(r)

(3.3)
Zy (1) = A2, Waw () +v(2,)

where F(t) is the Jacobian of the vector function f[y(r),t], A(t,)is the partial

derivatives matrix of the observational vector function h[y(t N k] with respect to the
y components, and where the differences between the true and reference trajectories
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def def
Yar () =¥() =¥, (1), and z,, (1) = 2(r) - z,.(f) have been introduced respectively

withy,. and z,_, the reference trajectory vector and the observations vector

pp - O]
240 B N (3.4)
At,) = ah_[ygm |
¢ oy(z,) Y I=¥rer ()

3.1.3. Discretisation of the linearised equations

The solution of the lincarised motion equations can be expressed between two
consecutive observation time #,_ and #, as

Yar @) =®, .8, )Y 45 () + W'(2,) (3.5)
where
— M (3.6)
oy(z,)

withy(z,) the initial state vector. The state transition matrix © for the linearised
system is obtained from the matrix differential equations for ¢, , <t <¢,, called the
variational equation

g;®(t,fk-1) =F()®(.2,,) (3.7)

where (¢, .7, ,)=1 and w'(z) = J:k O(z, ,£)w(t)dt . This stochastic integral is

defined in the It6 sense [Jaz 70], w'(r) being a discrete white noise sequence with zero
mean and covariance Q'(z, )

E[w(@®)]=0
(3.8)
E[w )W (1,.)]= Qt,)8()
and
Q'(t,)= j: O(1, QDD (7,,7)ds (3.9)

The discrete noise covariance matrix Q'is computed from the differential equation

d d
QM = — J;lcp(z,z)Q(z)an(t,r)d«: = O, 1)Q()D(,7)

+ [ FOO®LDQMD (1 1)dr+ | @4, 0)QMO (1, 0)F (Nde
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d :
® 2 Q0=QW+FOQ®+Q@F () (3.10)

with the initial conditionQ'(¢,_,) = 0, and where Q() is the spectral density matrix of
the original dynamic noise w(f). The discrete linearised system around the reference
trajectory is thus represented by the set of two equations

Vag (£) = Q28,0 g (0) +W'(2,) (3.11)
Z gy (t)= Adzjj’ (¢, )ng)_‘?’ () +v(t) (3.12)

3.2. Batch Least Squares Estimation

3.2.1. Maximum likelihood estimator
The propagation mode! equations without process noise have here the form

y=1[y.1] (3.13)

where y is an m-dimensional vector containing the state vector x at the initial time
t,and the two parameter vectors p and q to be estimated. This vector thus simplifies
mto the only initial state vector when parameters p and q need not to be estimated.

In parallel, the measurement model equations can be represented as
Z=H[y|+V (3.14)
with the hypothesis of additive zero-mean white Gaussian noise

{E[V] =0

V=6 (3.15)

and where the three n = M. N vectors

Z(1,) ={2(t)). 2t,)s.. 2t )}
H = {b[y(t),0 b uly@) s b blye 0 (36)
V= {v({t,),v(5,), v ()

are respectively the set of measurements, the observational model estimated at times
t, (k=1,...,N), and the additive zero-mean white Gaussian observation noise.

The probability density of the data set Z is given [Pap 91] by

1 1 T
P(y) = ———expi-~|Z-HW] Gz -H :
(¥) GoTd eXP{ S1Z-Hm] 67 (y)]} (3.17)
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So, in the absence of process noise, the value y corresponding to a maximum
likelihood estimator § is the one which maximise this density probability

§ = max P(y) = max In(P(y)) = min{- In(P(y))] (3.18)

u

that is the one which minimise the square function
 =[Z-H(y| G Z-H()]|=r"G'r =r"Wr (3.19)
where W is defined as the weight matrix and r is a vector containing the residuals
r =2~ H[y,))] j=ln (3.20)

Finding the maximum likelihood estimator thus corresponds to realise a parameter
estimation which is an orbit determination as described in paragraph 1.2.

As the dependency upon the estimate y is non-linear, the problem 1s solved iteratively.
At each iteration, linearisation is realised around the trajectory y._, obtained from the
estimation of the previous iteration and taken as the reference trajectory y,,, of

paragraph 3.1.2. The residuals can then be written as

. oH\y,.
r~7Z- H[Y:‘—l ] - —a—?uy'dgy,f =Zyp; — AV (3.21)
i—1
where y .., is the correction to be applied at the i* iteration
def N
Yar (D) =¥ (D —-¥,, () (3.22)

and

Zups 2|Z~H(y)]

y=¥i
# 5H(y) (3.23)
A, =——=
ay y=%i,
The criterion of minimising the square function 2 = {rl. * then becomes for the
unweighted problem (W = 1)
2
1A Y a7 ~ 27| = mimimum (3.24)

The problem is thus reduced, at each iteration, to a linear Least Squares (L.S) problem,
iterations being stopped when the convergence condition is reached

2. — 2.
XWTI?_X‘—I<SC (3.25)
i+l

34




3.2.2. Normal equations

At each iteration, the linear LS problem presented in paragraph 3.2.1. can be solved
practically through the normal equations for difference between the reference and true
trajectories

2
“Aiy aifr s~ Tag s H = mmimumn

- ayzgr.f [(Aiygﬁf‘! - Zd‘ﬂ"')T(Aiydrf,s ~Zyp )} =0

= ZAET(AEy@ﬁ - zdw".) =0
:>ATAyd,gﬁr =Arzmﬁ (3.26)
where the iteration index { is omitted from now on.

The weighted problem resolution can be easily deduced from the unweighted one by
means of the transformation

2 2
x*=lnl > 2 =ls.x] (327)
where
STS=G'=W (3.28)
One then gets
NN Zyr i —AYgy, > Sr=Sz, -SAy,. = 2 A Yy, (3.29)
with the transformations
b'=Sb A'=S.A (3.30)
The weighted normal equations are then
(ArT Ai)yc&ﬂ - AlT Z‘d;ﬁ'
= (A".8"8.A)y,, = ATS8" Sz,
= (A" W.A)y,, =A" Wz, (3.31)

It can thus be reduced to the unweighted problem through the transformation matrix
S, so it is sufficient to study the unweighted case.

Note :

When all measurements errors are not correlated and characterised by standard
deviationsG,, k=1,...n, the matrix S is diagonal

S = diag(s,™,....c,™) (3.32)
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3.2.3. Least Squares estimate and Covariance matrix

From equation ( 3.26 ) one gets the LS estimate for the difference between the
reference and true trajectory

Vay =(ATA) ATz, (3.33)
where

Zyr = E(Z4)+V (3.34)
E[V]=0
E[vvT]=1

problem. From this estimate, the covariance maftrix can be written, with the
transformations :

is a multivariate random variable with properties { , for the unweighted

(S’d,-ﬁr ~E(y))=(A7.4)7A"Y o (AT.A).(ydm, ~E(34))= A"V

= (AT.A)_lEI:(S‘fd,-ﬂ - E(i’dgﬁ’))(ydgg - E(j}dfﬁf ))T:|(AT.A) = AT.E(V.VT).A
as the inverse of the information matrix A”. A

P- E[(ydﬁ ~ E(3.4 ))(ydj ~E(3,, ))T} —(a”.A)" (3.35)

3.2.4. Practical considerations

1. Computation of partial derivatives

To compute the partial derivatives of matrix A, the vector H has to be decomposed

into its components h[rk]. It 1s then possible to evaluate successively (where y
Tepresents y .. )

¢ 0h/dy which is obtained through the equations

oh  oh oy(r) om
3y(t,)  oy(e) oy(t,)  oy()

(2,1, (3.36)

ay(t)
ay(z,)

equation introduced in paragraph 3.1.3.

where @ = is the state transition matrix computed throughout the variational

do_d 0y _ oy _ o _ o a0 A

di - dtoy(t,) By, | ov() | oy ay() - y(r)

O =F().® (3.37)
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which are integrated along with the motion equations, starting with DO(z,,2,) =1,

e 0f/0y(r), which is obtained by differentiating the force model components of the
propagation model with respect to the instantaneous trajectory vector.

The vector y(#) may also be decomposed into its components q, p and X, =X, (f).

The partial derivatives are then computed through variational equations of
corresponding size.

The matrices @ and F may be decomposed as

ox oOx o 3 x
- T - X
ox, op oq o — —
op op op % oq
b=|— = =i=l0 I 0 (3.38)
ox, Op 0Oq
oq oq oq| (O 0 1
ox, op oq
and
of
0%,
_8_{_
F=| 5 (3.39)
Ed
aq

The partial derivative then becomes
o 0h/2q which is obtained directly from the expression of the measurement model.
¢ 0Jh/0x,; which is obtained through variational equation

Sh oh ox(r) oh
&x, Ox(t) ox, Ox(r)

D'(2,1,) (3.40)

8x(t)

0
appropriate variational equation

where @'= is the sub-matrix of state transition computed throughout the

T

d.._dox() ox(®) of o ax(r) of
dt~ dr 8%, 0x, &x, 0Ox(t) 6x, ox(t)

Q'=F().d' (3.41)
integrated along with the motion equations, starting with ®(z,, t,)=1.

s Jh/0p which is obtained in a similar way through equations
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h_ b )
b ox) op - oxn D

(3.42)

ox(z)
p
variational equation

whereS = is the sensitivity matrix computed throughout the supplementary

dox o ox()  of
dtop  ox(t) dp op

which again has to be integrated numerically along with the motion equation.

(3.43)

In practice, the three quantities x(z), ®'(z,2,) and S(z) are packed in a single vector,
and appropriate procedures are used to perform packmg and unpacking operations as
required [Mon 96].

1. QR Factorisation

The solution of the normal equations may be very sensitive to small errors in the

mformation matrix A”. A that are inevitable, and renders it singular if these errors are
smaller than the machine accuracy. Reducing this influence of individual
measurement error with a large number of data may be insufficient if the measurement
geometry and distribution does not provide enough information on all estimated
parameters.

It may be helpful to use a different treatment of the LS problem that avoid the normal
equations. It is based on a QR factorisation of the 7 x m matrix A into an orthogonal
nxn matnx Q and an upper triangular m x m matrix R, where n = N. M is the total
number of observations and m is the number of parameters to be estimated

R o
Anxm = ann (0 J (3'44 )

{(m~m)xm

Since Q7.Q =Q.Q" = 1, the function %> may be written as
2 T
0 =AYy = 2ag) (AYay ~ 27)
, [(R a\" (IR d
Sx = Oyah;gf"r Q°Q. Oyfzgf"r
T
=3 =(Ryd,zer —d) (Rydiﬁ.—d)+rTr (3.45)

where Q7 Z 4 has been separated into vectors d and r of dimension m and 7 —m .

From this expression, one can see that the minimum is reached for

Ry, =d (3.46)
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Normal equations are thus not required anymore when using the orthogonal

transformation, and numerical problems arising from computation of A”.A are
avoided.

Note : In case of weighted observations, this method may also be applied if A and
z,y are replaced by S.A and 8.z, respectively, where S is the square root of the

weighting matrix W =878,

1ii.  Sequential accumulation

The QR factorisation can be performed using a type of orthogonal transformations
known as Givens rotations [Giv 58]. Each individual rotation is used to eliminate a
single element of the lower triangular part of the matrix R, the global orthogonal
matrix being formed by accumulation of individual rotation matrices. This method
allows the transformation to be realised in a row-wise manner, where matrix A and
vector Z,, need not to be given as a whole to compute the QR factorisation.

The measurement equations

akTyd‘z‘ﬁ' =Z g k=1,..n (3.47)

where a,"and z, . are respectively the k" rows of A andz,, can thus be processed

one by one using the data sequential accumulation by Givens rotations algorithm
illustrated in Figure 3.1, where underlined elements indicate at each step which values
are affected by the transformation that annihilate the leading non-zero element of the
data equation.

Ry Ky Ry Q) (R Ry Ry 9
0 Rz,z R23 d; N 0 E?_Z &i al
0 0 R,|Pw T 4 0 0 R, ™| d
G 4 4 Zag) W0 4 g 2y
Rll Rl,z R13 dl Rll R12 RI,B dl
N Ry, Ry, _ d, N 0 R, Ry s _ d,
R, Y7 =\ 4, 0 0 R, 4
51_1 Z'd,ﬁ' 0 0 0 Z'dx_'ﬁ'
Figure 3.1

For each measurement, the given upper triangular system Ry s =@ and the single

data equation a,”y s = Zpay are transformed into an upper triangular system
R'y,; =d' and a scalarz',, through a sequence of m Givens rotations. The

precedent square sum of residuals |r|’, known before processing the new
measurement equation, is updated after performing the triangularisation by
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I = ef? + (2, ) (3.48)

The process starts from R = 0 and Z,;- = 0 and may then be applied to include all data
equations in a recursive way. The only quantities to be stored are the upper triangular
matrix R, the vector d, and the Euclidean norm Jr|” .

iv.  Solution of the accumulated equations

After having accumulated all data equations, to determine the solution of the LS
problem, the following linear system have to be solved for Yar

‘Rl,] RI,Z Rl,m—l Rl.m \( Yiaigr dl
0 R,, .. Ry et R, Yo d,
. =| ... (3.49)
0 0 Rm—l,m-i Rm—l,m Yom-rai d,,
0 0 0 0 R, .. Vo d,
Due to 1ts triangular structure, its solution is obtained by the back-substitution
. d,
Yoag = Rm
- (3.50)
dy = ZRk'jy JdiF
~ J=k+l
y el = k=n-1,...,1
\ k. diff Rk,k

where diagonal elements of R are non-zero provided its rank is m, the same as A, that
is if the LS problem is non-singular.

Making use of the QR decomposition of A, the covariance matrix of the estimated

parameters may be computed [Law 74] from the inverse of the upper triangular matrix
R as

CoWJag-Fay ) = (A7A)" =(R'R)” =R"RT (3.51)

V. Sequential accumnlation with a priori information
Assuming now that an a priori information on the estimated parameters is available in
the form of an a priori estimate Y47 and an associated covariance matrix

Cov(y I dlﬁ”) =P, (7,), the sequential accumulation may also be applied. To this

end, the upper triangular matrix R has to be initialised with a square root factor R” of
the inverse a priori covariance matrix, this a priori covariance matrix is thus supposed
to be not null.
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The symmetric a priori covariance matrix being positive definite, it may be factorised
into the product of an upper triangular matrix and its transposed, similarly to the
Cholesky decomposition [Bie 77]

CoNYay” ¥ ) = (T)(T) (3.52)

Given the factor T* of the a priori covariance matrix, the upper triangular square root
factor R* of the a priori information matrix

Co§ug 5] =(T7)7(17) = (R*) 7 (R?) (353)
is thus obtained by a simple inversion of T

-1

R° =(T°) (3.54)

The extended loss function may then be written as

Xz = (Adeﬁ - zdw')T(Angtr - zdi;j") + (de' - yci;jj'a )T(Cov(yar;ﬁra >ngjra)) h (Ydiﬁ’ - de_'ﬁ’a)

1 = (A% ~2ur ) (A¥y ~20 ]+ (ROVay ~Ry4") (R7v,y “Ryy”)

T
Ra Raydmra Ra Rayd,‘ﬂ'a
@1 = {[ A Jywﬁ _( Zagr LA Yag Loy (3:3%)

The a priori information is therefore handle in the same way as the additional
observations and is incorporated into the sequential accumulation algorithm by

mitialising the information matrix factor R with the a priori value R® and the vector

a

d with the a priori value d* =R"y,.“.

In consequence, the LS with a priorni information can be deduced from the standard
formulation through the substitutions

Rﬂ Ra i a
A—)(AJ zdw.—a»[ ymﬂ) (3.56)

Z

3.2.5. Recursive Least Squares estimation

1 Equations of Least Squares orbit determination

Using equations of paragraph 3.2.4, the initial trajectory estimation after having
processed N measurements becomes

rasfier S} i <27

S Gy =[P+ ATA] Ry, + ATz, (3.57)
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where P, = (R“) R” is the a priori covariance matrix at time 7,, and the different
matrices implicitly refer to N measurements processed.

For the weighted case, the substitutions A — S. A and Zyr —> 8.2, yield
N _ -7 a
Y@:{h‘+A?“uq PGWW.+AWW1M] (3.58)

whereW = G,
And the covariance matrix becomes

-1

P=[p," + AT W.A] (3.59)

where the right-hand side can be written as
[P, +A".W.A]" =P, ~PAT[AP, A" +G] AP, (3.60)

where the Woodbury’s matrix inversion lemma
(A+BCD)"' =A" -A"B(DA'B+C')DA™

has been used.

Defining the matrixK as

o T T -1
K=PAT[AP AT +G] (3.61)

the estimate vector and the covariance matrix can thus be rewritten, after having
processed N measurements, as

Vag =YVag" + K[zdw - Aydiﬁ"a] (3.62)
P=[1-KAJp,

This formulation allows the LS to be implemented in a recursive way. Whenever the
k" new measurement is collected at time ¢ « » the a priori information is taken from the
previous estimation at time #,_, and the process is repeated.

Then, for a single measurement and a transition from #,_ to f,, the matrix A and the
vector z,,, become A(t,) and z,,(t,), and the N. M x N. M matrix G becomes the

M x M matrix G(t,) = W™ (r,) = E[V(£,)V(z,)”]. The a priori estimate y,,°and
covariance matrix P, are then replaced by ¥ i (t0|t,€_1) and P(rolt,c_]l ) , while the new

estimates ¥, and P are denoted § i (toltk) and P(t0 lrk).
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The equations of recursive LS estimation then become

Vg (r0|:k ) =Var (z0|rk_1) + K(z‘k)[zd,.ﬁ, ()~ AtV .y (r9|rk_l)]

(3.63)
P(t,)r, )= [1- KA R(t )

11. Equations of orbit propagation

If for some time?, these estimations are known after having processed the N
measurement data i the orbit determination (OD), the equations of motion can be
integrated to determine ¥, (t,lfN) and P(t,|rN) at any timet, > ¢, , that is realise an
orbit propagation (OP) as described in paragraph 1.2.

This operation is practically realised for the covariance matrix with the discrete

solution of the linearised motion equations of paragraph 3.1.3 without the process
noise term, where @ is obtained by integrating ( 3.7 )

P(tflfN)———(D(rt,to).P(toltN).@T(t,,ro) (3.64)

ill.  Iterated recursive Least Squares

In general the a priori estimate is not very accurate, and the reference trajectory based
on this initial guess may not be close to the true trajectory over the whole interval of
measurements. If the batch of N observation is sufficiently large, the final estimation

of the first OD, ¥ -, (ro 11‘ » ) , 1s closer to the true initial vector than the initial guess.

Taking this estimate as the new reference imitial condition, the whole batch of
observations is reprocess, that is linearisation is realised around this new reference
and the algorithm is rerun for the linearised system over the same batch of
observations.

This process corresponds to the iterations described in paragraph 3.2.1, and is thus
repeated until convergence has been reached. This algorithm is a batch estimator
because an estimation can only be obtamed after processing the whole batch of
observations.

In practice, the non-linear observation function h is used to compute the residual
vector I; =z, — A,Yy;,» and realise the orbit determination

Variftolte) = artolt )+ KOO |20y ) - Wsup i ()] (369

while the orbit propagation to time, is realised with propagation function f

Fialtlt) =¥ (0) = 9 tolen )+ [ 1]90cselen o t]ae (3.66)
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3.3. Kalman Filter

Using the equation ( 3.61 ) and ( 3.63 ), one can define the Kalman gain as

K() P(ir,, JAG,) T[A(tk )t ) AT + GG, )]_1 (3.67)

and the filtering equations as

S’dgj“ (titk): grdrﬁ‘ (titk—1)+ K(fN )[zdiﬁ’ (fN) - A(tN)i}drﬁ’ (titk—l)]

(3.68)
P(de; )= [1- K0 A [P(dr,)

¢ For t={,, this formulation is equivalent to the initial LS parameter estimation
problem, because parameters are always estimated at the same reference time fy-

* By contrast, for #=¢, the above equations lead to a filtering problem where
parameters are estimated at each measurement time¢, . In that case, the values of

f’dgf (l‘k|l‘,-c_1) and P(Ik‘tk—l) need first to be computed from the values

f’mf(fk_1|fk~1) and P(tk_1|z‘,c_l) obtained at the previous time ¢, , through a
prediction step, which thus requires to propagate the last estimate vector and error
covariance matrix from time ¢, to time ¢, ,. The combination of the filtering
equations with this step is the problem of Kalman Filtering.

3.3.1. Linearised discrete Kalman Filter

1. Time step prediction

As previously explained, the filtering problem allows the propagation model to be
completed by a process noise term w(z). The propagation model equations can thus
be here written as

¥ = f[y(),1]+ w(2) (3.69)
while the observation model keeps the same form as for the Least Squares problem.

This propagation model can be linearised as presented in paragraph 3.1.2, and its
solution between observation times#,  andz, can then be expressed as

Ya'jﬂ‘(tfc):q)(rk srk—i)ydgﬁ'(tk—l)-l'w‘(rk) (3.70)

where ®© and w'(¢,) are defined in paragraph 3.1.3. The values of Y (z‘k Itk_x) and

P(r,c [r ,H) can then be computed from §,, (t,c_1|tk%1) and P(zf,c_1 |t,c_1)through the time

step orbit prediction equations which represents the expected values of a random
process
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~

Y (Ik ]‘tk—]) = E[(D(Ik =tk-1)-§’d,ﬁ“ (Ik—1)+ W1(Ik)] = Oz, ’tfc-l)’ydiﬁ' (tk—l zrk—i) (3.71)

P(tk ) = E[(cb(zk )V (8 )+ W (2, ))(@(rk o)V ag (ta )+ W2, ))T]
= d(t, ,rk_]).E{SJd‘ﬁ (tk_l)-irdm,(zk_l)T].cDT(tk o))
+ (2, ,zk_l).E[jrd,ﬁ (tk_l).w'(tk)r]
+ B[ W) 9y () | @7 1)

+ E[W'(Jf,c ).W'(rk)r:[
=001, )Pt [, ) @701, ) + Q1) (3.72)

where the properties of the process noise given by equation ( 3.8 ) have been used.
il. Filtering equations
The orbit determination is here realised through filtering equations from ¥ sy (t|rk_1)
o 3]
Fur (Lt )= Far (11 + KOO 20y 00 - ACOT ()] (3.73)
Pt ), ) =[1- K )AC) P, 1) (3.74)
where ¢ has been replaced by ¢, , and where the Kalman gain may be written as

K(,) = P(t,t, JAG)T|AG) P(4 ] ) AG)T + 60| (3.75)

and with

S](tkitk—l)z ymﬁ (tk!tk—i)"'yref (tk) (3.76)

2, (0 ) =2ty ) -2, (8,) =2, ) - h[y(tk It ),rk] (3.77)

3.3.2. Extended discrete Kalman Filter

The idea of the discrete Extended Kalman Filter (EKF) is to re-linearise around each
new estimate as it becomes available

Yo (6) = ${tt. ) (3.78)

Yar ()= ¥(6) = v, (1) = ¥(0) - ¥(dt,.) (3.79)
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_ of[y(1),1]

F
=50

(3.80)

}'{f)-‘-y(fl*‘k—l)

Bh[y(1),1]

A =
)

(3.81)

¥ty )=Y(fifk-1)

Vur(telten) =0 (3.82)

The goal is thus to use a better reference trajectory as soon as it is available. As a
consequence, large initial errors are not allowed to propagate through time and the
Imearity assumption is less likely to be violated, which allows to compensate for the
fact that contrary to the LS formulation, the Kalman Filter is not iterated (the whole
batch of observation is treated only once).

This permits to reformulate the filtering equations in terms of the original vector y
instead of the difference vector y a5 - Indeed, for the orbit prediction equations,

}"f(tk ltk—l) may be computed through direct integration of the true motion equations,
like for the iterative recursive Least Squares

g;?(flfk-l) = 1]5(tk-. )] (3.83)

so the time step propagation equations are

$eelrin) = 3l )+ [ fsle

Pt b ) =001, )Pl J o7+ Q) (3.85)

Lo ot (3.84)

The filtering equations then become

K() =Pt b JAC) TAC) Bt ) ACOT +60)| T (386)
el )= (AT K(tk)[z(z‘k) - h[fr(rk It ot ” (3.87)
P(t,Je ) =[1-K()AC)P( ) (3.88)

where equation ( 3.77 ) and ( 3.82 )have been used, and j‘r(r . lt k_l)has been added to
both sides of equation for the estimation vector y.

3.3.3. Extended continuous-discrete Kalman Filter
In the discrete EKF, the prediction equations involve true equations of motion for
orbit propagation, but the linearised form of these equations to propagate the error

covariance matrix. Here, differential equations for covariance matrix are derived by
differentiation with respect to 7, of this linearised propagation equation [Wel 97]
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iP(rIrH)={F(r)cb(r,rk-l)]P(tkﬁllrk_l)mr<r,rk-l)+®(r,rw>-1’(tk_1 e [FO@ 1,0

dt
£ Q1) +FOQ (1) + Q (HF (2)
=F(OP(tt, ) - FOQ @) + Pt JF () - Q(OFT (1)
+ Q) + FHQ (9 + Q' (IF (¢)
=FOR(dr,_, )+ Bt () + Q) (3.89)

where terms in Q' cancel out.

Numerical integration of both equations ( 3.83 ) and ( 3.88 ) for estimated vector and
covariance matrix then provides the desired propagation. These equations are
integrated simultaneously in a way similar to the estimation vector and state transition
matrix equations of the LS problem.

The prediction equations are now in a time-continuous differential form, whereas the
filtering equations are still discrete at measurement times. This justifies the name of
“continuous-discrete” extended Kalman Filter.

For each new observation, an orbit propagation is realised with the time-step
continuous equations and an orbit determination 1s then realised with discrete
extended filtering equations. Thus, unlike the LS algorithm, this process produces an
estimation of y and its corresponding elements of the matrix P at each time of a new
observation and each observation is processed only once. So this algorithm is a
sequential estimator.

3.3.4. Interpretation of the position uncertainty

Due to the white Gaussian process noise, the vector y(¢) is assumed to be a Gaussian
multivariate. Its esttmation y(¢) is the state vector which minimise the mean squared
error such that

Ely]=¥
fly-s)y-5) |- » (3.90)
The probability density function of this normal distribution is thus
P@y) = —ln—exp{i(y-sf)frl(y—y)} (391)
)" 2

Moreover, as every symmetric positive definite matrix is diagonalisable with real
positive eigenvalues (non-negative) and eigenvectors being pairwise orthogonal, and
as P 1s non-negative definite symmetric, there exists an unitary matrix U, with

UU” =1, and a diagonal matrix D such that
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s’ 0 .. 0

GZ

0 V.0
P=U.D.UY with D= 2 0 (3.92)

0 0 0 o’

This allows an interpretation of matrix P through its corresponding diagonal matrix D.
The hyper-surfaces of constant probability are hyper-ellipsoids

AT -
(y-9)P'(y-9)=2r (3.93)
where/1is constant. The direction of the i* principal axis of this hyper-ellipsoid is
given by the i* column of U, and its length is given by Lo, .
By a rotation of axes, these axes coincide with coordinate axes
y=U"(y-9)
Ely]=0 (3.94)
Elyy’]=0".PU=D
such that components of y* are not correlated and statistically independent.

In practice, the interest is to know the probability 7 that the position r of the satellite
lies inside an ellipsoid defined by the position of the estimate fand the position error

covariance matrix P,
m d P (P’r P”'} 3.95)
= I o - Pr'r Prr ( ]

where [ contains the velocity and other parameters components. This probability is
given by Pr[(r -8)P, r-f)<! 2}= 1, and is obtained by integrating the
probability density fanction P(r) over the ellipsoid volume

) 3.96
! ‘[ r-£) P, N r-F)<s? P(r)dr ( )

Using the above transformation y'= UT(y——jz) and the other transformation
1

y'=D 2y the integration may be realised over an unitary sphere

1

" Lexp(—-%rzj F(r)dr (3.97)

where 7 =|r'and f(r)dr = 4nr’dris the spherically symmetric volume element.
Finally, the probability can be written as a function of /

n() = J%Eexp[— %rz]r"dr = erf(-j—gj - \/%.l. exp(—- %lz) (3.98)
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Inversely, for a given probability 1, the extension / of the ellipsoid can be calculated.
A common value for / is 3, and the probability for the satellite to be within the 3o
ellipsoid is 97.07 %. The following table shows some values of / versus 1. For more
details about this interpretation of the error covariance matrix, refer to the literature,

e.g. [Bry 75].

L |n 1 )

1 0.1987480430988 0.9 2.50027771080941

2 0.73855358700509 0.99 3.36821417521873

3 0.97070911346511 0.999 4.03314222365619

4 0.99886601571021 0.9999 4.59429139978745

5 0.99998455950171 (0.99999 5.08937616468373
Table 6.1

3.3.5. Factorisation of the filtering equations

As 1n the case of the LS method, numerical stability of the Kalman Filter may be
mmproved by means of factorisation methods. In particular, these methods prevent the
estimation covariance matrix from becoming asymmetric or negative definite. To this
end, the filtering equations for the Kalman gain and the covariance update are
rewritten as

K(t,)L(z,) = P{t, |t )AG,) (3.99)
Pt I, )+ Kt )L K () = P(t,)r,.) (3.100)

with the known matrices on the right-hand side and the matrices to be calculated on
the left-hand side, and where

def
L(z,) = 1!1(;,‘!2).[’(;:,c |rk_1).A(rk)T +G(1,) (3.101)
These three equations may be written into a matrix form

( L) LK (2,) J_
K(t)L() Pl ]e, )+ K@ )L)K (1))

[A(rk ) R{r ] ) AT+ G AG)-P(2
P(rk ltk—])'AT(tk) P(tklzk—l)

which becomes in terms of the square root matrices of both sides

(3.102)
’J

1 T T

12 (1) 0 L2(r,) L2()K'(,)|

K )L (2,) P%(fk |tk) 0 PE(Z"F") (3.103)

G (1,) A(rk).Pé(rklrk-,) G2 (1) 0

T I
0 Pl ) NP2(eli)AaTe) PE(l)
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If S and T are square roots of a same positive definite matrix M, M =SS7 = TT',
there exists an orthogonal matrix Q such that S = QT, and

1

L2(t,) 0 | oG AP (1)

: . ! (3.104)
K(t)L2 () P2(1,]r,) 0 P2(t,]r,.,)

Then a sequence of Givens rotations may be used to rend to zero the upper right sub-
matrix on the left-hand side. The estimation vector is thus updated with the sub-
matrices of the lefi-hand side.

$eck)=5(tlre )+ [K(rk)ﬁ , )J L‘%(rk)[z(rk) -H$(ela e ]| (3105)

and the error covariance matrix becomes
1 T
P(rk[rk):Pf(rk]tk_l)PE(tkitk_l) (3.106)

3.3.6. Filter divergence

A problem of the Kalman Filter, known as filfer divergence ought to be mentioned

here. Its cause is the a posteriori covariance matrix P(r klt k) which becomes smaller

than the a priori one P(t f lz k-l) at each processing of a new data, as shown by equation
(3.83).

When operating over many data as it is the case in satellite orbit determination, the

error covariance matrix and the filter gain K(t k), which depends directly on

P(z f lt,c_l ) , may become very small and subsequent observations have a little effect on

the estimate. If the dynamic model in the filter is different from the real dynamic
behaviour of the system, the estimations of the trajectory vector may then diverge
from the true state of the satellite. The onset of such a divergence manifests itself by
the inconsistency of the residuals with their predicted statistics : they become biased
and larger in magnitude.

A way to increase the error covariance matrix between measurements and thus

compensate for the unmedeled accelerations is to increase the input spectral density
matrix of the propagation noise Q(7) .

50




Chapter 4.

The simulator software design and
description

4.1. Estimations and artificial tracking data

4.1.1. The Orbit and Kalman processes

The orbit determination and propagation program, ORBIT [Mon 96} is used by SES
for station-keeping of geostationnary satellites. Some years ago, SES has developed a
Quasi-Real Time Orbit Determination application (QRTOD) based on this software.
This application acts as a scheduler for ORBIT, which processes tracking data arcs
over a moving time window, the previous estimate being usually taken as the initial
guess in order to guarantee convergence of LS in only a few iterations.

The EKF implementation, KALMAN [Wel 97], realised upon the program ORBIT
does not have the same level of sophistication as the QRTOD, as it is essentially used
for evaluation purposes.

Moreover, this implementation is limited in its capability to evaluate manoeuvres ;
once a new manoeuvre takes place, the filter’s covariance matrix needs to be updated,
practically done by stopping the filter once the estimation of the previous manoeuvre
has converged, and restarting it with the new manoeuvre prediction. Furthermore, it
cannot estimate measurement biases on the contrary of the LS implementation.

Nevertheless, these two programs run in a similar way, as they receive an IERS file
[McC 96] (which contains data for time and position transformations) and a tracking
measurements file in GEOS-CX format [Mon 96] as inputs, and yield various outputs
like the summary of orbit determination, the residual plot of estimation, station
keeping and acquisition plots, the residual list and artificial tracking data.

They are both run through an interface, the SETUP file [Mon 96], which contains a
predefined sequence of input data (initial epoch of estimation, satellite and stations

data, force model parameters, orbit propagation and prediction information) needed
for OD and OP.
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4.1.2. The Tracking Data Simulator process

The TDS program [Fra 96] has been developed at SES, and consists in four parts :

* The starting part produces a reference OD and OP with the ORBIT program.
» The TRACK_S1 process produces a fitting of the residuals outgoing of ORBIT.

» The TRACK_S2 process simulates tracking data from an error free artificial
tracking data by adding a white Gaussian noise term values and an error model! to
the reference tracking data, using a random generator to avoid systematic bias.

¢ The TRACK_S3 process produces a statistical analysis based on an OD of the
simulated data and on the reference OP.

4.2. Simulator process

The goal of this new software procedure, named MCSIM, is to compare in a
systematic way the performances of the implemented LS and EKF methods. Tt runs
following the Monte-Carlo Simulation principle to assess through a statistical analysis
of the results which method is best suited to a trilateration network [Wau 95].

Previous work has been realised on this subject. A DCL (Dec Command Language)
command file named GO.COM [Wei 97] was developed to compare the two
estimation methods by calling successively three processes. The first one estimates
the state vectors at successive epochs with the program KALMAN. The second one
computes a Reference Trajectory at times corresponding with the program ORBIT.
And the third one estimates the initial state vector, and to propagate it to the same
corresponding times with the same program ORBIT. The input measurements for
these two estimations come from the TDS application. The whole procedure is used as
a black box whose outputs are the differences between the reference trajectory and
each of the two estimations at the successive epochs of EKF estimations.

The problem of such an implementation is the lack of flexibility in the simulations. A
more systematic and integrated way of working implies to redesign the comparison
and review the different black boxes to reconstruct a new process. This new process
has been realised so that the user acts easier on the different parts of the process.
Moreover, it can run with or without real trilateration tracking data.

The new simulator compares the errors of both LS and EKF estimations of an
artificial trajectory over a tracking window of typically two days, the artificial
trajectory including the effects of random perturbations and being subsequently
observed via the observation function h plus a white Gaussian observation noise v,
and an input process noise spectral density matrix being added to the propagation
model of the EKF. The results of both estimations are finally compared to the error
free reference trajectory at eight successive estimation epochs. The best method is the
one which gives estimations nearest to this reference.

! This error model is described in details in Chapter 6.
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As the two computer programs ORBIT and KALMAN are written in the Ada
language and run on the AXP/VMS operating system, the development of the MCSIM
procedure has been done in the same environment to reuse the existing programs.

The new process is implemented in six different phases. The first two correspond to
an initial phase of the process run only once, the others constitute the running phase
run for each simulation attempts

a. The process starts with the creation of an error free ‘reference’ artificial tracking
data set and a noise model, in a way similar to the starting part of the TDS. At the
same time, a corresponding dense reference ephemeris is created. This initial part
can run with or without real tracking data.

b. The dense reference ephemeris is used to build a cubic-spline interpolation table
of these data [Fra 95].

¢, The stage TRACK_S2 of the TDS uses an input error modelZ, the ‘reference’
error free artificial tracking data and the noise model to produce simulated
fracking data.

d. The two procedures ORBIT and KALMAN are then run with these simulated
data, and both create an estimation file’. The EKF file contains all estimations and
their successive epochs of estimation, whereas the LS one contains propagated
estimations at eight chosen epochs®.

e. Next, from the interpolation table and the two estimation files, reference state
vectors are comstructed at respective epochs corresponding to LS and EKF
estimations.

f. Finally the differences between the comresponding reference and estimation files
are computed. From the EKF differences, only the eight ones corresponding to LS
epochs are needed, and are thus extracted from the EKF differences file. These
two sets of differences are the final outputs of the simulator.

The whole new process can be decomposed in three main parts. The first one is
composed of points « and 4 ; it is called Stage A and initiates the process. The second
part is composed of points ¢ and & ; it is called Stage B and makes the two
estimations. The last part e is called Stage C and realises the comparison between
reference and estimations.

Note :

There are two possible initial phases of running, depending on the availability or not
of real trilateration tracking data.

© When there is no real data, the point ¢ only makes an OP of an initial state vector
to build the dense ephemeris and the error free simulated tracking data.

® When real data are available, the point « processes them through an OD, before
OP, to produce the dense reference ephemeris, and TRACK_S1 produces the fit of
corresponding residuals

? The detailed description of this error model is presented in Chapter 6.

> EXF gives estimated state vector at increasing times., Least Square Fit gives only an initial state
vector, it is then necessary to propagate it at different epochs.

* Bach epoch correspond to the end of a measurement interval, ie. 3, 6,9, 12, 18, 24, 36 and 48 hours.
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4.3. Process analysis

The methodology of the process design is based on three phases of information
analysis which allow a better understanding of the implementation [Fra 54].

» The first phase is a structured analysis of all data flows and processes. It is
represented by means of Data Flow Diagrams (DFD). These diagrams show the
interactions between the different parts of the process. Such diagrams are
generally presented according to a fop-down approach. Starting from the most
general scheme (top of the tree), the analyst can reach more and more refined
diagrams, showing in turn more and more details of the process. In the present
work, three levels of this top-down approach are presented. These diagrams are
completed by a Data Dictionary identifying the properties of main data flow, files
and internal processes.

* The second one consists in the presentation of the whole process and of all the
procedures, progtams and subroutines. This is done in a Call Tree Diagram
which shows their succession and links. This diagram is completed by a Command
Procedure Description and Environment descriptions.

¢ The third one, called Hierarchical Design, consists in a complete description of
the different procedures and programs of the process. They are presented through
their summary, logical structure and meaning, interfaces, input and output files,
and local data (in the ‘Subroutines Specifications’).

After this study, the whole process was implemented and a test phase was realised to
ensure the validity of the different parts of the process.

Note : The hierarchical design is presented in the Annexe Al.

4.4. General software design and description

4.4.1. Data Flow Diagram

The different DFD are presented here in the following scheme according to the top-
down approach :

* The first diagram shows the three main stages of the process and their interactions
in a global presentation (first level, or context diagram).

» The next three diagrams show these different stages (second level). They are
completed by two other detailed little diagrams (third level).

¢ The last diagram is a complete one, like the first diagram, but with all interactions
and data flows, and with numeration for the Data Dictionary.
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1. Overall process (first level)

Real GCX
data
REF_SETUP STAGE A
- Reference
> {ORBIT OP + TRACK_S0 + Station File
- Schedule
TRACK_S1 + INTERPOL)
- [ERS
- Station
Stage2 geoscx Stations_File
|
STD_SETUP
STAGEB Interpotation
table
Error Model

( TRACK_S2
+ ORBIT OD / KALMAN OD)

Estim. LQ vs
Time

Estim. KF vs Time

STA(A

( DIFFERENCE
+ SELECT)

Post Process STATISTICAL ANALYSIS
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1. Stage A (second level)

In this DFD the first stage is developed throughout its three main parts: the ORBIT,
INTERPOL, TRACK_S0 and TRACK_S1° programs. The inputs of this stage are the
IERS and Station files, the SETUP and Real Tracking Data’ files, the Schedule and

Reference_Station_File, while the outputs are the Stage2_geoscx, Stations_file®, and
the Interpolation Table.

IERS ‘
Station _ '
Ref_Setup READER Orbit_Setup ORBIT

(OP + OD?)
!

Real
trilateration
tracking datas

Orbit_File

TRACK_S1

Stage2_Geoscx_2

Stations_File

h 4 (
Dense reference
ephemeris \
Schedule ,

P

TRACK_SO0

Reference
Station_File

Stage2_Geoscx O

INTERPOL } Interpolation table

* Only if real trilateration tracking data are available at the beginning of the procedure.

¢ The Stations_File is created by ORBIT when real data are available, and by TRACK S0 in the other
case
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1ii.  StageB

In this DFD the second stage is developed throughout its two main parts : the
TRACK_S2 and the two estimation programs ORBIT and KALMAN. The inputs of
this stage are the Error model file, the Stage2_geoscx and the Station file, while the
outputs are the two Estimation versus Time files (made and stored’ at each run of the

process).

Stage2_geoscx

Stations_file .

ERROR MODEL

Simulated tracking
data

E

( SPLITS ) r
R e ORBIT_GEOSCX O

SIMULATED_TRAC

_DATA
IERS
Station I
T - T T

< ORBIT STD_SETUP KALMAN

- Ry -
€ B < /
k‘f\";?;_‘:f/: - S ————
T —— [ e —— =
Estim. LQ vs Time ... Estim. KF vs Time e
i - "

7 Not necessary.
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iv.  StageC

In this DFD the third stage is developed throughout its two main parts : the
INTERPOLATE subroutine and the difference part (DIFFERENCE and SELECT).
The inputs are the Interpolation Table and the two Estimation versus Time files, while
the outputs are the two Difference versus Time files (stored at each run of the
process). -

Interpolation table

Estimations KF
vs Time

Estimations LQ
vs Time

j A ;
INTERPOLATE INTERPOLATE

—— |

DIFFERENCE DIFFERENCE

I| _

Differences KF
vs Time

Differences LQ
vs Time
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V. Detailed parts (third level)

e TRACK S0

First, the TRACK SO program of Stage A is presented at this third level of the DFD
with its five subroutines WRITE_STATIONS, READ STATION, GET SCHEDULE
or GEN_SCHEDULE and SELECT_REC, its inputs are the Schedule, Real.Gex file,

Ref Stations File and Stage2_Geoscx_2 file, while its outputs are the Stations File
and Stage? Geoscx file.

SCHEDULE ™ T
\ / N /~ / A
Y
K GEN_SCHEDULE SELECT_REC /ﬁw—u——J\ STAGEZ_GEOSCX { ]
/ /
4
[\/ STAGE2,_GEOSCX_2 L/ e v - 7 \ :
\ e ——
I 7\ e P
( REAL_GCX | ———— " s
L ~ 7
\ Y, I,'/ \ / \Il / ‘y 4
o | GETSCHEDULE }——-( SELECT_REC / J sTaGEz_GEOSCX 1\)
! I
.” h / 4 \
| sTacs2 GEOSCX 2 | | S N ~ \
. \ . P —
\ \ e

——— /_____\"\\ /_‘\*\ /,/’—1‘\\
/ 7 . .
{ f\ e \ \ \ / /\
{ REF_STATION*FILE( ; \ READ_REF_STATION \ ADD_STATIONS | WRITE_STATIONS ol STATIONS_FILE | |
| 4 / - -

-, '\

b . — . e ' .. ~ \ \\/ /

- o ~—_

o INTERPOL

Secondly, the INTERPOL program of Stage A is here presented with its two main
subroutines EXTRACT and GENEPH, its Dense Reference Ephemeris input and its
Interpolation Table output.

——— e
- - o L

!

F’: !

| Dense Reference | /

\ Ephemeris IL ! |

\ \/ k
S ¥

e =
3\ / N
EXTRACT h GENEPH 1——-{ Interpolation fable
\ /
~ e e

..

— e -

— ——
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vi.  The global D.F.D®

trilateration ]
tracking data

Reference
Station_file

REF_SETUP

Schedule

[
(8)

b
(23

READER {2

STAGEZ2_
GEOSCX_2

i

2

Dense reference
y -{ERS
ephemeris O _ Station

STAGEZ_
GEOSCX

Errror mocdel

Simulated tracking
EXTRACT data

ORBIT_GEOSGX

(10)J

L

GENEPH (9)
S »
r v
STD
Interpoiation table 1 SETUP H(12) KALMAN
(15}
E
Estim KF vs
Time
DIFFERENCE (14)
(18) SELECT {18)
(17}
v
F e e
v

Diff LQ vs Time

Y ¥

‘ Post Process STATISTICAL ANALY SIS

* In this DFD, names in bold are user interfaces while those in italic are used (or exists) with real data

on input.
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4.4.2. Data Dictionary

1. Processes

Programs and
subroutines

Description and using

READER

When there is no real tracking data, this program reads the REF_SETUP and
create the ORBIT_SETUP containing the same information except the OD part
which is not needed for the reference trajectory creation (by ORBIT) in this
case.

ORBIT

1. The first application of this program uses the REF SETUP {or the
ORBIT_SETUP) and the JERS-Station to make an OD of real tracking data
(with REF_SETUP, and when data are available) and an OP to a specified
epoch (with a initial state vector if no real data are available and
ORBIT SETUP). Its three outputs are the Dense Reference Ephemeris
REF.OUT, the Error Free Artificial Tracking Data STAGE2 GEOSCX 2,
and (when real data are available) the ORBIT_RESIDUAL FILE.

2. The second application of this program is done at the same level that the
EKF program (Stage B). It creates the estimation file LSQ_SV.LQ with
making an OD of the different Simulated Tracking Data file (the files
TDS.GCX) and an OP, with the estimation set-up STD_SETUP.

TRACK_S0

* When real trilateration measurements are available, this program writes
the STAGE2_GEOSCX file the data of STAGE2_GEOSCX 2 at times of
the real GCX file.

* When no real data are available this program first does as above for the
ATD file, with constructed times (from the Schedule) instead of real GCX
ones. Secondly it creates the missing STATIONS_FILE from a Reference
Station File of one station (whose noise is considered to be the same for the
different stations).

GET_SCHEDULE

When real data are available, this subroutine of TRACK_S0 creates a
measurement time structure from times of the real GCX file.

GEN_SCHEDULE

When no real data are available, this subroutine of TRACK S0 creates a
measurement time structure with the information of the Schedule.,

READ_STATION /
WRITE_STATIONS

These two subroutines (of TRACKLIB), used in TRACK_SO when there is no
real data, create the missing STATIONS_FILE using a Reference Station File.
The first one read the REF_STATION_FILE and the second one copy, as
many times as number of stations, these data in the STATIONS_FILE.

This last subroutine of TRACK_S0 forms the STAGE2 GEOSCX with data of

SELECT_REC the STAGE2_GEOSCX_2 at times of the above constructed structure.
TRACK S1 This program is used when real trilateration tracking data are available. It
- creates the STATIONS_FILE with the ORBIT RESIDUAL FILE as input.
TRACK $2 This program uses the STAGE2 GEOSCX and the STATIONS FILE to
- simulate tracking data (form an ORBIT_GEOSCX file) including the
measurement errors introduced in the error model file MODEL FILE .
INTERPOL This program constructs the Interpolation Table from the Dense Reference
Ephemeris file.
EXTRACT This subroutine of INTERPQL reads tlzle REF.OUT _ﬁle, and extracts out of it
the Dense Reference Ephemeris needed in the subroutine GENEPH.

GENEPH This of;her subroutine of INTERPOL builds a table containing second
derivatives of the cubic spline interpolated function of the points contained in
the Dense Reference Ephemneris.

SPLITS This program splits the ORBIT_GEOSCX file into different files

(TDS _‘T".GCX) used by the second application of the program ORBIT.
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WRITE_LAST_SV_LQ

This subroutine is used at the end of the second application of ORBIT. It only
computes and stores in the LSQ_SV.LQ the Least Squares estimation at the last
epoch of simulated tracking data.

KALMAN

This program is the implementation of the EKF Filtering. It uses the
ORBIT_GEOSCX data as input and creates the EKF_SV.KF estimation file,
with the STD_SETUP file and the IERS table as inputs.

DIFFERENCE

This program realises the difference between corresponding Cartesian
interpolated reference ephemeris and estimation state vectors of each method.

INTERPOLATE

This subroutine (of PANLIB), used in DIFFERENCE, creates Cartesian
mterpolation files of the Dense reference Ephemeris at EKF and LS estimation
times : it reads the Interpolation Table and time(s)’ in the estimations file
(LSQ _SV.LQ or EKF_SV KF) and create the SVI vector(s).

SELECT

This program selects the eight EKF differences and interpolated vectors

corresponding to the epochs of the Least Squares differences file.

11. Flows

Ne° Name

Type

Using

1 e STATIONDAT
( STATION FILE)
» NEWMASDAT

(IERS_TABLE)

See STATION .ADA
SeeIERS_.ADA

. Data of the stations.
* Data used to make time
transformations.

2 REF.SETUP
{ REF_SETUP )

See SETUP_.ADA

Set-up of the reference trajectory.
Input of READER.

23 ORBIT.SETUP
( ORBIT SETUP)

See SETUP .ADA

Output of READER, set-up of first
ORBIT application.

3 REE.OUT
(ORBIT_RESIDUAL FILE)

Y(6), MID : REAL*8

Reference ephemeris data, output of
ORBIT and input of TRACEK_S1.
Does exists only if real tracking
data.

4 REF.ATD ( ORBIT ATD
¢ STAGE2_GEOSCX_2)

See GCX structure of the
observations in GEQOSLIB

Dense error free artificial tracking
data : output of ORBIT, input of
TRACK_S0

P REF2.ATD
( STAGE2_GEOSCX)

See GCX structure of the
observations in GEOSLIB

Output of TRACK_S0, input of

TRACK_S2. Error free artificial

tracking data at real or schedule
times.

5 REF_STATION.DAT
( REF_STATION_FILE)

ASCII free format sequential
file (see T.D.S. software
description of Stations_File)

Input of TRACK_S0, used to create
ihe Stations_File when there is no
real data.

6 SCH.DAT ASCII free format sequential Contains information of stations
( SCHEDUJLE ) file measurement and interval times.
6’ REAL.GCX See GCX struchure of the Its times are used when real data are

( ORBIT_GEOSCX )

observations in GEQOSLIB :
%MID

available by TRACK_S0 to
produce the Stage2 Geoscx.

7 STATIONS.DAT
{ STATIONS FILE)

ASCII free format sequential
file (see T.D.S. software
description)

Data of the different stations,
produced by TRACK_S1 or
TRACK. S0 depending on
availability of real data.

* In LS file there is only last epoch estimation, in KF file there are estimations at successive epochs.
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8 SIM.MOD See TRACKLIB.FOO Data with the different parameters
{ MODEL FILE) of the perturbation model .
9 SIM.GCX See structure of the GCX output data of the
{ ORBIT_GEOSCX) observations in GEOSLIB TRACK 32, contains simulated
tracking data, input of KALMAN.
10 INPUT.GCX See structure of the Same than 9, but input of SPLITS.
{ INPUT) observations in GEOSLIB
11 TDS 'I".GCX See structure of the Splited GCX tracking data, input of
{ ORBIT GEOSCX) observations in GEOSLIB the second ORBIT.
12 STD.SETUP See SETUP__ADA Common set-up data of KALMAN
( STD_SETUP) and second ORBIT application.
13/ | LSQ SV.LQ/EKF SVKF MID : REAL*§ Epochs and corresponding
14 (LQ_ESTIM /KF _ESTIM) VECTOR 6D : REAL*8 estimations (LS & EKF), used to
form interpolated reference files
and make the differences.
15/ SPLINE.TBL EPH%NSD : REAL*8 Second derivatives of the
16 ( TABLE ) mterpolated function of the dense
reference data.
17/ DIF_‘SIMUL’.LQ/ MID : REAL*8 Differences between estimations
18 DIFF_‘SIMUL’.KF "° VECTOR 6D : REAL*B and interpolated reference
(LQ _DIFF /KF_DIFF) VECTOR 6D : REAL*S ephemeris at corresponding epochs,
and interpolated reference
ephemeris.
19 DIF ‘SIMUL’ KF MID : REAL*8 EKF differences at the eight epochs
(DIF_MC) VECTOR 6D : REAL*8 corresponding to those of the LS,
VECTOR 6D : REAL*R and interpolated reference
ephemeris at these epochs.
111.  Storage
N¢ Data file Format Using
A REAL GCX See OBSERVATION External file of real
structure in GEOSLIB trilateration measurement.
B REF.QUT ASCI file Dense reference ephemeris,
Y(6), MID : REAL*S produces by ORBIT with a
small time step.
C SPLINE.TABLE Binary file Interpolation table.
D/E LSGQ SV.LQ/EKF SVKF Y(6), MID Estimated state vectors file
REAL*8 for LS and EKF method, and
corresponding epochs’’.
DIF_MC *SIMUL.LQ/ MID : REAL*R Contains the N x 8 LS/ EKF
FiG = - .
differences and interpolated

DIF_MC_’SIMUL’ KF

VECTOR 6D : REAT *8
VECTOR 6D : REAL*§

vectors at corresponding

times 2,

' The ‘SIMUL’ part is composed of 6 digits XXXYYZ. For each tested case, XXX indicates the
number of times the process has been run, YY and Z the number of set-up and model files nsed.

! This storage is updated at each new run of the process.
'* This storage is appended at each new run of the process for a given set of input data, N being the

nurnber of times the « running phase » is run.
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4.4.3. Command procedure description

The master process implementation is in agreement with the following Call Tree. This
process is implemented in a DCL language as a command file. Tt contains the three
main parts described before, each part being composed of different programs and
subroutines written in Ada or Fortran-90, and linked together following the DFD and
in agreement with the upper dictionary table.

Thus come the three procedures STAGE_A, STAGE B and STAGE _C, each one
composed of the following programs

The STAGE_A rans READER, ORBIT, INTERPOL, TRACK_S0 and TRACK S1.
The STAGE_B runs TRACK_S2, KALMAN, SPLITS and ORBIT.
The STAGE_C runs DIFFERENCE and SELECT.

These programs call the main following subroutines

® ORBIT calls ORBIT OP and ORBIT_OD subroutines.

* TRACK S0 calls GEN(GET)_SCHEDULE, DECODE LINE, READ STATION,
ADD_STATIONS and WRITE_STATIONS subroutines.

® INTERPOL calls EXTRACT and GENEPH subroutines.

* KALMAN calls ORBIT_OD_KALMAN subroutine developed by Tomas Welter.

* DIFFERENCE calls INTERPOLATE which calls SPLINT, NS_KMA and
KMA PV subroutines.

Procedure, program and subroutines Language of
implementation
STAGE A, B, C DCL
READER Fortran-90
ORBIT Ada
INTERPOL Fortran-90
EXTRACT Fortran-50
GENEPH Fortran-90
TRACK SO Fortran-90
DECODE LINE Fortran-90
GEN_SCEDULE / GET _SCHEDULE Fortran-90
ADD_STATIONS Fortran-90
READ STATION/ WRITE STATIONS Fortran-90
TRACK S1/ 82 Fortran-90
SPLITS Fortran-90
KATMAN Ada
WRITE_LAST SV LQ Ada
DIFFERENCE Fortran-90
INTERPOLATE Fortran-90
SELECT Fortran-90
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4.4.4. Call tree”®

MCSIM _~~ StageA  Reader _ Get Word

__Get Line

| Orbit _ Orbit_OD

‘_ __Orbit OP

| Imterpol _ Extract ___ Pv Kma
__Kma Ns

_ Cal Mjd

__Geneph ___ Spline
__ Signal

__Pv Kma

__Kma Mns

_Track SO __ Decode_line

1 _ Select Rec

| _ Get_Schedule Decode Line
| _ Gen_Schedule™ Sort

i\ _Read_ Stations’

| _ Add Stations

| _ Write_Stations®

" New programs are in bold. Some old subroutines not essential here are not written.
¥ When no real data are available.
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J Track S1

| _StageB_ Track S2
| _Kalman___ Orbit OD Kalman

1_Splits ___ Decode Line

| Orbit __ Orbit OD

_ Orbit_ OP_ _ _Write last sv Ig

| StageC __ Difference__ _Interpolate ___ Splint
__NS§S KMA
__KMA PV
___Select

The three main stages constitute the first level, the programs READER, ORBIT,
INTERPOL, TRACK_S0, TRACK_S1, TRACK_S2, KALMAN, DIFFERENCE and
SELECT form the second level, and the subroutines are the third leve!l of the DFD.

4.4.5. Environment

The MCSIM procedure is the master process. It is implemented in the DCL language
of the AXP/VMS and is named MCSIM.COM. This process uses the different
programs written in Fortran-90 or in Ada which themselves uses other subroutines
and structure definitions of standard packages of SES : PANLIB, GENERAL,
GEOSLIB, TRACKLIB and SKSPEC which are part of the Fortran-90 application,
ORBIT and KALMAN which are part of the Ada application. In the following table,
the corresponding package of the old programs and subroutines are summarised.

Existing program and subroutines Package
ORBIT Ada
DECODE_LINE PANLIB
READ STATION / WRITE_STATIONS TRACKLIB
TRACK S1/ 82 Fortran-90
KATLMAN ORBIT
INTERPOLATE SKSPEC
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Chapter 5.

Statistical analysis.

The MCSIM simulator is a process which generates simulated observations
corresponding to artificial trajectories including the effect of random perturbations,
treats them by the LS and the EKF algorithms, and makes differences between the
resulting estimations and the reference error free trajectory estimation. The resuits of
the process are two files containing differences between the reference trajectory and
estimations produced by both methods as a function of estimation epochs.

This simulator is run for each set of input parameters, i.e. each Simulation case. They
are run to compare the LS and EKF methods, and are presented in the Analysis plan of
Chapter 6. Furthermore, they are designed to characterise the behaviour of the EKF
versus LS, and determine statistically if the decrease of the observational error due to
the trilateration tracking system, which increases the relative importance of the
unmodeled forces, allows to conclude that one methods is better suited for OD.

The outputs of the simulator are written in the specific form DIF MC xxxyyz’.LQ
for LS and DIF MC ’xxxyyz’.KF for EKF, as previously described in the User
Manual of Appendix A3, which links each simulation case with its result. These files
contain eight groups of N(=xxx) differences, that is the N realisations of the
simulator process at each of the eight chosen epochs. To correctly analyse them, it is
necessary to decide which quantity best discriminates the two methods.

The comparison is based here on the propagated position differences in the satellite
axes, propagation being realised with the Euler-Hill Algorithm [Clo 60] from the
estimation epochs coming from the estimator. This propagation of the differences in
the satellite axes over one orbital period is done to avoid a bias which could happens
due to the periodical variation of the local coordinates. The best method is thus the
one which gives the differences nearest to zero, the eight estimation epochs being
used to observe the convergence.

As the TRACK_S2 part of MCSIM generates random numbers to simulate the
Gaussian measurement noise and models physical errors in a probabilistic way,
estimated differences are random variables. The analysis of such quantities must
therefore be statistical. Stage B and C of the process are then run several times to form
samples of N realisations for each simulation case. They are statistically analysed in
the post processor described in this chapter.
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5.1. Statistical analysis of results

3.1.1. Summary statistics

To deal with a large number of data, it is necessary to pick out their important features
in order to choose an appropriate model. One thus has first to reduce all data into
some values called summary statistics and representing the data, and secondly to
realise data analysis with these values [Spi 61].

The summary statistics consists of two groups. The first one is based on moments, i.e.
mainly mean and standard deviation. The other one is based on the order statistics,
that is principally the minimum, maximum and median. All these statistics can be
represented using frequency tables and diagrams, box and whisker box, histograms,
and scatter plots.

3.1.2. Elementary sampling theory

Sampling theory is a study of relationships existing between a population and samples
drawn from it. This theory is used to estimate unknown population quantities, as mean
and variance (also called population parameters or parameters), from sample
quantities (also called sample parameters, or statistics).

In order to draw conclusions about the population from samples, these samples must
be representative of the population. One way in which a representative sample may be
obtained is by a random sampling process, according to which each member of a
population has equal chance to be included in the sample.

Each of all possible samples of size N which can be obtained from a given population
can be characterised by statistics which vary from sample to sample. This gives a
distribution for each statistics, called sampling distribution' of the considered
statistics. For each sampling distribution one can also compute the mean and standard
deviation, i.e. the summary statistics of the sample statistics distributions.

Sampling distribution of mean

If one denotes by #. ando- the mean and standard deviation of the sampling
distribution of mean, and by 4 and o the population mean and standard deviation
respectively, then

c (N,-N ¢

- = Gc-= =
Lo =g 3 m Np-l -\/F

(5.1)

! These sampling distribution may be computed for mean and standard deviation, but also for other
statistics such as proportions, differences, sums, maximum, minimum, etc.
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where N, is the size of the population, considered very large in comparison to N. The

sampling distribution of mean is very nearly normal for N =30 even when the
population is non-normal.

5.1.3. Central limit theorem

If {Xk}are N independent and identically distributed (i.id.) realisations of the

random variable X and if E[X x.]= H oand Var[X s]= o exist, then for constant
values a and b (a < b)

1 P{ Sum M b]—Fb F 5.2
m P|a 0W<_()_(a) (5.2)

N

N
where S, = Z X, , and F(x) is the normal distribution function N(0,1). [Ban 95]

i=1

This theorem states that a sum of independent random variables tends to be Gaussian

when the number of variables in the sum is large. In practice, the sample mean :XH;;

c
may therefore be considered as a normal random variable N(p, ﬁ)

1. When N > 30, for any distribution of the random variable X in the population
2. For any value of &, if the population of X is normally distributed.

This theorem is the fundamental basis of many statistical analyses, like Monte Carlo
Methods. Its meaning is very important when one deals with samples of random
variables because it allows to consider that the sum of random variables is normal
when there are enough realisations of them, and therefore helps in practical statistical
analysis of stochastic systems.

5.1.4. Statistical estimation

Sampling theory deals with samples of a known population to obtain information
about these samples. From a practical viewpoint, it is more often useful to find
information about a population from samples of it. This is called statistical inference.
One goal of this is to estimate population parameters (such as mean and standard
deviation) from corresponding sample statistics.

One can estimate a parameter v of the population from data of one sample in two
manners : with a point estimate or with an interval estimate.

» The point estimate is a number which estimates the unknown parameter.

» The interval estimate is an interval containing the estimation of the unknown
parameter with a certain accuracy level. It indicates the precision or accuracy of the
estimate. One generally denotes the error or precision of an estimate by its reliability.
A relation exists between the interval estimate number, i.e. the size of this interval,
and the probability of finding the estimate inside it. As a consequence, it is often
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called the confidence interval. There is a certain confidence of finding the estimate
mnside the interval, and this with a certain confidence level 1-o, where ¢ is the error.

Note : The statistics is called an unbiased estimator when the mean of the sample
distribution equals the corresponding population parameter. For example, X and
2
K3 =
NC N—].
if one considers all possible statistics whose sampling distribution have the same

mean, the one with the smallest variance is called the most efficient or best estimator
of this mean.

s* are unbiased estimates, since £ [E} =p and E [S ch] = o’. Moreover,

1. Confidence interval for mean

The confidence limits at the confidence level 1-, for a normal population whose
variance is known, are given by

CIIa(u = \/_=- (5'3)

_a?
2
where z _ is the abscissa (also called normal centile) of the reduced normal centred
1

7

variable of probability density f(«), such that

[f@du=1-= (5.4)
and where © is the known standard deviation of the population.

When the standard deviation of the population is unknown, the confidence limits at
the confidence level 1-a, for a normal population mean, are given by

s
=X+— 5.5
Cr_, (1) «/ﬁ N—l,l—% (5.5)

whete s is the estimated value of o, calculated with the sample, and ¢ . (also

- ,I__

called Student centile) is the abscise of the Student-Fisher variable, with N —1
degrees of freedom, with a probability density f,.. (W), such that

Z a

[/, odu=1 -5 (5.6)

Furthermore, it is possible to relate the confidence interval to the needed number of
measurements in the sample to have a certain level of precision. The risk is given by

o= P[IX_N—- E 7,e iNJ or o= P[|_X";— u = s T%] (5.7)

depending of the knowledge of the population’s variance.
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The corresponding number N is then given either by

2 2 2 2
c hy
N—[zl_%] — o N—[tN_u_%) — (58)

[E— t ———
e N w12 IN

where successive approximations need to be done.

Note : For N =30, the asymptotic normality of mean is given by the Central Limit
Theorem, and the results are still valid whether the population is normal or not.
For N <30, the approximation is not valid and small sampling theory must be
employed.

1. Confidence interval for standard deviation

The confidence limits for the standard deviation ¢ of a normally distributed
population as estimated from sample with standard deviation s are given by

o
CI,_ (c)=s*z o.=s%+ —— 5.9
i—a() s 1_% s Zl—%-\/ﬁ ( )

where o is the population standard deviation supposed known.

For N =30, one can consider that the variable s is normal. But for N < 30 this is not
true anymore, and one has to consider the following confidence interval

Z0-7],, )

b a

Cf,_,(o)= s—\/ (5.10)

2

where a and b are the values a =xa2and b=y ,
3 .-
2

5.1.5. Statistical decision, test of hypotheses

The above statistical notions are often based on the normality of the population which
is generally unknown. This requires a decision about population distribution based on
sample information. Assumption about this population distribution may be true or not,
and 1s called statistical hypothesis. In many instances, one formulates a statistical
hypothesis for the sole purpose of rejecting or nullifying it, thus named null
hypothesis and denoted H,,. The hypothesis which differs from H, 1s said alternative
and denoted by H,.

If the results observed in a random sample differ markedly from those expected under
a particular hypothesis, the observed differences are said to be significant and the
hypothesis is rejected. Such tests are called tests of hypotheses or test of significance
or rules of decision. Thus when H, is supposed true, one can construct a confidence
interval at the confidence level 1-c. If this interval contains the observed value, H, is
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accepted, if it does not, H, is rejected. This interval thus defines the critical region
where the hypothesis is rejected.

Type I and II errors

Two kinds of errors are possible in a test of hypotheses, the Type I and Type 1I errors.
The first one is the probability of rejecting an hypothesis H when it should be

accepted o = P(RHolHO), that is the level of confidence. The second one is the
probability of accepting the hypothesis H, when it should be rejected

B= P(AHG FHI ) In both cases, a wrong decision has occurred. Any test of hypotheses

must be designed to minimise errors of decision. This is generally difficult because &

and /8 vary in opposite directions. The only way to reduce both errors is to increase the
size of the sample.

Note : The level of confidence o is equal to the area, under the probability density
curve, outside the confidence interval. The power of an hypotheses test is the

probability of a correct reject of the hypothesis H,, that is P(RHOFHI) =1-pB. This
power is greater and greater when the hypothesis H, is more and more false.

5.1.6. Adjustment tests, normality tests

Depending on the normality or non-normality of the population and on the knowledge
or not of its variance, one edicts a rule of decision expressed in function of the
confidence interval and statistics of the sample. This rule is used to determine some
properties of the population, such as its mean. When the normality of the population is
assumed, these rules are easier to formulate. It is thus necessary to first determine if
the population is normal, and thereafter realise hypotheses tests.

The purpose of an adjustment test is to adjust an unknown theoretical distribution
from the knowledge of an observed distribution (a sample). This step is sometimes
necessary before realising an hypotheses test.

Two different situations occur

1. The theoretical distribution of the population is known, (mean and variance). The
test can then be realised directly.

2. The theoretical distribution is not known, but is defined with some parameters.
These parameters first have to be estimated with the sample data. There are two
phases :

- The adjustment, that is the search for the probability distribution best adjusted
with the observed distribution.

- The test itself, that is the comparison of this theoretical distribution and the
observed distribution.
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1. The %’ adjustment test

This test checks if a theoretical population is defined by a given probability
distribution ( Pis Pasee Pk) when the observed absolute frequencies of a sample are

(n1 2 Flysens nk) » where k is the number of categories of the population and

k i
N=>n=Y Np (5.11)
i=1 i=1
is the size of the sample. It starts with calculating the value

2
y 2 :Z":(ﬂi —Np,-)
obs pr Npl
which is a good measure of the difference between the theoretical and observed
values. Each of the & frequencies observed #, is then considered as the realisation of a

binomial variable, asymptotically normal of mean Np,. The hypotheses H, is that

Yoss_ 18 a7’ random variable of (k — 1) degrees of freedom.

(5.12)

Ify =0, there is concordance between the theoretical and observed frequencies
and H,, is accepted, and if y,,° = %, .’ then H, is rejected at the levell — ot .

Note : This test 1s valid if np, = 5, so it may be necessary to group classes to satisfy

it, that is reduce the number of degrees of freedom v of y, . When the theoretical
distribution is not completely defined, one must first estimate its parameters with the

x* minimum method 2 and computes the probabilities p,. In that case, v is reduced
by the number m of estimated parametersv=%4—-1—m.

1. The Kolmogorov-Smirnov test

Here the comparison 1s based on the cumulative function of frequencies
”{x,.:xf <x1<i< N}”
- N

of a sample {xl,xz,...x N} of size N, with the distribution function F(x)of the
population. The test is then based on the determination of the maximum difference

Iy (5.13)

1y ()~ F(x) (5.14)

and the comparison of this difference with particular critical values.

The I, function is in formed of vertical steps at abscisesx,, and one generally defines
two values which are random values following the Miller-Owen distributionS:

> This method consists in minimising the quantity > .

3 This distribution is such that 1im P(x" ND,~ < d) =1-¢2% , 05d <,

n—>rcq
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. i _ i1
D, = Eﬁc[— ~ F(x, )} and D, = g%[F(xi) - TV—} (5.15)

If one chooses a level confidencel -« , the value d vo 1Ssuchthat P(D, >d, )=«

and the test consist in rejecting H, at the level o if the observed value D, 1s greater
thand .

1.«
Note : d,, =~ [— -z—ﬁlng when N is large enough (i.e. N > 35). The reject condition

/ 1
therefore becomes Z,, = /N D, = —~2-1n-;i .

1il.  The normality test

To test the normality of a population which is observed through a sample, the two
explained methods may be used under some restrictions :

o They’test may be used when N >30 for a number of observation>5 in each
class.

* The Kolmogorov-Smimov test may be used VA . Nevertheless, the Kolmogorov-
Smirnov test may only be used for continuous distributions.

The Kolmogorov-Smimmov test is therefore more general, when the distribution is

continuous, because the 3 test requires 5 realisations in each classes and is not useful
for small samples.

When the normality can be assumed, one directly realises tests of hypotheses on mean
and variance of the population. If it cannot be assumed from the test of normality, the
Central Limit Theorem still gives the possibility to deals with sample of N > 30

realisations and realise test of hypotheses on the mean. Nevertheless, tests on
population variance are difficult to realise in that case due to the great sensibility of
such test of comparison to population normality.

5.1.7. Monte Carlo Methods

When a deterministic system is submitted to random variations (coming for example
from external perturbations) it is possible to estimate the statistical distribution of its
response through a technique involving stochastic simulations. From N realisations of
the probabilistic system, throughout random variations of its parameters, its possible
to simulate the real operational mode of the system, and then produce N responses
which form a sample of the possible responses (finite or infinite population). Thanks
to the Central Limit Theorem, the mean of this sample 1s a random variable normally
distributed.

Monte Carlo Simulations (MCS) is the general designation for such stochastic

simulations of a probabilistic system. It means the use of random number and a
statistical analysis of results with the Central Limit Theorem implications.
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The statistical analysis of the realisations is based on an estimation of the system
parameters (mean, variance, along with their confidence intervals if possible). The
confidence intervals depending on the level of confidence, the analysis consists in
choosing a level of confidence and running the process a number N of times great
enough to reach the corresponding confidence interval for the system parameter

estimations, the precision of results increasing as~'N . The process is thus stopped
when there are enough realisations in the sample to reach the level of confidence in
results. In comparison with analytical methods, where no stochastic simulations are
realised, the MCS has the great advantage to provide the shape of the unknown
distribution.

5.2. The analysis post process

In this work, MCS are run for each simulation case. Tt is necessary to run the
simulator presented in Chapter 4, and treat its outputs in a post process, which is
described in this chapter. Due to randomness in the simulator, the N realisations of
each sample created by the simulator may be considered as statistically independent
and identically distributed (11.d.), and the different statistical notions presented before
may be apphied to realise the statistical analysis of the results in this post process,
which thus realise the second part of MCS.

The two processes, simulator and post processor, are run for each simulation case, the
corresponding sets of parameters being related to the indexes ‘YYZ’ used in the
MCSIM result files and spanning all different interesting cases needed to compare the
two methods efficiently, and the number of realisation being ‘XXX, as explained in
the User Manual of Annexe A3.

S.2.1. Analysis of the MCSIM results

The post processor performs statistical operations on the propagated differences to
obtain significant final results and compare the two estimation methods. It also deals
with corresponding Keplerian elements to provide another view of these results.

1. Monte Carlo Simulations

Each simulation includes several steps involving the simulator and the post processor,
and provides four groups of results for the two methods LS and EKF.

Simulator

N runs (here 50) of the simulator generate two samples composed of ii.d.
realisations, for LS and EKF.

Post processor

» First, the input differences of the samples are converted in the satellite local axes
and then propagated over one orbital period, for each hours of the day , with the
Euler-Hill algorithm in the program MAXP, as explained at the beginning of this
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11.

chapter. The maximum and minimum of these propagated differences along each
axis form two samples of 2N realisations, each one containing the maximum and
minimum of the 24 differences.

Secondly, the input differences are transformed into Keplerian elements to have
another representation of the results.

Summeary statistics are computed from the two samples, minimum and maximum
of Cartesian and Keplerian propagated differences are then obtained. Their
graphical representations are finally drawn.

A Kolmogorov-Smirnov normality test is realised to test normality of populations.

Mean and standard deviation of the populations with confidence intervals of mean
are computed for Cartesian differences, the confidence intervals being determined
with the Student centile because the population variances are unknown. Normality
1s not needed here to compute the confidence limits, because N is greater or equal
to 30 and the Central Limit Theorem is thus applicable®.

The number of supplementary required runs is then computed, the population
parameters estimations being finally computed and stored.

If populations are both normal, the comparison probabilities for the two methods
are computed using the final population parameter estimations

Flow chart

This flow chart includes the simulator and the post processor. It shows how they are
used together and how the comparison results are obtained.

! - Setup

- Model Run N=30 times Sample statistics

N Normality ? Yes

<>

Ye o . . No Yes
Run more times Run more times
A

v v v
Robust Population Population
parameters parameters

* Parameter estimations realised in that case are called robus? estimations [Dag 92]
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111.  Results
The results for each simulation case are divided in four groups :

1. The min. and max. propagated differences are characterised by their mean and
standard deviation at the eight epochs, and for the three position components in
the local frame. These summary statistics are computed by the program
STATISTICS and the application EXCEL@. Their graphical representations are
then realised with EXCEL @.

2. The Keplerian differences are characterised by their frequency distribution at the
eight epochs, and for the three position components. These statistics are computed
by the program STATISTICS and the application EXCEL @ which also draws their
histograms.

3. The program ANALYSIS then tests normality of the population using the
Kolmogorov-Smirnov Test. It also computes, in parallel with EXCEL @, the
population parameters with confidence interval for mean’, and gives the number
of runs needed to reach the confidence interval corresponding to a constant level
of confidence.

4. If normality can be assumed, ANALYSIS computes the normal probability that the
global random variable is lower than a constant difference®.

5.2.2. MCSTAT design and description

The three Fortran-90 programs used in the post processor are MAXP, STATISTICS
and ANALYSIS. They constitute the application MCSTAT which runs on the
AXP/VMS system as the simulator MCSIM. On the other hand the application

EXCEL® 1is runs on PC simultaneously with this post processor.

The design and description of the MCSTAT part is here presented in a similar way

than MCSIM, while the use of EXCEL @ is briefly presented thereafter. Theses two
applications are complementary, and allow a systematic analysis of the simulator
results.

1. Data Flow Diagram

The post processor is presented in a one level DFD with flows between the simulator
and the FO0 programs, with its hierarchical description in Annexe A8. The mputs of
this application are the outputs of the process MCSIM, i.e. the state vector differences
versus eight estimation epochs. The outputs are sample statistics and population
parameters for propagated positions.

* The parameter o is not studied as far as 1, because it is very semsitive to normality.
® That is the position module lower than 100m.
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11. Data Dictionary
Flows
Ne Name Type Using
1 DIF_MC_’SIMUL’.LQ/ MJD : REAL*8 Contains LS and EKF differences
DIF_MC_'SIMUL’ KF VECTOR 6D : REAL*R and corresponding times.
4 and | DIF_MAXP_LQ and KF/ MID : REAL*8 Contain LS and EKF 24 propagated
5/ DIF_EQ ILQand KF VECTOR 6D : REAL*8 differences / equinoctial
6 and differences, and corresponding
7 times, for the N realisations.
8/9 STAT_,FREQ_,PLOT _ See types definitions and | Statistics of the LS and EKF
KF/LQ programs descriptions. differences contained in samples.
10 POP_, PROBA_ MAXP See types definitions and | Values created to decide whether
and KF/LQ programs descriptions. population are normal (1) or not ()
11 and probabilities values (if normal).
Processes

Programs and

Description and using

sabroutines

MAX? * This program use the Euler-Hill algorithm to propagate the differences

over two days, and the subroutine ECI_EHF to translate them in the
satellite axes. It then construct a sample containing 24 propagated state
vector for each of the N realisations of the input sample.

* This program also uses the subroutine PV_KMA to construct a sample
containing the N realisations in equinoctial elements.
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STATISTICS

This program treat the propagated difference LS and KF as samples of N
realisations. It runs the subroutines GOIABF,GO1AEF and GO1ASF to
produce files containing statistics of the two samples for the eight epochs.

ANALYSIS

This program test normality of the population and compute its mean, variance
and confidence interval of mean. It determine if there are enough run for this
confidence intervals to be small enough for a constant confidence level.

If population is normal, it also computes the probability value that the variable
is lower than a constant difference.

G01 subroutines :

This group of NAG FORTRAN [Nag 90] subroutines compute simple

-GO1ABF calculations on statistical data : plots and descriptive statistics, statistical
- GO1AEF distributions, deviations from distributions, etc.
- GO1ASF * The subroutines GO1ABF computes means, standard deviation, correct

sums of squares and products, miniroum and tmaximum values, and the
product moment cortelation coefficient of both LS and EKF sample.

* The subroutine GOIAEF constructs a frequency distribution with
calculated class boundary values for LS sample and for EKF sample.

& The subroutine GO1ASF produces boxes and whisker plots for the 8
epochs.

GOS8 subroutines :

GO8CBF

This group of NAG FORTRAN [Nag 90]subroutines compute Nonparametric
Statistics, ie. location tests, dispersion tests, tests of fit, association and
correlation tests, tests of randomness, etc. In this process, the subroutines

- The subroutine GOSCBF realises here the Kolmogorov-Smirnov tests of fit,

ECI_EHF

Given the inertial coordinates of a reference s/c, i.e. the interpolated vector
here, convert the position and velocity components of a reference object to
local coordinates. This subroutine is used to intriduce correct state vector in
the Euler-Hill subroutine.

EULER_HILL

Anmalytical propagation of the relative state vector over the time span delta
using the Euler-Hill equations. This subroutine is then used to propagate the
position over a time interval and obtain a maximum position.

PV_KMA

This subroutine transforms differences coming from the simulator into
equinoctial elements.

{il. Command Procedure Description

The procedure implementation is in agreement with the following Call Tree, and is
processed by the commmand file MCSTAT written in the DCL language. It contains the
different programs and subroutines written in Fortran-90 presented above, and link
them following the DFD.

The MCSTAT procedure is composed of the programs MAXP, STATISTICS and
ANALYSIS. These programs call the following subroutines :

o MAXP calls ECI_EHF and EULER HILL subroutines.
o STATISTICS calls GO1ABF, GO1AEF, GO1ASF and GO1FAF subroutines.
o  ANALYSIS calls PARAMETER and GO8CRBF subroutines.

In the following table the different languages of implementation are presented for
programs and subroutines used in the MCSTAT post processor.

79




Procedure, program and subroutines Language of implementation
MCSTAT DCL

MAXP Fortran-90

ECI_EHF Fortran-90

EULER HILL Fortran-90
STATISTICS Fortran-90

ANALYSIS Fortran-90

NAG G01 and G08 subroutines Fortran-90
POPULATION Fortran-90

1v.  Cali Tree

MCSTAT ~~ Maxp ECI EHF

‘ EULER HILL
| Statistics GOIABF
_ GOIAEF

__ GUIASF

| Analysis ECI EHF
EULER _HILL

Population

GO8CBF

V. Environment

The MCSTAT procedure is implemented in the DCL language of the AXP/VMS and
is named MCSTAT.COM. This process uses the Fortran-90 programs presented
before, which themselves uses other subroutines part of the NAG Fortran-77 routines
package [Nag 90], and of the PANLIB package.

Existing program and subroutines Package
GO1-GO7-G08 NAG Fortran-77

ECI_EHF PANLIB

EULER_HILL PANLIB
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3.2.3. EXCEL © application description

This application is used together with the procedure MCSTAT to draw statistics of the
different samples coming from simulator, with parameters of the corresponding
populations and graphic representations.

1. Data treatment

Several EXCEL © sheets contain the input data and the computed values, and more
specifically

1. The input data DIF_ MAXP ’xxxyyz’ and DIF EQ ’xxxyyz’ for LS and EKF,
coming from program MAXP of MCSTAT.

2. Mean, standard deviation, maximum, minimum and mean confidence intervals of
the two sets of input data for the eight epochs and the two methods.

3. Histograms and frequency tables built from the Keplerian differences for the two
methods at the last of the eight epochs.

4. Graphical representations of mean, standard deviation and confidence intervals
evolution over the eight tracking intervals, for the three components and for the
two methods.

il. Data representation

EXCEL®© is used in parallel with the MCSTAT post processor to treat in a more
visual way the data coming from the simulator and being passed into the MAXP
program of this post processor. This application indeed allows easy graphical
representations of results.

In addition to the above described data treatment, two concepts of data representations
are used from the basis information contained in mean, standard deviation and
confidence interval results to draw graphics

The first concept of global evolution represents on the same figure the mean,
confidence interval, and 3-sigma curves of the propagated differences (the three
position components) versus the tracking time intervals (i.e. 3, 6, 9, 12, 18, 24, 36, 48
hours). The evolution over time of these random variables is thus statistically entirely
characterised by these figures, the mean and its confidence interval giving the interval
where there is a probability of a% that the real variable is outside of it, and the 3-
sigma interval where there are 99.95 % of chance to find the real variable.

Figure 5.1 shows an example of this diagram for one of the three components in the
satellite axes, where the horizontal axis has hours units and the vertical axis has
meters units. Moreover both vertical scales are the same for comparison of EKF and
LS errors.
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Figure 5.1

The second concept of worst case represents the addition of the 3-sigma band to the
confidence interval. The corresponding curve is generally presented for the three
components in the satellite axes as shown on Figure 5.2 for example, where the
horizontal axis is scaled in tracking intervals of 3, 6, 9, 12, 18, 24, 36, 48 hours and
the vertical axis has meter units and represent the evolution over time of variables
representing the worst possible case of estimation, see equation ( 5.16 ) where s is the

estimation of the standard deviation o These diagrams are used to compare the
different simulation case results, so their vertical scale are again the same for the
corresponding components of cases detailed in each paragraph of Chapter 6.

1 +3.5 (5.16)

1000 Tangential

800 |
800 |
400 © \ . .
[ 200 L S T

tracking intervals

Figure 5.2

Note :
On worst case graphics like Figure 5.2, the horizontal axis is labelled with the

numbers 1 to 8 instead of the 3, 6, 9, 12, 18, 24, 36, 48 hours. These numbers
represent the eight tracking intervals corresponding to these eight hours.
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Chapter 6.

Monte Carlo Simulations

The simulations realised to compare the LS and EKF are presented in this chapter
through a Simulation Plan which is detailed in Annexe A7. For all cases of this plan,
the simulator and the post processor described in Chapters 5 have been run.
Conclusions and interpretations of the results are detailed in Chapter 7.

During simulations it nevertheless appeared that these main simulations needed to be
completed by further investigations, and that normality cannot be assumed in general.
As a consequence, the main simulations are presented with their statistical results in
paragraph 6.3, while the supplementary cases are given with their results in paragraph
6.4. Furthermore, as the simulator was designed to run with or without real data, and
that real data were available before simulations were started, more cases than
originally expected in the simulation plan have been realised with real data’.

As it is not possible to detail all simulation cases and all their statistical properties, the
results are presented through the most important cases. They are given for propagated
differences in Cartesian and/or Keplerian elements throughout four groups of
outcomes

¢ Normality test results for different simulation cases.

* Histograms of samples at the last epochs for Keplerian components of some
simulation cases.

¢ Population parameters like mean, standard deviation, confidence intervals of
mean at the eight epochs and for the three propagated position components.

® Graphical representations of these parameters through a worst case and a global
Jform.

Other results, like normal probability that the differences are lower than a set value
and variance analysis, cannot be presented because the normality for the populations
could not be assumed. The criterion of comparison is thus based principally on
populations parameters computed with the Student’s distribution (as the variances of
populations are unknown) and their graphical representations.

Note : The number of needed runs is different for each simulation case, so it has been
fixed to 50, greater than all to guarantee the confidence limits.

! These real data are used to create the reference trajectory, as explained in Chapter 4.
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6.1. Analysis plan

The simulator process and the statistical analysis post processor are first run in two
ways, correspondingly to the two kinds of error which influence the orbit estimation :

1. The measurement errors in the observation model, which always exists in real
tracking data.

2. The dynamic errors in the dynamic model, to model inaccuracies in the physical
values.

These two kinds of simulations respectively correspond to a set-up as best as possible
with a representation set of error models, and a null error model with different set-up
files. The parameters of both files are inputs of the simulator, their variations thus
giving the different simulation cases to be tested. However, it is of course not possible
to span the two parameters spaces. So, simulations are limited to a relatively small
number of cases’. Nevertheless, it would be difficult to choose which tests to realise if
simulations were only based on these inputs. The simulation plan presented hereafter
is therefore built on these two kinds of errors in a way allowing to test the different
possibilities and behaviours of the EKF relatively to the LS method. The simulation
plan is constructed in relation to the different set-up and error model files with their
corresponding indexes to the tested cases and the number of runs realised as presented
n Annexe A6.

Before presenting this simulations plan, both observation and dynamic errors are
described as they are implemented in the TDS and the ORBIT software with the order
of variation of their parameters.

6.1.1. Analysis with measurement errors

Here we consider range measurements from the trilateration tracking system with
their measurement perturbations. The error model parameters are presented here and
numbered from 1 to 9, to ease the relation between results and corresponding error
model.

There are two sources of measurement errors : random noise and Dphysical effects
which are not modelled in the ORBIT OD software.

* The random noise errors represent all effects that are not taken into account in
usual model. They are introduced either as simple white noise or by fitting range
residuals with superimposed white noise. The former is produced by TRACK S2 ,
while the latter is realised by the TRACK_S1 and is added to white noise by
TRACK_S2 which again produces it. Both errors are produced for each tracking data
realisation and each measurement time independently.

o The unmodeled physical effects represent different random errors that are
generated and superimposed to the random noise by TRACK_S2, in a conservative
approach, following the physical information given by the user in the error model file.

* Bach run last more than 3°, so a simulation of 50 runs needs 150°.
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All realisations of the process are statistically independent, and the random values of
the model parameters describing these effects are kept constant throughout the
tracking interval for each realisation.

Note : In this section, the unmodeled physical effects and their implementation in the
program TRACK_S2 through the error model file are particularly considered, the
random additive noise being constant in the Ref Stations file’ when no real data are
available and given in the Stations file by the program TRACK_S1 from real data in
the other case.

In addition to these two error components, it is interesting to test different
combinations of stations. The four stations of the SES trilateration system have been
chosen here and are presented in Table 6.1. Nevertheless, in order to reduce the
number of simulations and because it is not necessary to try all combinations, only
two combination cases have been tested, four stations and two stations systems. On
the other hand, simulations using real data have been done with all four stations

Station Index Status
Betzdorf 8000 master
Seville 8001 slave
Bergen 8002 slave
Rome 8003 slave

Table 6.1

At last, the Schedule File may also be changed to test different combinations of
schedule measurements. To again restrict the number of simulations, only three cases
have been be considered : regular measurement intervals, measurements concentrated
at the beginning of the tracking interval, and measurements concentrated at its end.

Note : The different model files are numbered from 1 to 9 in the simulation plan,
nevertheless they correspond to only two different model files : a null error model,
and a complete one with reasonable values. The indexes distinguish the different
combinations of both models with stations combinations, random noise possibilities
(white or fitted) and schedules.

1. Measurement errors model parameters

The model file contains different values needed in Track S2 to simulate physical
effects which are unmodeled in the ORBIT software of SES. These effect are
specified through a mean and standard deviation in order to realise random errors in
TRACK_S2.

The following measurement error sources may be considered among others to
improve the measurement mode] by adding different physical errors to measurements

* This random error is a white noise, or a fitted noise of one station measurements during some days.
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o The tropospheric refraction effect.

* The ionospheric refraction with quiet or intense solar activity, and daily effects.
» A short term noise effect.

e The station positioning errors and calibrations effects.

o The spacecraft delays effect.

Nevertheless tropospheric refraction is generally well defined in measurement models
as a known bias, while the ionospheric refraction is not. It is thus more interesting to
only consider the latter. In the same way, station positions are generally very well
known but their calibration and the spacecraft delays are not. In the TRACK_S2 error
model, only ionospheric refraction, station calibrations and spacecraft delays thus
have been considered.

The TRACK_S2 error model, see [Fra 96] and [Wau 95], uses seven couples of
parameters, three for the ionospheric refraction, and four corresponding to the sum of
the station calibration and the spacecraft delay effects. The global measurement error
is given by

8= C, +[CyAr+ CysinmAt - C)|+[C, ¢ sin27As - C,)] (6.1)

where C; (i =1,...7) are the seven random values computed from the corresponding
couples of the error model file, Az is the time interval between measurements.

Note : C; isused when (227 — C,) <7, and C, when 27A1~C,) > 7.

In what follows, these three measurement errors are exposed with their model and
parameters. Before running the process, the user introduces the seven couples of mean
and standard deviation (m, and o,,1=1, 7) corresponding to the C, in the model file.
From them, Track_S2 generate the Gaussian random value C, as

C=m+ random(o;.) i=1,.7 (6.2)
» Jonospheric refraction

The ionospheric effect is specified for each station individually as

+ IG(MIkian ,Slkion ) .Sin["P(tk) - G(m3kian ,S3kion )]}

sin(ef, )

{|G(m2kion ,Szkion )

Error jon =

= [C"s Sil‘l(Z’R‘At - C”v)] (6:3)
Wheﬂl}’(l‘k) - G(m3kion sS3kfoﬂ) < Pl(dayrz'me) » OT

{|G(m2"m 2525 0) .Sin{‘P(tk) ~ G(m3 ion ,53* an )]}

G2 552  i0n)

sin(el, )

k
EFFOF jon =

= [Cks sin(2rAt - Ck',')] (6.4)
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if¥(2,) ~ G(m3* in,53% 1) 2 Pl(night ), where , is the local time of the

k" station, ¥ is the Earth’s angular rate, m1*,, (m2*,) andsl*y (5250, are the
means and standard deviations associated to the day (night) oscillation amplitude of

the k" station, m3*;,and s3*;, characterise the phase of this oscillation of the k%
station, the termlG(mZ_ ion,s2 ion)| is introduced to prevent the refraction

correction to become negative during night time, el, is the elevation of the £* station,
and both P/ are constants representing the phase for the beginning and end of the day.

Model parameter Mean range Standard deviation
range
sm(e!) G(mlmn :Slwn) 0-1 m 0-10m
sm(e]) G(mzmnnszio”) =C O N 0'5 m 0 - 5 m
sm(el} (m?’;gn ’S3wn) 0-3.14 rad 0-1 rad
Table 6.2

On Table 6.2, the reasonable mean and standard deviation values are presented.

o Stations calibration

The uncertainty on each station’s ranging path calibration is assumed to result in a
range error characterised by the Gaussian distribution

G(mstaml ’Sstacal) = Cl ( 6.5 )
of constant mean and standard deviation® whose limits are presented in Table 6.3.

Model parameter Mean range Standard deviation range
G(msmca! ?Sstaca!) = C] 0-1m 0-10m
Table 6.3

o Spacecraft delays

The uncertainty on the spacecraft delays is assumed to result in a range error
characterised by the following model and acceptable values of Table 6.4.

TTO st = GO0 0,01+ GOy ) ST Pt = G2 11,52,,)]

= C, &1 +[C; sin(2nat - C,)| (6.6)
Model parameter Mean range Standard deviation range
G(mO0 41,550 4, ) =C, 0 - 1 m/hour 0 - 10 m/hour
G(m 41y 551 4, ) = C, 0-1m 0-10m
G(M2 oty 552 4ugy ) =C, 0-3.14 rad 0-1rad

Table 6.4

“ 1t is assurned that regular station calibration guarantee the absence of any periodic effect,
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11.  Schedule parameters

The schedule file contains information needed in TRACK_S0, when no real data are
available, to recreate the lacking stations file from the Ref Stations File. This last file
contains fitted residual data of one station measurements for one satellite OD
performed over several days and is produced before these simulations by TRACK_SI
from Output file of Orbit estimation with real data. TRACK_SO then produces a fit of
residuals for the number of stations and at measurement time intervals specified in the
Schedule file,

This last file is thus composed of different reproductions of a pattern, for each desired
station (here 2 or 4 stations), with the initial epoch of measurements, the period of
measurements (supposed the same for the different stations) and the number of
stations considered at the beginming of the file. The pattern is composed of four
mformations

o The station identity.

e The offset (in seconds), which represents the begimning epoch of the first
measurement interval from the initial epoch.

» The number of measurement points during each measurement period.

* The cycle duration, which represents the time interval during which measurements
are collected by the stations.

| stationid [ offiet [ 3 [ 150s |
Table 6.5

Here, the period chosen is 3600 seconds, the number of measurement points is 3, and
the cycle duration is 150 seconds for all stations. The different schedules therefore
change in their offset in order to concentrate measurements at the beginning or the end
of the tracking interval. The patiern is presented in Table 6.5 and the beginning
information in Table 6.6.

| initial epoch (MID) | "3600s | number of stations |
Table 6.6

111, Random noise errors

This error component is introduced in the process in Stations file when real data are
available, or in the Ref Stations file when no real data are avilable. So the additive
noise is either whize or fitted when no real data are available, and necessarily fitted in
the other case.

* The white noise is created with zero mean and constant standard deviations for the
different epochs of the tracking interval, in the Ref Stations file.

o The fitted noise represents a fitting of the residuals coming from the LS treatment
of real data (before running the process and independent of it). When no real data is
available, the Ref Stations file contains fitted means and standard deviations at
successtve epochs, and replace of the lacking Stations file.
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6.1.2. Analysis with dynamic errors

Dynamic error means that the dynamic model is not perfect and contains a limited
modelling of the realistic system. The more precise the dynamic model, the smaller
are the dynamic errors. To represent such errors, two groups of dynamic parameters
are used and spanned in the set-up file.

¢ The number of terms in the geopotential development.

e The solar radiation pressure coefficients.

In the present simulations, for simulations cases realised to observe the effect of
propagation (dynarmnic) noise, the set-up file of the reference trajectory specifies a

more accurate dynamic model than the one of LS and EKF estimations of the
corresponding artificial tracking data.

Nevertheless for all other simulations, where the behaviour of LS and EKF methods is
observed, both set-ups are the same and the dynamic errors come from parameters of
methods which influence the estimations

» The process noise of the EKF representing the unmodeled forces

o The initial state vector and initial guess ervor (initial covariance matrix) for both
methods.

Before running the process, the user introduces the dynamic parameters values in the
Ref_Setup (reference trajectory) and Std_Setup (EKF and LS estimations) files.

L Dynamic model parameters

e FEarth potential development

As presented in Chapter 2, the first and most important force perturbing the orbit is
due to the anisotropy of the Earth and is computed from relation ( 2.12 ).

In the set-ups, the number of geopotential coefficient taken into account may be
introduced. The more coefficient taken, the best accurate is the model. It is thus
interesting to realise simulations with varying number of geopotential coefficients in
the limits given in Table 6.7.

Model parameter Possible value
Potential order 1-35
Table 6.7

* Solar radiation pressure

Two different models may be selected in the set-up file to take into account the solar
radiation pressure in the force computation, from relations ( 2.19 Yto (2.21).
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In the set-up, the two parameters C, and C,, may be changed. It is also possible to

modify the mass of the satellite and the surface (in m?) exposed to Sun, with 8 = 0 or
not. Nevertheless as all these parameters appear in the different relations through the

h S
global form . C, (or — Cy, ), their variations may be reduced to the only variation of
m

Cr(or Cp ). So, in simulations, only these parameters are modified in the range
presented in Table 6.8.

Model parameter Reasonable value
Cp 1.2- 1.6 (min 0 - max 2)
Cy, 0.01-0.1
Table 6.8
1. Parameters of methods

e Initial guess error

The two initial state vector and the initial state variance’ parameters influence the
results of estimations for both methods. The initial variance is composed of the six
position and velocity values in diagonal matrix, and the initial guess error is

composed of errors on the six state vector components whose limit are presented in
Table 6.9.

Model parameter Reasonable values
Initial state variance 106060 - 10000 - 10000 (m)
(standard deviation)® 0.1-0.1-0.1 (m/s)

Initial guess error 1000 - 1000 - 1000 (m)

0.01 - 0.01 - 0.01 (mwv/s)
Table 6.9

Note : The default value is « for the six diagonal elements, and the others by default,
the program Orbit begins its estimation with an infinite uncertainty on the initial state
vector. A null standard deviation would indeed mean that uncertainty on this initial
vector is null, i.e. the LS estimation is no necessary.

¢ Process noise of the EKF

The EKF may accept another parameter, the process noise spectral density matrix. It
can be included in the propagation of the EKF covariance matrix, in the form of an
additive process noise whose statistics is supposed to be known and white Ganssian.

* In the OD, the number of iterations and the different supplemented estimated parameters (ke C,,
Cre, Cp) may also be introduced for LS, while time step value may be introduced for OP.

® One has to chose large values. Indeed, small values would influence the estimators in a Wrong way,
giving them an initial state vector very well known ; the estimation would then be not necessary.
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This white Gaussian force term may be written as I uwmeders = w(¢)with properties of
relation (2.25), and where the covariance functions is defined through the3x 3
diagonal spectral density matrix Q(¢) introduced in the set-up. Here the diagonal
elements are supposed identical and limited as in Table 6.10.

Model parameter Reasonable value
QM (10'1514'1/32)2 to (10'3771/5'2)2
Default value : {107 m/ 32)2
Table 6.10

6.1.3. Simulation plan

As described in the two preceding sub-sections, there are two important group of
parameters that can be spanned : the dynamic and the measurement ones. The
dynamic parameters of the set-up file may be divided into three sub-groups : the
process noise of the EKF, the initial guess and the dynamic model parameters. The
measurement parameters may be divided into four sub-groups : the unmodeled
physical parameters of the model file, the random noise in the stations file, the
number of stations and the scheduling.

The simulations are organised in seven classes a, b, ¢, d, e, f, g around these seven
sub-groups of parameters ; for each class, the selected parameters are represented by a
number (1, 2, 3, 4) as follows

— Process noise a : Low (1) - Standard (2) - High (3)

— Initial guess error b : Null (1) - Standard (2) - Large (3)

— Dynamic model ¢ : Full model (1) - Simplified model (2) - Wrong CR and CRP for
estimators (3) - Wrong SRF model (4)

—~ Error model d : Full (1) - None (2)

— Noise e : White noise (1) - Fitted noise (2)

~ Schedule £ : Middle (1) - Beginning (2) - End (3)

— Station combination g : Four stations (1) - Two stations (2)

1. Simulations

The simulations are thus divided into four main groups :

 Simulations checking that the estimators are unbiased : a(2), b(2), c(1), d(2), f(2),
g(1), for e(1,2), where there is no error model (the seven couples of parameters are
nulls), for white and fitted noise.

* Simulations which characterise the EKF and LS behaviour : ¢(1), d(1), e(2), for
a(1,2,3), b(1,2,3), f(1,2,3) and g(1,2).

* Simulation to analyse the effect of the dynamic model : b(2), d(1), 1(2), g(1), for
a(2,3) and ¢(2,3,4).

* Simulations with real input data : b(2), e(2), g(2) for a(2,3), ¢(1,2) and d(1,2) (the
schedule file being not used).
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Note :

The simulation plan then requires 2 + 36 + 6 + 8 = 52 simulation cases. This number
is reasonable and allows to run the process a number N of times sufficient to reach the
Monte Carlo goals in a feasible time (approximately one week of CPU time).

With the information on the different parameters of the models and set-up files given
before, it is now possible to use tables where the different parameters values and
corresponding index of model and set-up files are presented. These tables are
presented in Amnexe 6, and are constructed to characterise the measurement
parameters with their corresponding model file in the form “Sim_z”, and the dynamic
parameters characteristics with their corresponding set-up in form “Std_yy”. The last
table of Annexe 6 characterises the corresponding parameters level values of the
simulation tables, i.e. the numbers (1), (2),...

6.2. Simulation results

In this part, main simulations, which are detailed in the Annexe 6, are presented. They
have been realised for 50 runs and statistically analysed with a confidence level of
a = 0.05. Furthermore, as minimum and maximum of propagated differences are
used, each of these samples contains 100 realisations. This number of realisations
guarantees the assumptions of the Central Limit Theorem, which is implicitly applied,
and allow computation of mean confidence intervals described in Chapter 5.

The results are presented in paragraph 6.2.3 to 6.2.3 through the evolution’ over two
days of the worst case estimation emors along the normal, radial and tangential
directions (in meters) as a function of the tracking interval (in hours), and one
corresponding global evolution® for both methods.

Nevertheless, before presenting these main results, paragraph 6.2.1 shows the
different information that can be used during a fypical simulation to observe the
correciness and convergence of estimation at each run of the process, and paragraph
6.2.2 details first simulations realised to adjust the error model parameters.

6.2.1. Results of a typical simulation

1. Graphical results

Two graphical representations may be used to observe the accuracy of estimations.
They are the residuals plots, given directly by the program ORBIT [Mon 96], and the
EKF covarlance matrix, which need to be drawn from an output file of the program
KALMAN [Wel 97] containing the covariance matrix evolution.

7 Where solid line represents the EKF evolution and dashed line the LS evolution
® Where solid line represents the mean position error, dotted lines represents the associated confidence
interval and dash-dotted lines represents the 3-sigma error band.
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» The plots of residuals

These plots are obtained when an orbit determination is realised, that is for a reference
LS estimation of real tracking data, and for LS and EKF estimations of corresponding
simulated tracking data. A first comparison of both methods could be realised from
these plots, through the quality of estimation which is represented in these plots of
residuals. Nevertheless no statistical information is available from these plots, and
furthermore there is a striking resemblance between the residuals of the EKF in steady
state and the last iteration of LS algorithm [Fra 98], [Wel 97]. For these two reasons,
they are not used in main simulations, and residual plots for reference estimation with
both single- and multi-stations are here presented. However, in paragraph 6.3.3, these
plots are employed to compare LS and EKF adaptive behaviour

Figure 6.1 shows the residual plots for reference LS estimation of trilateration
measurements with three stations.
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Figure 6.1

For comparison, Figure 6.2 shows the residual plot of a reference LS estimation from
single station measurement, i.e. range, azimuth and elevation. On this plot, the two
angular components also present periodic oscillations, but with a greater noise which
is due to unpredictable atmospheric phenomena, while the range residual evolution
has the same shape as for trilateration. The standard deviation of the range
measurements are supposed to be 2 meters, and those of azimuth and elevation
measurements are 20 arc-seconds.
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Figure 6.2

e The evolution of the EKF covariance matrix with time

Another time evolution can be drawn from the EKF covariance matrix. It is computed
with EXCEL®© from the EKF SV.KF output of KALMAN, and represent the
evolution of diagonal position elements. It thus gives a first visual representation of
the EKF estimation error over time. The conclusion of such representation is that the
EKF error decrease quickly, so the estimator converges.

Nevertheless, these figures do not provide any statistical information as they come
from a single run, and cannot be drawn for LS as it would involve to propagate the
estimated initial covariance matrix. So these figures are only used to be compared
with statistical results in paragraph 6.3.

Figure 6.3 shows this evolution in the case of the simulation case 050052, for the
three Cartesian positions.
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94




11 Data resunits

To examine a simulation run it is also necessary to consider data files, where
quantitative information is available. Among the different outputs of programs
ORBIT [Mon 96] and KALMAN [Wel 97], two files are more interesting : the
summary files of LS estimations for reference and simulated trajectory, which
summarise the estimation and is produced by ORBIT, and the LSQ.OUT and
EKF.OUT files, which contain all information on estimation and propagation.

Nevertheless these files do not yield any statistical result, and the summary file cannot
be obtained for EKF. So an example of a LS summary is solely given in Annexe 5.

6.2.2. Error model effects

Before running main simulations, a better “feeling” of the effects of error model
components is needed. Simulations thus have been realised (with 10 runs) to test the
corresponding parameters effect and obtain a reasonable error model file. Results are
drawn through mean and standard deviation of the differences in satellite axes at last
epoch (48hours) in different tables.

The 1mtial stdev was set to (1000Om,lOOOOm,IOOOOm,O.lm/ 5,0.1m /[ 5,01m / S), the

process noise to ((IO_Qm/ Y (107 m/ ), (10° m/ 52)2), biases were estimated for

Bergen and Rome and set to zero for Betzdorf and Seville, and additive white noise of
0.8 m for mean and 0.3m for stdev was used.

o  No error model

With only white noise, the values of for the three local components are given in Table
6.11, and correspond to the graphical results given in paragraph 6.2.4.

Mean | Stdev LS radial / tangential / nermal EKF radial / tangential / normal
(m) (m) (m) (m)
0 0 02+23723£68/16x45 03+21/25+£78/1.8+5.1
Table 6.11

» Station calibration constant term (m)

With the constant term C,, the differences are given in Table 6.12. For a standard
deviation greater than 10m, both estimations diverge and means become generally
larger than 100m. So this term must be handled with care and set to a reasonable value
in the complete model.

Mean | Stdev LS radial / tangential / normal EKF radial / tangential / normal
m | (m (m) (m)
0 1 04 £65/5+123/2+82 14287 /65142 /32469
0 10 05+£9.6/7+508/35+13.5 0.7£113/102+£531/51+173
0 100 852 117/465+290/260 + 120 96+ 32 /520+360/235+170
1 10 1874/ 641515/ 21406 23£83/79+679 /314236
Table 6.12
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o Spacecraft delays terms

Linear term (m/hour )

A more important term is the linear part of the spacecraft delay effect. Table 6.13
shows that even for small values of the standard deviation, the tangential mean is
relatively large and the three components would diverge for larger input values.

Mean | Stdev LS radial / tangential / nermal EKF radial / tangential / normal
{m) (m) (m) (m)

0 0.1 0.8+22/93+£139 /2468 15231/ 754127/ 41£92

0 0.5 15261/ 52+168 / 8.6+26.2 32458/ 68+213 /124325

Table 6.13

Periodic term ( m )

The periodic term of spacecraft delay effect is presented in Table 6.14. It is also a very
important term, as estimations diverge for relatively small values of the input standard
deviation (10 meters).

Mean | Stdev LS radial / tangential / normal EKF radial / tangential / normat
@ | (m (m) (m)
0 0.5 17283 /5x£269/ 5+15.1 19+126 /72197 /7 42+122
0 1 5+143 /30£751/23+£398 78+125/ 424944 /3591512
0 10 28 +125.6/1260 %369/ 950 =197 89 £ 155/1670+263 /780 +291
Table 6.14
Phase ( rad )

The phase term of the spacecraft delay effect does not have a great importance as its
corresponding errors stay under 5m for both methods as shown on Table 6.15, for an
amplitude of Om + 0.1m and Om + 0.2m for both linear and periodic terms

Mean | Stdev LS radial / tangentizl / normal EKF radial / tangential / rormal
() {m) () (m)
1.57 1 0.5+69/ 3+178/ 07+4.6 07+90/38x221/09+35

Table 6.15

* Jonospheric terms

The 1onospheric refraction is modelled here through a daily/night term and a phase
term. The first two have similar roles and their influence is presented in Table 6.16,
while the last term has a lower influence (similarly to the phase term of the spacecraft
delay effect) and is presented in Table 6.17.

Ionospheric daily and night term

This term shows also a great sensitivity to its input parameters, as well for daily as for
the might. The daily term induces divergence from a standard deviation greater than 5

meters, while the night term gives divergence for a mean input term greater than 0.1
meters.

Mean Stdev 1.8 radial / tangential / normal EKF radial / tangential / normal
(m) (m) (m) (m)
0.8 0.6 11+£32/3+£119/18%5 08+£19/4%167/29+91
0.08 0.06
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1 0.6 20+£43 /591256 /41%20 0.9+63/ 47173/ 81102
0.08 0.06

i 10 10.2+233/190+£53 /80,952 26+33.2 / 485169 / 1575+ 36.1
0.08 0.06

1 0.6 895+43.2/240£96.7/88.9£29.1 | 78+31.9/ 184+597 / 920+31.1
0.1 0.06
0.8 0.6 19432 /67£133 /10,18 22453/ 87+£103/89+172
0.08 0.5

Table 6.16
Ionospheric phase

Like the spacecraft delay phase, the ionospheric phase term has a relatively small

impact on estimation errors as can be seen on Table 6.17, for 0.8m * 0.06m and
0.08m = 0.006m of daily and night terms.

Mean | Stdev LS radial / tangential / normal EKF radial / tangential / normal
(m) (m) (m) (m)
1.57 0.26 03226/25£51/05+12 10225 /33549 /02+%1.7

Table 6.17
o Complete error model

The complete error model of Table 6.18% which is used for main simulations, has

been chosen from the physical results of [Wau 95] and adapted from the previous
considerations.

Error Model parameters Mean (m) Standard deviation (m)
G(m_stacal,s_stacal) 0.0m 20m
G{(mO0_ delay,s0_delay) 0.0m 0.1m
G(ml_delay, sl delay) 0.0m 02m
G(m2_delay,s2_delay) 1.57 rad 1.0 rad
G(ml_ion,sl_ion) 0.53m 0.37m
G(m2_ion,s2_ion) 0.053m 0.037 m
G(m3_ion,s3 ion) 1.57 rad 0.26 rad

Table 6.18

Table 6.19 shows the corresponding values of differences for both methods. They
present the same order of mean error (% 1m for both radial and normal components
and 10m for tangential component) when the complete error model is introduced.

LS radial / tangeatial / normal
(m)
15221/ 834256/ 21+£64

EXF radial / tangential / normal
' (m)
11228/ 92£266/3.8+£57

Table 6.19

¥ Values for the main station, Betzdorf,
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6.2.3. Normality results

Before the results of the different simulation cases, the normality test results are
presented. Indeed this test, which has been realised by the program ANALYSIS of the
post process, was not able to conclude to the normality of the different populations at
the level 0.05. It means that we don’t know if populations are normal, so we only can
say that normality may not be assumed for a lot of cases, and that in general normality
may not be used for statistical analysis.

Table 6.20 and Table 6.21 show results for 7 different simulation cases whose index
corresponds to the label xxxyyz resented in Chapter 4 and detailed in Annexe A7 for
both position and velocity components. A cross means that the Kolmogorov-Smirnov
test has concluded to normality for the corresponding simmlations, for the other
simulation no conclusion can be drawn.

EKF radial tangential normal radial tangential normal
position position position velocity velacity velocity
050012 X X X
050043 X X
050074 X X
050105 X X X
050196 X
050216 X X
050257 X X
Table 6.20
18 radial tangential normal radial tangential normal
position position position velocity velocity velocity
050012 X X
050043 X X
050074 X X X
050105 X X
050196 X X
050216 X X
050257 X X
Table 6.21

From such tables (which may be drawn similarly for all cases), it is clear that
normality may not be assumed in general. So statistical analysis is done without this
assumption.

In order to investigate normality of Keplerian element differences, a Kolmogorov test
has been done as well. The results are similar and may be seen on Figure 6.4 and
Figure 6.5, where histograms of the semi-major axis a differences have been produced
by EXCEL® for simulation cases 050082 and 050216. The would not allow to
conclude, but similar histograms can be obtained for the cases, and tables similar to
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Cartesian ones can also be drawn, they would show the same kind of results. So
normality of Keplerian elements, as well as for Cartesian elements, cannot be assumed
in the simulation results.
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These histograms are not generally used in this work, because of their varying shape
from one case to another. Furthermore, a single diagram could induce a conclusion
which is probably not true in general.

6.2.4. Bias testing

To check that both estimators are unbiased, two simulations have been realised with
no error model for both white and fitted Gaussian noise, with the same dynamic
model for the reference trajectory and the LS and EKF estimations, with a process
noise set to (10~ m/ s*)? in each direction and a standard initial guess and covariance
errors'®.

' See Annexe A.6.5 where the different values of initial errors, schedule parameters, dynamic model
parameters are presented.
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The results, on Figure 6.6 to Figure 6.8, confirm that LS and EKF implementations
are unbiased estimators, as their estimation means are very near to zero with a 3-
sigma bands of some meters, when only white or fitted measurement noise is
introduced in the reference tracking data.

1. Simulation with white noise (050000)

For this simulation, the tangential component evolution has been chosen and
presented on Figure 6.6, where its mean (solid line) and confidence interval (dotted
lines) evolution with the 3-sigma limits (dash-dotted lines) versus the eight tracking
interval epochs. On this figure, the mean stays under 1 m for both methods with a 3-
sigma lower than 3 m. This represents a very good estimation error.
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Figure 6.6

The worst case evolution versus the same eight epochs, on Figure 6.7, confirms this
conclusion. Additionally, it shows a very close agreement of normal component
evolution of both methods, while the two other components have a random behaviour
which is due a great sensitivity to the additive noise, as estimation errors are very
small.
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1. Simulation with fitted noise (050001)

In this case, the mean error also stays under 1m with a 3-sigma limit lower than 2 m,
so this estimation is of the same order as with white noise. The evolution of the worst
case variable is presented on Figure 6.8 and gives the same conclusion. It also shows
that the behaviour of the three components is less erratic, as the additive noise is fitted
on residuals.
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6.2.5. EKF and LS behaviour

To characterise the EKF and LS behaviours, 36 simulations have been realised. They
are composed of simulations for two and four stations, with different input process
noises, for different initial guess errors, and with schedules providing simulated
measurement distributed in the centre, at the beginning, and at the end of the tracking
mnterval of two days. In these simulations, the dynamic model is the same for both
estimations and for the reference trajectory construction.

As it 1s not possible to present here all results, the most important cases are presented,
and a first general conclusion can be drawn from this second group of simulations :
both methods present similar behaviours in terms of time evolution, and are less
sensitive to initial errors, process noise and schedule effect when trilateration is used
than with single-station tracking. Nevertheless, simulations realised cannot allow to
conclude on the superiority of one or the other method.

In this paragraph, the three groups of simulations testing schedule, initial error and
process noise effects are presented through the usual worst case and global form
versus the eight fracking interval epochs, for some simulations cases, the results of the
others simulations yielding the same conclusions. These effects are presented
separately to correctly analyse each effect and to avoid influences which could cancel
each other.

1. Schedule effect

The schedule effect is presented throughout simulations 050012, 050013 and 050014
where the three types of schedule have been introduced, and where the initial error is

standard " and the process noise is(10™"m/s*)?in each direction. From the different
following figures, both methods seem to be less sensitive to a schedule effect with
trilateration than with single-station tracking, the other simulations whose set-up come
from 02 to 09 giving the same kind of results.

Furthermore, an important conclusion comes up from this first group of simulations
and is valid in general for the different simulations : both estimators converge in a
relatively short time, i.e. less than 24 hours to have a 3-sigma band lower than 50m
for radial propagated component and lower than 200m for normal and tangential
propagated components.
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* Middle schedule (050022)

For a scheduling which gives measurements equally distributed along the tracking
interval, the normal component evolution of both estimations errors (Figure 6.9)
presents a very close agreement between the two estimation methods.
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The corresponding worst case evolution of normal, radial and tangential components

presented on Figure 6.10 indicates that this similarity may be extended to the three
components.
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¢ Beginning schedule (050023)

For a schedule which concentrates the tracking data at the beginning of the interval,
the resulting worst case error evolution is similar to the normal scheduling one, as
shown on Figure 6.11.
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Figure 6.11
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e End schedule (050024}

Similarly, for an end interval scheduling, the worst case error evolution, on Figure
6.12, for both estimations errors has the same shape and presents a similar
convergence.

m
LT
1200 Normal 360 Radial ! 1000 Tangenﬁal
1000 140 - .
. T 120 | BOD -,
00 L
LSER 100 I~ 800 |
§00 | 80 |
400 L
400 1 jg T
200 | 20 A 200 1
0 0 : ; | N : } 0 -
1 2 3 4 5 & 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

tracking intervals
Figure 6.12

An mmportant general conclusion can here be drawn from these three simulations :
trilateration seems to render both methods less sensitive to schedule effects.

1. Initial guess effect

The imtial guess error and covariance error effects are presented throughout
simulations 050012, 050042, and 050072 where their values are respectively standard,
null and large', and where the schedule is standard and the process mnoise is

(107 m/ s*)* in each direction.

» Standard initial error (050012)

For a standard mmitial error, the tangential evolution of both methods is shown in
Figure 6.13, and the corresponding worst case in Figure 6.14. Both methods have a
similar behaviour. Furthermore, Table 6.22 shows the last epoch mean + standard
deviation, confidence limit and worst case for both methods and for the radial
component, in the case of the three simulations presented here.
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* Null initial ervor (050042)

For a null initial error, the worst case becomes better at the beginning of the tracking
interval than in the standard case, as shown in Figure 6.15, with a similar decrease for
both methods and for the three components. However, the final estimations are of the
same order of magnitude.
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o Large initial error (050072)

For a large initial guess error, all the rest being the same, the evolution is nearly the
same as shown on Figure 6.16. Thus we conclude from these three simulations that
trilateration seems to render both methods less sensitive to initial parameters, as well
as to schedule effect.
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Table 6.22, where statistics of the last epoch differences for normal, radial and
tangential components are drawn, yields to the conclusion that both methods are
similar, with a little advantage for LS, and that the initial guess has little influence on
the estimation after 48 hours of tracking data, as the trilateration system gives very
precise measurements which allows both estimators to converge very quickly.
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EKF (m) Normal Radial Worst Tangential
Mean + Stdev | Worst case | Mean + Stdev| case | Mean + Stdev | Worst case
050012 0.06 £ 26.63 89.81 048 £ 3.64 12.76 8.38 £79.64 260.23
050042 0.03 + 28.28 95.38 0.40+£3.61 12.56 578 £70.24 231.15
050072 0.10+24.53 82.73 0.22 £3.56 12.23 495+ 79.78 268.88
LS (m) Noermal Radial Worst Tangential
Mean * Stdev | Worst case | Mean + Stdev case | Mean + Stdev | Worst case
630012 0.98 £22.64 76.49 0.56 £ 3.29 11.67 12.56 = 88.32 285.86
450042 001 £21.11 68.32 0.34 £ 2.87 10.04 5.94 £ 70.68 232.85
050072 0.02 £20.78 70.43 0.29 £ 2.38 9.02 7.85+85.72 265.57
Table 6.22
111i.  Process noise effect

To show the process noise effect, simulations 050042, 050052 and 050062 are
examined, with a null initial guess error, and a middle scheduling of the tracking data

» Normal process noise (050042)

This simulation has a process noise of (10~ m /s*)* in each direction, and is presented
through its radial evolution in Figure 6.17, the worst case being in Figure 6.135.
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» High process noise (050052)

In this case, the process noise has been set to(107m/s%)?, ie a high level. The

resulting worst case evolution of Figure 6.18 presents the same characteristics as the
preceding one in Figure 6.15.
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® Low process noise (050062)

For a low process noise of (107'm/s*)*, the worst case shown on Figure 6.19 again

presents the same behaviour, the EKF being not better than the LS and even a little
worse.
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The differences between these three simulations are not very significant, so the
conclusion is again that trilateration renders the estimation less sensitive to the
process noise variations, as for initial error and scheduling effects, and thus places the
two methods on the same level of accuracy.

In view of the results presented in the paragraphs 6.2.4 and 6.2.5, it seems evident that
both methods have a similar behaviour and react similarly to the different effects
introduced in the simulator, trilateration used with four stations probably reducing
these effects. Furthermore, both estimators mean errors are very small after 3 hours of
tracking data, this effect being again due to the trilateration measurements.

6.2.6. Dynamic model effect

To investigate further the behaviour of both methods, simulations with dynamic
model errors and unmodeled accelerations have been realised. They are presented
through three simulations. The first one tests the effect of the number of gravity
potential development terms included, the second one the C,and C », Values effect,

and the last one the dynamic noise effect.

The first two simulations use the same dynamic model for both the reference orbit
propagation and the estimators, while the last group uses a different dynamic model
for reference trajectory and both estimators to simulate an unmodeled force term in
the dynamic model of both LS and EKF. Furthermore, these simulations have been
realised with real trilateration data, on the contrary of all preceding ones.

e Simplified dynamic model (050196)

This first simulation where the dynamic parameters of both reference and estimators
model are the same but have been changed from the full model' is exposed through
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simulation 050196", where the initial guess error is standard and the process noise has
been set to (107 m / s%)2.

This simulation has 3 terms in the geopotential part, on input of both reference and
estimators set-ups, the rest of the set-ups being the same as before.

On Figure 6.20 the resulting normal error component is drawn, and yield to the
conclusion that both estimators reacts similarly to a worse dynamic model, with a
little preference for LS which converges more directly and with 3-sigma slightly
smaller at the last epoch.
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Nevertheless, Figure 6.21, where the three worst case errors have been drawn, shows
that this conclusion cannot be generalised to the three components, as both tangential
evolition present a very close agreement.
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¢ Wrong Cpand Cy, values (050206)

WhenC, and C, input parameters are not correct, i.e. arbitrarily set to 1.3 and 0.03

instead of the estimated values 1.2715 and 0.0364, the worst case evolution (Figure
6.22), gives a higher accuracy for the LS method for both normal and radial
components, while the tangential one is in a very close agreement.

" This simulation results have been described in more details in the article [Hal 98].
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Such simulations nevertheless may not yield the conclusion than one method is better,
as differences are not significantly enough.
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» Wrong estimator model for C, and C x, (030216)

These simulations take into account an imperfect modelling of the trajectory in the
estimation softwares.

To this end, the reference trajectory was generated with an improved version of the
ORBIT program [Kri 98], where the propagator uses the supplementary modelling of
the solar radiation force on the reflectors of the satellites. By contrast, this dynamic
behaviour is not modelled by the usual LS and EKF estimators, which only have the
capability to estimate inertial fixed components of the solar pressure. Picture 6.1
shows the four parts of the satellite which are modelled in this new version of the
ORBIT propagator.

Solar Panel Solar Panel

Picture 6.1

Even with an improved propagator for the reference trajectory, which add a dynamic
noise for the tracking data estimation, both methods have a similar behaviour, as
shown on Figure 6.23 for normal component evolution of this simulation, where a an

initial error of (10000m,10000m,10000m,0.1m / 5,0.1m / 5,01m / s) has been set with a
middle schedule, a process noise of (107 m/s*)%.
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On Figure 6.24, the corresponding worst case evolution however shows that the LS
presents a slight advantage over the EKF. Furthermore, on Table 6.23 the
corresponding normal, radial and tangential mean + standard deviations, together with
the worst case are drawn for the three simulations and for both methods at the last
epoch of estimation.
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EKF Nermal Radial Worst Tangential
Mean + Stdev | Worst case | Mean & Stdev| case |Mean + Stdev| Worst case
050196 020+ 26.91 110.60 1232436 17.52 19.890+72.151 273.20
050206 0.06 +44.27 149.57 218+ 1141 40.71  |39.30£117.89F 389.03
050216 0.11+35.33 131.26 190+6.42 2523 | 2781+£7939 | 29861
LS Normal Radial Worst Tangential
Mean * Stdev | Worst case | Mean + Stdev case | Mean + Stdev| Worst case
050196 0.15 £ 14.78 102.98 198+5.12 16.50 18.70£75.61 275.56
050206 0.07 £43.69 147.36 2.50+10.17 36.68 |27.07x£93.68| 33969
050216 0.08 £32.74 130.13 1.57£5.98 2357 122678532 28270
Table 6.23
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6.2.7. Overview of results

The eight last simulations of the Simulation Plan detailed in Annexe A7 were
expected to be the only ones realised with real trilateration data. However, as such
measurements were available from December 1997 at the SES company, previous
simulations (paragraph 6.2.6) have been realised with them. So these expected
supplementary simulations with real data have already been presented here.

Furthermore, all the results presented in this part 6.2 are commented in Chapter 7
throughout different conclusions and iterpretations. Nevertheless, to improve our
understanding of the main result, i.e. the similar behaviour of both estimators with
few influence of the different parameters, further investigations have been realised
and are detailed in the following paragraph 6.3.

6.3. Supplementary investigations

The goal of these supplementary investigations is to analyse some theoretical
considerations to explain the similar behaviour of both methods.

The EKF is indeed theoretically better than the LS when the measurements errors are
smaller, here with trilateration, because of the relative increase of the dynamic errors
which cannot be treated by the LS. However, the precedent results show that both
methods are similar, so it is necessary to understand the reason of this difference
between theory and practice.

6.3.1. Variation of the process noise level

A first investigation has been done to observe the effect of different process noise
levels, from (107 m/s)*10 (10" m/ s*)?, instead of the three levels (107m/s?)?,

(107m/5*)* and (10™"m/s*)?set in the simulations. On Figure 6.25, mean at the
last epoch and for the three radial, normal and tangential components is presented
versus the process noise level. It can be seen, that there is not really an optimum

value. Nevertheless, the process noise level must be higher than(107m/s?)? and
lower than (10™"°m / 5*)? to have a good behaviour of the EKF.
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It thus shows that the EKF is less sensitive to process noise levels than in single-
stations measurements [Wel 97].

Furthermore, there is a trade of between the speed of convergence and the accuracy of
the estimation in steady state : the greater the input process noise, the less accurate are

the estimations. So if one level has to be set, the values (10*m/s?)? is probably the
most appropriate [Hal 98].

6.3.2. Non linearity response

To investigate the reason of the similar behaviour when trilateration is used, non-
linearity treatments of both measurement and dynamic models are here explored in
two ways.

First, the comparison of the steady state EKF estimation for both one and seven
iterations of LS estimations are shown on Figure 6.26, for radial errors (solid lines for
LS and dashed for EKF). The /inear evolution means that the LS only realises one
linearisation around its reference trajectory, while the non linear evolution represents
the estimation after 7 iterations. The LS treats non-linearity very well. Indeed both
linear and non linear final errors (after 48 hours of tracking data) have an order of
magnitude of 5 meters, the non-linear one being slightly better than the EKF.
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Figure 6.26

Secondly, the longitude error is presented in Figure 6.27, for different number of
iterations of the LS algorithm. This figure shows that for a mimber higher than one,
the LS error is of the same order of magnitude. For comparison, the EKF longitude
error has an order of magnitude of 5.00E-05°. So the LS algorithm treats correctly
. mon-linearities from the second iteration, which confirms the previous results.

Thus for one iteration, LS is worse than EKF, but for 2 and more iterations it is
comparable in its estimation error, and even slightly better. So, this non-linearity cope
could be a first explanation of the previous simulation results.
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6.3.3. Adaptive behaviour of the EKF

To observe the EKF behaviour comparatively with the LS one, plots of residuals,
coming from one typical simulation realised with three stations real data, are used in
this paragraph. As shown on Figure 6.35 and Figure 6.29 for respectively LS and
EKF, the residuals of EKF are smoother comparatively to the reference residual
shown on Figure 6.37, these last residuals being the ideal ones computed with a very
small initial covariance matrix when estimating reference trajectory from real
trilateration tracking data.
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This is probably an other explanation of the similarity between both methods
observed during the various simulations of paragraph 6.3.
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This flatness of the EKF residuals shows that the adaptive behaviour of the EKF
forces 1t to follows the systematic measurements errors introduced in the simulation

by absorbing them in the position vector.
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Chapter 7.

Conclusions

The result of this Diploma Thesis is the development of 2 Monte Carlo simulator and
post processor software for the comparison between the continuous-discrete extended
Kalman Filter and the Least Squares estimator, and its application to tracking data
obtained via a trilateration system. The mathematical equivalence of both LS and EKF
for the linearised formulation without propagation noise has been recalled in Chapter
3. The dedicated simulator and a statistical post processor treatment are exposed in
Chapter 4 and Chapter 5, while the simulation results are detailed in Chapter 6.

The comparison between both algorithms is based the comparison of their estimations
relative to an artificial reference trajectory, and on the consideration of various
observation and dynamic parameters described in Chapter 2, together with
measurement and propagation noises. The following factors have been considered :

¢ Observation model

— A white or residual fitted random noise

— An error model containing ionospheric refraction, spacecraft delay and
station calibrations effects

— The number of stations included in the trilateration tracking system

~ The measurements scheduling

e Dynamic model

— The number of terms in the geopotential development
— The solar radiation pressure coefficients
— The unmodeled forces

e Parameters of estumation methods

— The input process noise of the Kalman Filter

— The initial state variance and guess error
In addition, further theoretical investigations complete the comparison of both
implemented methods :

— The mpact of the process noise level on the EKF estimations
— The non-linearity treatment of the estimators
— The adaptive behaviour of the EKF algorithm
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Simulations have shown that the estimation errors of both iterated Least Squares and
extended Kalman Filter algorithms have a similar behaviour and order of magnitude.
Stated more precisely, from the simulation performed, it is not possible to conclude
from the statistics alone that one method surpasses the other.

Nevertheless, this conclusion is drawn from a qualitative interpretation of the results
more than a quantitative one. Indeed, as populations could not be supposed normal
from the samples considered, it was difficult to find a decisive criterion of
compatison, such as the probability of the error at an epoch being lower than a
constant value.

Moreover, trilateration measurements seem to render both estimators less sensitive to
the observation, dynamic and algorithmic input parameters, since the trilateration is
very accurate and allows both estimator to converge in a few hours.

Some explanations and interpretations can be put forward about this similarity of
behaviour and decrease of sensitivity.

* Previous work [Wel 97] had concluded that both estimators were equivalent for
single-station measurements, more perturbed than trilateration ones. Nevertheless,
these simulations were performed with a reference trajectory imcluding dynamic
process noise, which is unrealistic for geostationnary orbits as all forces acting on the
spacecraft can be modelled with a fairly high level of accuracy. In the present work,
both methods have been compared to an artificial reference trajectory constructed with
a deterministic propagator, so without process noise. Thus the present construction
has probably given an advantage to the LS estimator, which can explain why EKF
superiority to LS has not been shown here, therefore leading to similar conclusion as
[Wel 97]. In short, the EKF seems to be more accurate with trilateration than with
single-station tracking.

Furthermore similar simulations with a deterministic reference trajectory have been
realised for single-stations [Hal 98] and have shown that the LS is better suited in that
case, which confirms the previous consideration.

o The EKF has an adaptive behaviour by nature, as it relinearises the trajectory as it
processes a new measurement, at each prediction step. So it should follow the
dynamic evolution more accurately than the LS ; but on the other hand, systematic
and correlated measurements errors are reflected in the estimations. So, the decrease
of measurement error due to the trilateration system has made the EKF more sensitive
to these systematic and correlated errors introduced in the simulator. The EKF thus
includes them in its estimations, which decreases its sensitivity to dynamic variation
and its precision. This effect can be observed on the EKF plots of residuals where
errors patterns observed in the LS and the reference ones are washed out.

Further investigations to understand these two effects are possible.

* A modified version of the Kalman implementation which does not update the
reference trajectory (i.e. the non-extended Kalman Filter) could be used with an initial
trajectory close to the real one to avoid divergence. In principle, this would allow to
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observe the behaviour of non-extended KF and its processing of measurement noise to
determine which fraction of the EKF estimation is due to absorption of the systematic
and correlated errors.

* The propagation noise of these simulations is probably too small to observe the
Kalman adaptive behaviour to dynamic variations. To increase this noise, both
estimators could be applied to ionic propulsion manoeuvres of several hours with a
random effect on its corresponding acceleration term in the dynamic model. In this
case the EKF should be better suited than the LS to adapt its estimation of the
trajectory, if the spectral density matrix is increased for the duration of the manoeuvre
as it would then become more receptive to the latest measurements.

This work has thus principally shown that the EKF offers an alternative to the usual
LS algorithm implementation to estimate the position of a geostationnary satellite,
when a trilateration tracking system is used to collect measurement data. The EKF
could thus be applied to systems for a truly real time orbit determination, ie. if
instantaneous spacecraft position needs to be broadeast to user terminals.
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Annexes.

A.1. Hierarchical design of the simulator.

A.1.1. Data structures of the new F90 programs

» (General parameters for the different programs

INTEGER, PARAMETER :: MAX_STATIONS=10 ! maximum number of tracking stations
INTEGER, PARAMETER :: MAX EPHEM =3000 ! maximum number of ephemeris

* GEOS-CX record structure, define in the GEOSLIB package.

TYPE S _OBSERVATION

INTEGER : SATID ! satellite ID

INTEGER i TYPE ! measurement type (23,73)
INTEGER : TIME_RECEIVE ! ex: GRT=0 column 10
INTEGER i TIME_SYSTEM 'ex: UTC=3 column 11
REAT*§ i MID ! Modif. Juhian Date UTC
INTEGER i STATID ! Station number

LOGICAL i APPLY IONOS_REFR ! Ionospheric refraction
LOGICAL b APPLY TROP_REFR ! Troposph. refraction flag
LOGICAL i MET DATA FLAG ! Flag for metereol.data
REAL*S : PRESSURE ! Surface pressure [hP}

REAL*8 : TEMPERATURE ! Temperature [K]

REAL*8 B HUMIDITY ! Rel. humidity [%]

LOGICAL : TRP DEL FLAG ! TRUE if correct transponder delay
INTEGER :: SPEED _LIGHT ! speed of light specif.
INTEGER :: AMBIGUITY ! Range ambiguity indicator ex:3
INTEGER i NVAL ! # measurement values
REAL*8 " VAL(2) ! measurement value(s)
REAL*8 5 STD(2) ! standard deviation of value(s)
CHARACTER*30 COMMENT ! extension 120->150 bytes

END TYPE S_OBSERVATION

* Structure containing epochs, first and second derivatives of the spline cubic
interpolation, used by GENEPH and DIFFERENCE, and define in the SKSPEC
package.

TYPE S_EPHEM

INTEGER : N ! Number of data
REAL*§ :: MID(MAX EFHEM) ! MID epochs
REAL*E w NS(MAX EPHEM,6) ! Non-singular elints
REAL*S i NSD(MAX_EPHEM,6) ! spline 2nd derivatives

END TYPE S_EPHEM
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* New structure containing state vector and corresponding epochs, used by SPLITS,
GENEPH and EXTRACT in INTERPOL.

TYPE S_EPHEM POINT

REAL*B : MID(MAX EPHEM)

REAL*R :: Y(MAX EPHEM.,6) ! Interpolated state vector
END TYPE S_EPHEM_POINT
s Structure define in TRACKLIB.

TYPE S _STATION

INTEGER i D ! ID of station
CHARACTER*7 u DATA_TYPE ! Range or Azimuth-Elevation
REAL*3 i BIAS_MN(7) ! Mean of bias

REAL*S n BIAS SG(7) ! Stdev og bias

INTEGER :: N_ERR .

TYPE (S_ERR_TYPE) = ERR(MAX DATA) ! interpol. errors

INTEGER " N_RES

TYPE (S_RES_TYPE) = RES(MAX DATA) ! residuals

ENDTYPE S _STATION

e Structure used in the TRACK S0, and define in TRACKLIB.

TYPE  S_TRACKING

REATL*8 i TIMESTEP

REAL*8 z MIN_MID

REAL*8 i MAX MID

INTEGER i N_STATIONS

TYPE (S_STATION) n STAT(MAX_ STATIONS)

END TYPE S_TRACKING

o New structure of TRACK_S0.

TYPE S_SCHEDULE

INTEGER ;: N

REAL*8 : MID(MAX_EPHEM)
INTEGER : STATID(MAX_EPHEM)
INTEGER : TYPE(MAX_EPHEM)

END TYPE S_SCHEDULE

» New structure of TRACK,_ S0

TYPE S_SCHEDULE_INFQ

INTEGER o NSTATION

REAL*R n PERIOD

INTEGER :: STATID(MAX_STATIONS)

REAL*8 i OFFSET(MAX_STATIONS)

INTEGER 5 NSAMPLE(MAX STATIONS)

REAL¥*S n CYCLE_DURATION(MAX_ STATIONS)

END TYPE S_SCHEDULE_INFO
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A.1.2. Procedure, programs, subroutines specifications

In this paragraph the global process, its three STAGE A, B and C and their different
programs are presented.

t+********************************************************************************

! MCSIM.COM

!
!
!
!
!
!
!
!
!
!
!
1
!
!
!
1
I
!
1
!
i
!
!

The global process is based on the three main stages A,B and C. Their logic is described here,
and corresponds to the three “running phases™ described in the introduction.

Logic :

1. Stage A When real trilateration tracking data are available, the process uses it to
create a reference ephemeris file containing 2 dense LS Fit of the real data. When no
real Data are available, it uses an initial reference state vector and propagates it to
form the Dense reference file. The programs involved in this part are READER and
ORBIT. The process uses the dense reference file to create an interpolation table
containing the second derivatives of the spline cubic interpolation functions of these
dense pomts. The program involved in this part is INTERPOL. This beginning part
also create a file containing error free simulated tracking data with the real tracking
data when they exist, or with a reference station and a schedule file in the other case.
The programs involved in this part are TRACK_S0 and TRACK_S1 (this last one is
used when there is real data).

2. Stage B The process then uses the artificial error free tracking data and an error
model to create a simulated tracking file. The program involved in this part is
TRACK_82.This file is treated by the LS and the EKF methods to create estimation
files versus time. The programs involved in this part are SPLITS, ORBIT (second
application) and KAT MAN.

3. Stage_C The estimation times are used to construct two reference interpolated
files with the interpolation table. The process finally computes the differences
between the corresponding estimations and interpolated files. The two program
involved in this part are DIFFERENCE and SELECT.
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1
!
1
I
!
!
!

STAGE_A

Logic : This part of the process nm five programs -

- READER first transform the reference set-up REF_SETUP into the appropriate one
ORBIT_SETUP for the first application of ORBIT, which produces the dense reference
ephemeris REF.OUT , the error free simulated tracking data file STAGE2 GEOSCX?2 and
the reference ephemeris residual data file ORBIT_RESIDUAIL FILE '

- The program INTERPOL builds interpolation table TABLE with this dense reference file.

- When no real data are available, TRACK_S0 reads the STAGE2_GEOSCX_2, the file
SCHEDULE and a REFERENCE _STATION_FILE to produce the STAGE2_GEOSCX
and the missing STATIONS_FILE. Due to the lack of ORBIT RESIDUAL FILE,
TRACK_S! is not used.

- When real data are available, the program TRACK S0 also only reads the
STAGE2_GEOSCX_2 and produces the STAGE2_GEOSCX. The program TRACK_S1
reads the ORBIT_RESIDUAL_FILE to produce the STATIONS_FILE needed in
TRACK 82

*********************************************************************************

! When real data are available.
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! PROGRAM READER.F90

I

!' Purpose : To have a correct set-up in the first application of ORBIT, it reads the reference set-up and
makes a new one containing the same information except the OD part which is not
necessary when no real tracking data are available.

Input file : REF.SETUP  Output file : ORBIT.SETUP

!
!
!
!
! JPh. Halain 31/08/97
|

PROGRAM READER

CONTAINS
f+
! GET_WORD

1

! Returns first word (contiguous non-blank characters) of input line, starting search at specified column.
! Stops on error.

!' P. Francken 16/12/93, Modified arguments list and logic (COL; N now output) on 24/02/95

!

SUBROUTINE GET_WORD( LINE, COL, FNAME, N, WORD )

! ARGUMENTS
CHARACTER*132 , INTENT(IN) :: LINE ! Data line
INTEGER , INTENT(INOUT) = COL I Start column
CHARACTER*(*) , INTENT(IN) :: FNAME ! File name
INTEGER , INTENT(OUT) G N | Word length
CHARACTER*(*) , INTENT(OUT) - WORD | Word

I+

| GET_LINE

!
! Reads data file, skipping blank lines and comment lines marked by a percent (%) sign, and returns
! either the next data line. Stops on error.

! P. Francken 16/12/93

|

SUBROUTINE GET_LINE( LU, FNAME, LINE, EOF )

! ARGUMENTS
INTEGER , INTENT(IN) w LU ! Logical unit
CHARACTER*(¥) . INTENT(IN) = FNAME ! File name
CHARACTER*132 , INTENT(OUT) : LINE ! Data line
LOGICAL , INTENT(OUT) = EOF I End of file flag
!+****************************************** Heakdeokskkok w5 ke e o e ofe ke ok sl ofe e sk e ke ke

! PROGRAM ORBIT.ADA (first use)

!

! Purpose : Propagates the initial reference state vector given in the setup_file to form a dense

! reference ephemeris when no real data are available, and produces the Stage2 Geoscx 2

! REF.ATD. If real tracking data are available (in GCX format), it makes an OD before this
! propagation, foilowing the general set-up, and the Orbit_Residual File REF.RES is then

! created in addition to the Stage2_Geoscx_2. Time step of propagation is reduced to

! produce the dense ephemeris
1
!
i
]

Main subroutines : ORBIT OFP
Main input file : ORBIT.SETUP  Main output files : REF.ATD, REF.OUT, REF.RES
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I PROGRAM INTERFOL.F9%0

|

Purpose : Reads the Dense Reference Ephemeris (extracts out of the REF.QUT file, and transforms
into equinoctial elements), compute and store the second derivatives of the cubic spline
interpolate function of these points into the SPLINE.TBL file.
N.B. Uses equinoctial elements (the cubic spline interpolation is then more accurate).

Subroutines : EXTRACT, GENEPH
Input file : REF.OUT Output file : SPLINE.TBL

!
!
!
!
!
!
!
! J.Ph. Halain 31/08/97
!

PROGRAM INTERPOL

USE GENERAL, PANLIB, SKSPEC
CONTAINS
I+
! EXTRACT
!
! Purpose : extracts out of the REF.OUT file the dense reference ephemeris,
! calls it POINTS, and NPTS the number of these ephemeris points
197/11/04 J.Ph. Halain
i

SUBROUTINE EXTRACT(FILE,NPTS POINT)

! ARGUMENTS
INTEGER , INTENT(IN) - FILE
INTEGER , INTENT(OUT) :: NPTS
TYPE (S_EPHEM_POINT) , INTENT(OUT) :: POINT(MAX_EPHEM)
1+
| GENEPH 97/11/04 J.Ph. Halain

!
SUBROUTINE GENEPH(NPTS,POINT,EPH)

1 ARGUMENTS
INTEGER , INTENT(IN) : NPTS
TYPE(S_EPHEM POINT)}  , INTENT(IN) :: POINT(MAX_EPHEM)
TYPE(S_EPHEM) , INTENT(OUT) - EPH

e s o e ot oo s o s e sk sk ok ek ook o o o oo e s ale o s sk stk e S s o o A s st o o ok ok e e s sk sk ok e s oS R o o s e s ok R o o ok ok e o oo ke ok

PROGRAM TRACK_S0.F90

!
!

! Purpose : This program run when real tracking data are or are not available. In the first case, it only

! convert the error free tracking data Stage2_Geoscx_2 REF.ATD file coming from the OD
! of CRBIT into the Stage2_Geoscx REF2.ATD containing error free tracking data at times
! of the Real Tracking Data REAL.GCX file. In the other case, it uses the Schedule to create
! a file containing corresponding measurement times and convert Stage2 Geoscx 2 into the
! Stage2_Geoscx with them. It also creates the missing STATIONS.DAT.
!

!

!

]

[

!

!

Subroutines : GET_SCHEDULE, GEN_SCHEDULE, READ STATION
WRITE_STATIONS, SELECT_REC, DECODE_LINE,ADD STATIONS

Input files : REF.ATD, REF_STATION.DAT, SCHDAT, REAL.GCX

Output files : REF2.ATD, STATIONS.DAT

J.Ph. Halain 23/11/97
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PROGRAM TRACK_ S0

USE PANLIB, GEOSLIB, TRACKLIB, GENERAL
CONTAINS

I+

! GET_SCHEDULE

197/11/04 3.Ph. Halain
t

SUBROUTINE GET_SCHEDULE(LU,TRACK_SCHEDULE)

! ARGUMENTS
INTEGER , INTENT(IN) = LU
TYPE ( S_SCHEDULE ) , INTENT(OUT) :: TRACK_SCHEDULE

I+

| GEN_SCHEDULE

197/11/04 IPh. Halain
!

SUBROUTINE GEN_SCHEDULE(SCHEDULE,MJD_I,MJD_F,TRACK_SCHEDULE)

! ARGUMENTS
TYPE ( S_SCHEDULE_INFO) , INTENT(IN) :: SCHEDULE
REAL*S , INTENT(IN) :: MID_I, MID_F
TYPE ( S_SCHEDULE) , INTENT(OUT) :: TRACK_SCHEDULE

I+

I SELECT REC
1

! Purpose : Select closest GCX record that matches station id and measurement type
I 97/11/04 JPh. Halain
I

SUBROUTINE SELECT_REC(GCX_REC,N,MJD,STATID,TYPE,REC ID)

1 ARGUMENTS
TYPE (S_OBSERVATION) , INTENT(IN) :: GCX_REC(MAX_EPHEM)
INTEGER , INTENT(IN) =N
REAL*8 , INTENT(IN) = MID
INTEGER , INTENT(IN) :: STATID
INTEGER , INTENT(IN) :: TYPE
INTEGER , INTENT(OUT) :: REC_ID

I+

! ADD_STATIONS
i

197/11/04 ].Ph. Halain
1

SUBROUTINE ADD_STATIONS (SCHEDULE,MIDL,MIDF, TRACK. )

! ARGUMENTS
TYPE (S_SCHEDULE_INFO ) , INTENT(IN) :: SCHEDULE
REAL*S , INTENT(IN) : MIDL, MIDF

TYPE (S_TRACKING) , INTENT(INOUT) = TRACK
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!+*********¥¥¥***** ****************************************************

! PROGRAM TRACK. S1.F90

!

I' Purpose : Second part of the TRACKING DATA_SIMULATOR program, used when real data are
available. Reads the ORBIT_RESIDUAL FILE containing residuals of the OD of ORBIT,
and makes the STATIONS_FILE which contain fitted residuals of this reference OD.

!

!

!

! Input files : REF.RES

! Output files : STATIONS.DAT
!

!+********************************************************************************
I STAGE B

!

!' Logic : This part of the process run four programs.

! - The TRACK_82 is used to produce Simwulated Tracking Data from the Stage2_Geoscx_2,

! the Stations_File and an Emor Model file which contains modelled measurement error.

! - The second application of ORBIT and the application of KALMAN realise the two kind of
! estimations versus time of the GCX simulated data. The ORBIT program is run eight times,

! using the eight GCX Simulated_Tracking Data realised by the program SPLITS from the

! global ORBIT_GEOSCX file. This is done to have eight estimations for the Least Squares

! method at different chosen epochs. We then have one file of successive estimations versus

! time for the EKF method EKF_SV.KF and one containing the eight estimations for the Least
! Squares method L3Q_SV.LQ.

!
1
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! PROGRAM TRACK._ S2.F90

!

! Purpose : Third part of the TRACKING_DATA_SIMULATOR program.

! Reads the Stations_File STATIONS.DAT, the Stage2_Geoscx REF2.ATD file which

! contain error-free reference tracking data for each station, and an error model file

! SIM.MOD. It then makes the simulated tracking data file {used as real measurements by
! the two procedures ORBIT_2 and KALMAN) SIM.GCX.
!
!
1
1

Input files : REF2.ATD, SIMMOD, SIM.STAT
Output files : SIM.GCX

1+*******************************************************************************

! PROGRAM SPLITS.F90
!
! Purpose : Split the Input GCX file into 8 GCX files containing data during 8 different epoch
intervals
beginning each one at the first epoch of the Input file.
N.B. This prograimn is run eight times in the command file.

!
!

!

! Subroutine : DECODE _LINE

! Input file : INPUT.GCX

! Output file : SIMULATED TRACK DATA_LGCX (=1,8)
!
!
!

JPh. Halain 31/08/97

PROGRAM SPLITS

USE GENERAL, PANLIB, GEOSLIB
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!+******************************************************************************

! PROGRAM ORBIT.ADA (second application)

!

Purpose : Makes an OD (Least Squares) of each of the eight GCX files produced by SPLITS and
propagates to the last epoch of the file. It then creates an estimation at the last epoch of
each of these GCX files and appends them in the LSQ_SV.LQ file, using the subroutine
WRITE_LAST SV LQ.

Subroutines : ORBIT_OD, ORBIT_OP
Input files : ORBIT.SETUP, SIM.ATD
Output file : LSQ_SV.LQ

-- SUBROUTINE WRITE_LAST_SV_LQ.ADA

-- Purpose : Some changes has been done in the Dump-Ephemeris part of the ORBIT_OP, because we
-- do not realise the differences between reference orbit and EKF or Least Squares

-- estimations directly in this package. It was necessary to transform it into the

- WRITE_LAST SV_LQ program which only computes and stores in the LSQ_SV.LQ the
-- Least Squares estimation at the last epoch of simulated tracking data. This new subroutine
-- is therefore include in the ORBIT_OD package of ORBIT. The SETUP package has also
- been changed in consequence to not include the control flag used to know which

-- difference was done.

- 97/08/31 J.Ph. Halain

procedure WRITE_LAST SV_LQ( MID_EPOCH :MID_TYPE;  -- Epoch MID UTC, TT
MID_LAST _OBS : MJD_TYPE;-- Last observation TOD,GR
Y_EPOCH : VECTOR_6D; -- State vector EME2000
CR :in LONG FLOAT; -~ Radiation pressure coeff.
CR_P:in LONG FLOAT, -~ Radiation pressure coeff.
CD : in LONG_FLOAT; -~ Drag coefficient
SC_PARAMS :in SC_PARAM RECORD ) — Spac. parameter

!+*******$*11 Sk Heoeokk ELE 22 e e ok e 24 ok ol o ol ok ol ok s ke oeoke sk sk skeoskeske sk ke e

! PROGRAM KATLMAN.ADA

!
! Purpose : Uses the Tracking Data Simulator GCX file to make orbit determination (EKF) at
successive epochs, and to produce the EKF_SV KF file.

Input files : ORBIT_SETUP, SIM.ATD

1
1
!
z Subroutines : ORBIT_OD_KALMAN, ORBIT QP
I
! Output files: EKF_SV.KF

1

I+********************************************************************************
! STAGE_C

!

!' Logic : This last part of the process first run program DIFFERENCE which uses the subroutine

! INTERPOLATE. This subroutine builds, from the Interpolation Table, two reference files

! state vectors at times corresponding to those of LS and EKF estimations. The program

! then makes the differences between these files and the two corresponding estimations files

! L3Q_SV.LQ and EKF_SV KF and store it in the two DIF.L.Q and DIF.XF files with the

! interpolated vectors. The program SELECT then select from the EKF file created by

! DIFFERENCE the eight differences and interpolated vectors which correspond to the 8

!
!

epochs of the Least Squares difference file.
*********x************************************************************k*******
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!+*********$*******************************************************************

! PROGRAM DIFFERENCE.F%)

1

!' Purpose : Read the SPLINE.TABLE file created by INTERPOL and uses the different time points
of Least Squares and EKF OD to make Cartesian reference ephemeris vectors at these
corresponding epochs. It then makes the differences between them and the corresponding
estimated state vector of the two LS and EKF procedures.

Input files : SPLINE.TBL, LSQ_EQ.LQ, EKF_EQKF
Output files : DIF_*SIMUL’.LQ, DIFF_‘SIMUL’ XF

!
!
!
!
! Subroutines : INTERPOLATE
!
!
!
! J.Ph. Halain 31/08/97
]

PROGRAM DIFFERENCE

USE GENERAL, SKSPEC, PANLIB

!+*$**************************************************************************

! PROGRAM SELECT.F99

]

! Purpose : Selects the eight EKF differences and interpolated vectors at its eight epochs which
correspond to LS epochs.

!
!
! Input files : DIFF_*SIMUL’KF Output files : DIF_*SIMUL’ KF
! J.Ph. Halain 31/08/97

!

A.2. The MCSIM Command File

R st 3 8 e o e ok o 3 o ok ok o o oK o o o

$ I MCSIM.COM (Monte Carlo Simulator)
$!*********************************************************************
$!

SFLAG=2

INUM=10

$ CHOICE=+6

3 XXX[0,3]:=010

$ YY[0,2] = 00

$2[0,11:=1

$R[0,1]:=1

§!

$ NUMBER1[0,1]:=3

$ NUMBER2{0,1]:=6

$ NUMBER3{0,1]:=9

$ NUMBERA4][0,2]:=12

$ NUMBERS5{0,2]:=18

$ NUMBERG6[0,2]:=24

§ NUMBER7[0,2]:=36

$ NUMBERSE[0,2]:=48

§1

3 MODE = F$MODE()

$8AY ="WRITE SYSSOUTPUT"

$ CLEAR_SCREEN ="ESC"+"[2]" +"ESC"+ "[?61"
3 POSITIVE ="ESC" + "[27m" + "ESC" + "[1A"

3 NEGATIVE ="ESC" + "[7m" +"ESC" +"[1A"
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IF (MODE.EQS."INTERACTIVE")
THEN
CALL HEADER
INQUIRE/NOPUNCTFLAG " Real tracking data (1) or not (2) ?"
IF FLAG.NES."1" .AND. FLAG.NES."2"
THEN
SAY "  Choice not correct : end of the Simulation process”
EXIT
ENDIF
START :
CALL PRESENTATION
INQUIRE/NOPUNCT CHOICE "  Your choice "
IF CHOICE.EQS."0"
THEN
INQUIRE/NOPUNCT YY" Setup and Schedule number yy 2"
INQUIRE/NOPUNCTZ "  Model numberz 7"
IF Z.EQS."0"
THEN
Ri{0,1]1:=0
ENDIF
IF Z.NES."Q"
THEN
R[O,1]=1
ENDIF
GOTO START
ENDIF
IF CHOICE.EQS."1"
THEN
CALL EDIT_CONFIG
GOTO START
ENDIF
I¥ CHOICE.EQS."2"
THEN
CALL STAGE_A
CALL STAGE B
CALL STAGE C
GOTO START
ENDIF
IF CHOICE.EQS."3"
THEN
CALL STAGE A
GOTO START
ENDIF
IF CHOICE.EQS."4"
THEN
CALL STAGE B
GOTO START
ENDIF
IF CHOICE.EQS."5"
THEN
CALL STAGE C
GOTO START
ENDIF
IF CHOICE.EQS."6"
THEN
XXX[0,3] ="NUM'
CALL MONTECARLO
GOTO START

%wmmmmmm%e@%mmeﬂmeﬁ%%M@e%mmmmmwm%mmmm%mwmmmwmmmmmmmmmm%%mmmmmeﬁ
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ENDIF
IF CHOICE.EQS."7"
THEN
SAY"  End of the Simulation process”
EXIT
ENDIF
IF CHOICE.NES."0".AND.CHOICE.NES."1". AND.CHOICE.NES."2"
-AND.CHOICE.NES."3" AND.CHOICE.NES."4". AND.CHOICE.NES."5"
AND.CHOICE.NES."6". AND.CHOICE NES."7"

Lo - I O I L I ]

3 THEN

3 SAY " Choice not correct : end of the Simulation process”
5 EXIT

5 ENDIF

3 SAY "

3 CALL MESSAGE"  Invalid option..."

$ WAIT 00:00:01

3 EXIT

$ ELSE

3 CALL MONTECARLO

$ ENDIF

5!

$[+*************$**" Hkk sfe e ohe ok ke e s e oRe S e ok #k e 3 e e sk e ook Skck ke ke op
3 | SUBROUTINE HEADER

3!

$ ! Purpose : clean screen and print system baneer
$]*************************************#**************************************

$ HEADER : SUBROUTINE

$!

$ SAY CLEAR_SCREEN

3 SAY NEGATIVE

$SAY ™

FsAy ™ Compatison of Least Squares Fit and Kalman Filtering "
FSAY " when ftrilateration tracking is used "
SSAY ™

3 SAY POSITIVE

§!

§ ENDSUBROUTINE

31

$|+***************************************************************************

$ ! SUBROUTINE PRESENTATION

$|****************************************************************************

§ PRESENTATION: SUBROUTINE

$1

$§ CALL HEADER

§ say™

$ SAY"™ Main Menu"

$ SAY™

$ SAY " 0. Choice of configuration file indexes"

$ SAY" 1. Edit configuzation files"

$ SAY" 2. Runone time the process”

$ SAY" 3.Runonlythe STAGE_A of the process”
$ SAY" 4. Runonly the STAGE_B of the process”
§ SAY" 5 Runonly the STAGE_C of the process”
$ SAY" 6. Monte Carlo ramming of the process”

$§ SAY" 7.End of the procedure SIMULATOR"

3  SAay™

§!

§ ENDSUBROUTINE
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$ ! SUBROUTINE EDIT_CONFIG

§ Dokt koot s ok e e o *% gk ok ek st o o o ok o ke ok ok et o ok oK
§1

$ EDIT_CONFIG : SUBROUTINE

§!

o

DEFINE/NOLOG SYSSINPUT SYS$COMMAND
$ START::
b CALL HEADER
5 SAY "
5 SAY "  Database file edit menu"
3 SAY "™
3 SAY" 1. Edit SETUP file"
$ SAY " 2. Edit MODEL file"
3 SAY " 3. Edit SCHEDULE file"
$ SAY" 4.Edit REF_STATION file"
$ SAY" 5. Back to main menu”
$ SAY "™
$ INQUIRE/NOPUNCT CHOICE]1 " Your choice ?"
3 IF CHOICE1.EQS."1"
3 THEN
3 EVE [E.HALAIN.SETUP]STD 'YY'.SETUP
5 GOTO START!
3 ENDIF
3 IF CHOICEL.EQS."2"
3 THEN
h3 EVE [E.HALAIN.SETUP]ISIM_'Z' ' MOD
b GOTO STARTI
$ ENDIF
$ IF CHOICE1.EQS."3"
$ THEN
5 EVE [E.HALAIN.SETUP]SCH 'YY'DAT
b3 GOTO START!
by ENDIF
by IF CHOICE1.EQS."4"
3 THEN
3 IF Z.EQS."0"
& THEN
by EVE [E.HALAIN .TABJREF_STATIONS 0.DAT
$ GOTO START?
$ ENDIF
5 IF Z.NES."Q"
3 THEN
5 EVE [E.HALAIN.TABJREF_STATIONS 1.DAT
3 GOTO START!
3 ENDIF
b ENDIF
b IF CHOICE1.EQS."5"
$ THEN
$ EXIT
$ ENDIF
b3 IF CHOICE1.NES."1".AND.CHQICE 1 NES."2" AND.CHOICE1.NES."3"
AND.CHOICEL.NES."4" AND.CHOQICE1.NES."5"
THEN
CALL MESSAGE "Invalide option..."
EXIT

ENDIF
SAY ™

Lo I e R A ]
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3 CALL MESSAGE "Invalide option..."
$ GOTOQ STARTI1

$1!

$ ENDSUBROUTINE

$!

$|+$**************************************************************************

§ 1 SUBROUTINE STAGE A

$!****************************************************************************
§ STAGE_A : SUBROUTINE

§!
$!  Runprogram ORBIT
§!
$!
3 SET DEF $DISK18:[E HALAIN.COMPARE. ESSAI]

3 DEFINE [ERS TARLES [EHALAIN.TABINEWMAS.DAT I'in

$ DEFINE STATION _FILE [EHALAIN.TAB]STATION.DAT in

3!

S IFFLAGEQS."1"

b THEN

¥  DEF/USER ORBIT GEOSCX [E.HALAIN.MEASUREMENT]TRILAT.GCX lin
$  DEF/USER CRBIT SETUP [E.HALAIN.SETUP]STD 'YY'.SETUP l'in

§  DEF/USER ORBIT RESIDUAL FILE REF.RES !out

3 WRITE SYS$OUTPUT "Running reference OD and OP..."

3 ENDIF

3!

§ IF FLAG.EQS."2"

§ THEN

$  DEF/USER STD SETUP [E.HALAIN.SETUP]STD_'YY'.SETUP I'in

$ DEFINE ORBIT SETUP ORBIT.SETUP ! out/in

3  RUN[EHALAIN.F90.JPHIREADER
§  WRITE SYS$OUTPUT "Running reference OP..."

$ ENDIF

31

$ DEF/USER ORBIT DATABASE REF.EFLM ! out
$ DEF/USER ORBIT ATD REF.ATD ! out
§ DEF/USER ORBIT_SUMMARY REF.SUM ! out
$ DEF/USER ORBIT_SUMMARY2 REF.DBR !out
$ DEF/USER ADASOUTPUT REF.QUT ! out
3 DEF/USER GRAPHIC FILE REF.PS I out
31

§ DEF/USER ORBIT STATE REF" sv" ! out
3 DEF/USER ORBIT _EQUINOCTIAL  REF" EQ" !out
$!

$ RUN [E.HALAIN.ORBITJORBIT

$!

$1

§! Runprogram INTERPOL

3!

$ DEF/USER POINT_IN REF.QUT lin
$ DEF/USER TABLE SPLINE.TBL ! out
3!

S RUN [E.HALAIN.FO0.JPHIINTERPOL
5!
§1
§!  Runprogram TRACK S0
$!
3 DEF/USER STAGE2 _GEOSCX 2 REF.ATD !'in
$ DEF/USER ORBIT_GEOSCX [E.HALAIN.MEASUREMENTITRILAT.GCX fin
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$ DEF/USER SCHEDULE [EHALAIN.SETUP]SCH_"YY' DAT lin

$ DEF/USER STATIONS_IN_FILE [E.HALAIN.TABJREF STATIONS 'R’.DAT !in
§ DEF/USER STAGE2_GEOSCX REF2ATD ! out
$ DEF/USER STATIONS_OUT _FILE STATIONS.DAT ! out (if no real data)

5!

$ RUN [E HALAIN.F90.JPH]ITRACK_S0
§1!
L
3! Run program TRACK_S1 (only if real data are available)
5!
$ IDEASSIGN SYSSINPUT
§ IF FLAG.EQS."1"

$ THEN

$  DEF/USER ORBIT FILE REF.OUT lin
$  DEF/USER STATIONS_OUT FILE STATIONS.DAT ! out
$  DEFINE SYSSINPUT SYSSCOMMAND in
$1

$  RUN [EHALAIN.F90]TRACK_SI

s1 2

$ ENDIF

$1

$ ENDSUBROUTINE

$ !

$!+***************************************************************************

5 ! SUBROUTINE STAGE B

$T****************************************************************************

$ STAGE_B : SUBROUTINE

$1*

$1  Runprogram TRACK_S2

8!

$ DEF/USER STAGE2_GEOSCX REF2.ATD lin
$ DEF/USER STATIONS_IN FILE STATIONS.DAT ‘in
$ DEF/USER MODEL_FILE [E.HALAIN.SETUP]SIM_'Z'MOD lin
$ DEF/USER ORBIT_GEOSCX SIM.GCX ! out
$!

$ RUN [E.HALAIN.FO0]TRACK 82

§1

$I*

$!  Run the two estimation programs

31!

5 SET DEF [E.HALAIN.COMPARE ESSAI]

$ DEFINE IERS_TABLES [E.HALAIN.TABINEWMASDAT lin
$ DEFINE STATION_FILE [E.HALAIN.TAB]STATION.DAT lin
$1

§ 1

3! Program KALMAN

g1

$ DEFINE ORBIT_SETUP [EHALAIN.SETUPISTD 'YY'.SETUP !in
$ DEF/USER ORBIT_GEOSCX SIM.GCX Yin
3!

3 DEF/USER ORBIT_RESIDUAL FILE EKF.RES ! out
$ DEF/USER ORBIT DATABASE EKF.ELM ! out
$ DEF/USER ORBIT_ATD EKF.ATD 'out
3 DEF/USER ORBIT SUMMARY EKF.SUM ! out
$ DEF/USER ORBIT SUMMARY?2 EKF.DBR ! out
§ DEF/USER ADASOQUTPUT EXF.QUT ! out
$ DEF/USER GRAPHIC FILE EKF.PS ! out
§!
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$ DEF/USER ORBIT_STATES EKF" SV"

$ DEF/USER ORBIT_EQUINOCTIALS EKF" EQ"

$1

$ WRITE SYS$OUTPUT "Running Kalman OD and OP..."
$ RUN [E.HALAIN.ORBIT]JKALMAN

3!

§1*
§!  Program ORBIT (and SPLITS)
3!
3 COPY SIM.GCX INPUT.GCX
$ DEFINE INPUT INPUT.GCX 'in
$1!
$ NRUN=8§
§ N=1
$1
§ SCL:
b NUMBER = NUMBER'N’
$  DEFINE ORBIT _GEOSCX SIMULATED TRACK DATA 'NUMBER'.GCX !outfin
$  RUN [EHALAIN.F90.JPH]SPLITS
51!
3 DEF/USER ORBIT RESIDUAL FILE LSQRES ! out
3 DEF/USER ORBIT DATABASE LSQ.ELM ! out
3 DEF/USER ORBIT ATD LSQ.ATD Yout
$ DEF/USER ORBIT_SUMMARY LSQ.SUM out
5 DEF/USER ORBIT_SUMMARY?2 LSQ.DBR ! out
b DEF/USER ADASOUTPUT LSQ.oUT ! out
3 DEF/USER GRAPHIC FILE LSQ.rs !out
3!
3 DEF/USER ORBIT STATE LSQ"_sv” Tout
3 DEF/USER ORBIT _EQUINOCTIAL LSQ" EQ" Tout
31
§  WRITE SYSSOUTPUT "Runmning Least Squares OD and OP..."
$ RUN [EHALAIN.ORBIT]ORBIT
$1!
3 IF N.EQS."1"
3 THEN
3 COPY L3Q SV.LQ L8Q SV TLQ
b COPY LSQ EQLQ LSQ_EQ T.LQ
b ELSE
3 APPEND LSQ_SV LQLSQ 8V TLQ
3 APPEND LSQ_EQ.LQ LSQ EQ T.LQ
b ENDIF
b N=N+1
3!
$ IF N.LENRUN
NS THEN
$ GOTQ 8C1
$ ENDIF
$!
$ RENAMELSQ SV_T.LQ L3Q SV.IQ
$ RENAMELSQ EQ TILQ L3Q _EQLQ
5
$ ENDSUBROUTINE
1
2 1o e e e oo e s s ok e T e s 2k o e stk se s e ok ok ok e o b sk sk ke ke ok o o o e oK ok o ok e e ok oK ok e o o e ke
$ | SUBROUTINE STAGE_C
$ !******** e o e ok Kok *************************************************

$ STAGE_C : SUBROUTINE

! out
! out

133



$ 1
$! Runprogram DIFFERENCE
31
$ SIMUL[0,1] := 'FLAG'
$ SIMUL[1,3] :="XXX'
$ SIMUL[4,2] =="YY’

$ SIMUL[6,2] :='Z'

$!
$ DEF/USER TABLE SPLINE.TBL lin
$ DEF/USER LQ_ESTIM LSQ SV.LQ lin
$ DEF/USER KF_ESTIM EKF_SV.KF fin
$ DEF/USER LQ_DIFF DIFF_'SIMUL'LQ ! out
$ DEF/USER KF_DIFF DIFF_'SIMUL'KF ! out
8!

$ RUN [E.HALAIN.F90.JPH]DIFFERENCE

S

$ ENDSUBROUTINE

$1

$1+***************************************************************************

$ ! SUBROUTINE MONTECARLO

5!
$!****************************************************************************
$ MONTECARLO : SUBROUTINE

$!

3 SIMUL[0,1] .='"FLAG'

$ SIMULTL,3] ="XXX

$ SIMUL[4,2] ="YY"

$ SIMUL{6,2] :="Z'

$!

§ WRITE SYS$OUTPUT "Running Monte Carlo simulations..."
$!

$ CALL STAGE_A

$!

FNRUNS =1

$SC2:

$1

CALL STAGE_B

CALL STAGE_C

DEF/USER DIFF DIFF 'SIMUL'.LQ
DEF/USERDIF MC  DIF 'SIMUL'LQ
RUN [E.HALAIN.F90.JPH|SELECT

DEF/USER DIFF DIFF_'SIMUL' KF
DEF/USERDIF MC  DIF 'SIMUL' KF
RUN [E.HALAIN.F90.JPH|SELECT

IF NRUNS.EQS."1"

THEN
COPY DIFF 'SIMUL'.LQ DIFF_MC 'SIMUL'LQ
COPY DIFF_'SIMUL' KF DIFF_MC_'SIMUL'XF
COPY DIF_'SIMUL'LQ DIF_MC_'SIMUL'LQ
COPY DIF 'SIMUL' KF DIF_MC 'SIMUL'KF
ELSE

APPEND DIFF 'SIMUL'LQ  DIFF MC_'SIMUL'LQ
APPEND DIFF 'SIMUL'XF  DIFF MC_'SIMUL'KF
APPEND DIF 'SIMUL'.LQ DIF_MC_'SIMUL'.LQ
APPEND DIF_'SIMUL'KF DIF_MC_'SIMUL'KF

B2 L0 65 B2 A R O L0 0O LS O 0O LD B8 08 R 8 0 e WS s
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ENDIF

NRUNS =NRUNS + 1

IF NRUNS.LENUM
THEN
GOTO 8C2
ENDIF
§!
$ ENDSUBROUTINE

A.3. User manual

The MCSIM procedure is written in the MCSIM.COM file and is run with the
@MCSIM command. To store the results in a readable way, the process writes them in
the following form : DIF MC_“xxxyyzz'.LQ and DIFF MC ’xxxyyzz' KF, where xxx
indicates the number of runs of the process (< 100), yy indicates which set-up file is
used and zz the model file. All these results are stored in the directory ANALYSIS
and are treated by the post process presented in the next chapter.

This procedure may be run interactively or in ‘batch queue’. When it is used
interactively, the user may act in changing the different following 1nputs :

The existence or not of real tracking data.

The eight hours intervals used in the SPLITS program.

The SETUP files, which are modified to realise different simulations. The user
may chose which set-up is used in introducing the number yy. The same index
1s used for reference and standard set-ups, because in simulations they are used
together.

The MODEL file, which is modified to introduce different kind of error model.
The user may chose which model is used in introducing the number zz.

The SCHEDULE file, which is modified to take into account different kind of
stations and their time intervals parameters. The user must of course chose the
SCHEDULE corresponding to the set-up vy.

The REFERENCE_STATIONS file which is chosen with null or no null values
depending on the tested case, i.e. fitted or white additive Gaussian noise, this
choice being made with the number zz as described in the Simulation Plan of
the next chapter.

All these inputs have to be consistent to avoid problem in the process. It is then
necessary to respect the following rules :

1. The whole process normaily starts with real tracking data (in a GCX format), OD

and OP are then made in the STAGE A and the TRACK_S1 forms the
Stations_File. The number of stations and their ID must be same in the three mmput
files and in the Real_Gcx data.
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2. The process can run without such real trilateration data. It then begins with an
initial state vector, and in this case OP is only needed in the STAGE A. The
Stations_File is then created by the program TRACK_SO.

» Here the number of stations and their ID must be the same in the three mput
files and in the Ref_Stations_File.

¢ The Ref_Setup and Std_Setup have to be adapted to the number of data of the
Ref Stations_File : the “Propagate” part of the set-up must be done between a
number of days inferior to the number of days of the reference stations file plus
one.

» The kind of data of the Ref_Stations_File must be the same as the one of the
Stage2?_Geoscx_2, that is range or azimuth (elevation).

* The cycle duration of the Schedule must be inferior to the time step of the
Ref Setup and Std_Setup.

¢ This time step must be reduced when one include more stations in the different
mnput files to avoid having more than MAX_EPHEM data.

* The initial standard deviation in set-ups must be different of zero. The ORBIT
application indeed need a non zero initial matrix to run correctly.

Some other important points must also be tacking into account to avoid problems
which may be not visible when the process is run, but which have great consequences
on results obtained :

1) The KALMAN program cannot estimate parameters like CD, CP and station bias,
in the used version of this application. It is then necessary to introduce in the
Std_Setup fixed such parameters. It is then necessary to fist run the ORBIT
application alone to estimate them.

11} The initial date and state vector of the Ref and Std_Setup need not to be related to
the first epoch of the real data or the reference stations file. But it is logical for this
date not to be too different.

iii) The number of hours introduced for the program SPLITS must not exceed the
number of days of the propagation part of the set-up.

iv) The number MAX_EPHEM, defined in the GENERAL.F90 program, must be
sufficiently big to allow the use of large amount of dense points. It is fixed at
50.000. If t is the time step (in seconds) of the dense ephemeris and n the number

24*3600 )
of days of data, this number must be greater than d ——73— For example, with

two days of data and a time step of 60 seconds, MAX EPHEM > 28800.
v) The total number of estimated parameters (that is the six elements of the state

vector plus others parameters) must be lower than the number of data of the
Simulated Track Data files.

With two days of data, as it is the case in following simulations, it is not correct to

estimate station bias. Indeed, even with eight days of real data, the bias of the four
used stations cannot be correctly estimated. The simulations are then run with either
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no estimated bias or with only two estimated bias (Bergen and Roma, because the
estimation of Seville Bias causes some divergence in results).

A.4. Test plan of the simulator

To verify the correctness and accuracy of the whole process and its different parts, tests were realised
They were run in a systematic way to validate the process, following a Test Plan. It is presented in the
Annexes.

The first part of this test plan consists in checking important new programs and
subroutines through all possible cases of input data

New programs and Test
subroutines
READER Compare mput and output for different kind of set-up (containing
too nmuch or not enough information).
EXTRACT subroutine Compare input and output in different sitvations of reference orbit
propagation (density i.e.).
GET(GEN) SCHEDULE Compare the two outputs run with real or no real data and see if
subroutines they have the same structure, see if the epochs are the

corresponding ones with respectively the GCX file and the
Schedule. Try different kind of schedules or real GCX files
(mumber of stations i.e.).

SELECT_REC subroutine

Compare the file STAGE2_ GEOSCX with STAGE2_GEOSCX_2
and the time file created by GET{GEN) SCHEDULE. Test the
different cases of schedule or GCX data. The data in the
STAGE2_GEOSCX must be correctly sorted to have increasing
epochs ( because the Kalman program cammot do backward
integration).

READ STATION/
ADD_STATIONS /
WRITE_STATIONS

See if the Stations File is correctly created from the
Ref_Station_File. Try different cases of epochs of the
stage? geoscx and ref_stations_file.

SPLITS

To test this subroutine, one has to compare its output and the initial

GCX file, and have 8 outputs files containing the same data during
increasing period. Test for different number of output file and
various input GCX files.

See if the files are correctly created and contains a state vector and

WRITE LAST SV LQ

subroutine its corresponding epoch. Try it with the different outputs of splits
program.
SELECT Compare input and output.

The second phase of the test plan consists in checking the combinations of the
different programs and the expected results. For these tests, the three stages of the
MCSIM process are run separately” to check their own results. Thereafter, the whole
process MCSIM is run to verify its correctness. The tests on these stages are presented
in the following points.

1. To venfy the construction of the interpolation table (program INTERPOL) in
Stage A, and its use in the creation of the two reference ephemerides
corresponding to the EKF and LS estimation (program DIFFERENCE) in Stage

* Stage A may be run alone. Nevertheless Stage B and Stage C must be run respectively with simulated
tracking data (outputs of Stage A), interpolation table and estimation files {outputs of Stage A and
Stage B) . It is then necessary to test then in the logical order A, B and C.
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C, and compute the differences between the dense reference ephemeris and
interpolation obtained with the interpolation table at times of the dense reference
ephemeris. The resulting differences should be null.

To verify the accuracy of the construction of the Stations_File in Stage A, one has
to compare the two programs TRACK_S0 and TRACK_S1 used without and with
real tracking data. The data must be correctly sorted in order to avoid problem in
KAILMAN, because it cannot do backward integration.

To verify the accuracy of the construction of the simulated tracking data by the
TRACK _S2 of the T.D.S. in the Stage B, one has to enter an error free model in
TRACK_S2 and deactivate the random generator of noise. The simulated tracking
data should then be the same as the input file STAGE2 GEOSCX.

Finally, to check the whole process, one runs different “free” simulations (error
free model, Ref Stations file reduced to only initial and final epoch, and set-up
without noise and standard deviation) and verify that perfect null residuals are
obtained following the theoretical propagation model.

Note :

- The two stages of the T.D.S. used here are supposed comrect. The program
KALMAN and the program ORBIT (except the ORBIT OD part which has been
changed with the Write_Last Sv_Lq) are also supposed without any problems.

-1t

is necessary to use the ORBIT_OP part which do not contains additional errors, to

avoid counting them two times (in ORBIT_OP and in the STAGE_S2).

A.

A

5. Inputfiles

S.1. Setup (Std_01)

TITLE
OD_ORBIT

INIT
EPOCH

DATE 1997 1212 HOUR 0 0 0.000

KEPLER_ELEMENTS

A 4216606290 E 0.000298384 I  0.057977
RAN 355.831363 AOP 320011165 M 144.071342

STATE_STDDEV

10000.0 1000.0 10000.0 0.1 0.1 0.1

SATELLITE

SAT ID 9103002
MASS 1405.90
AREA_SOLRAD SUN POINTING  44.20
CR 127150
CR_P 0.03640
AREA_DRAG 0.00
CD 2.30000
TRP_DELAY 0.00000
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MODEL % the following values define the force model used
POTENTIAL_ORDER 2

F_107 160.0
E BAR 160.0
K P 30

MANEUVER

END_MANEUVER

PROCESS_NOISE

RADIAL 1.0e-9
EAST 1.0e-9
NORTH 1.0e-9
STATION
NUMBER 8000 % TRILAT MASTER BTZ
TYPE
S_RANGE SIGMA 1.80 BIAS 2.5 ESTIMATE FALSE % [m]
END_TYPE
NUMBER 8001 % TRILAT SEVILLA
TYPE
S_RANGE SIGMA 180 BIAS 0.0 ESTIMATE false % [m]
END_TYPE
NUMBER 8002 % TRILAT ROMA
TYPE
S_RANGE SIGMA 1.80 BIAS 0.0 ESTIMATE false % [m]
END_TYPE
NUMBER 8003 % TRILAT BERGEN
TYPE

S_RANGE SIGMA 1.80 BIAS 2.5 ESTIMATE FALSE % [m]
END_TYPE
END_STATION

ORBIT_DETERMINATION

ITERATIONS 7

ESTIMATE
CR FALSE
CR_P FALSE
Cb FALSE

EDIT
99.0 % Initial editing level to be applied for n iteration(s)
2 %mn
2.0 % Editing level for further iterations

ORBIT_PREDICTION
EPHEMERIS
FROM  DATE 19971212 HOUR 0 000.0 % UTC
TO  DATE 19971214 HOUR 0 0000 % UTC
TIME_STEP 60.0 % seconds
OPTIONS
KEPLERIAN
CARTESIAN
TRACKING DATA
END_OPTIONS

PROPAGATE
TO DATE 1997 12 12 HOUR 00 00 00.0 % UTC

END
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A.5.2. Error model (full trilateration model)

STATION 8000 RANGE 2

0.0000 2.0000 constant term

0.0000 0.1000 linear term

0.0000 0.2000 periodic term

1.5700 1.0000 phase

0.5300 0.3700 ionosph.daily term

0.0530 0.0370 ionosph.night term

1.5700 0.2600 ionosph.phase
STATION 8001 RANGE 2

0.0000 2.0000 constant term

0.0000 0.1000 linear term

0.0000 0.2000 periodic term

1.5700 1.0000 phase

0.4300 0.3000 ionosph.daily term

0.0430 0.0300 ionosph.night term

1.5700 0.2600 ionosph.phase
STATION 8002 RANGE 2

0.0000 2.0000 constant term

0.0000 ©0.1000 linear term

0.000¢ 0.2000 periodic term

1.5700 1.0000 phase

0.4400 03100 ionosph.daily term

0.06440 0.0310 ionosph.night term

1.5700 0.2600 ionosph.phase
STATION 8003 RANGE 2

0.0000 2.0000 constant term

0.0000 0.1000 limear term

0.0000 0.2000 periodic term

1.5700 1.0000 phase

0.7800 0.5600 ionosph.daily term

0.0780 0.0560 ionosph.night term

1.5700 0.2600 ionosph.phase

A.5.3. Schedule File (middle, and for four station)

4
3600.0000

8000 0000.0000 3 0150.0000
8001  0900.0000 3 0150.0000
8003  2700.0000 3 0150.0000
8002  1800.0000 3 0150.0000

A.5.4. Ref Stations File (with white Noise, and for 1 station)

3.D0
50794.0088282060  50797.9350782754 ! limit epochs
1

8000
RANGE 2

2

50794.0296615393  0.0000000 0.0000 ! mean - stdev
50797.9059925579  0.0000000 0.0000 ! mean - stdev
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A.6. Output files

A.6.1.

ORBIT DETERMINATION SUMMARY

Summary
31-MAR-1998 7:30
OD ORBIT

Tracking data summary
From 1998/03/15 00:00:58

To 1998/03/17 23:59:37
Station Type Unit Sigma N Residuals Bias
SA#3 Range (m] 1.8 356 0.00 +/- 0.21 0.00
BTZ7 Azim ["] 200 288 0.00+/-2.21 -144.05+/-1.39
BTZ7 Elev ["] 20.0 288 0.00 +-2.36 -113.90+/-1.18
Satellite

Sat_ID 9103002

Mass 140020 kg

Area(CR) 44.20m**2 CRI1 1.3490 (panels normal to equator)

CRP 6.0180

Area(CD) 0.00m**2 CD 2.3000

Epoch

Date 1998/03/14
UTC  00:00:00.000000

State vector estimate correction
x [m] -41466271.39 +/- 38.79 -128.07

v [m] -7752980.81 +/- 73.81 985.84

z [m] -20844.06 +/- 289.18 -467.96
x-dot [m/s] 565.244000 +/- 0.002793 -0.064521
y-dot [m/s] -3020.858503 +/- 0.002675 -0.016174
z-dot [m/s] -0.259444 +/- 0.021236 -0.044908
Keplerian elements estimated comection
Semimajor axis [m] 42167814.63 +/- 0.50 0.53
Eccentricity 0.00042672 +/- 0.00000087 -0.00000063
Inclination {deg] 0.0287214 +/- 0.0003926 0.0007584
RA. asc. node {deg] 290.2934094 +/- 0.7901740 1.4704994
Arg. perigee [deg] 61.4293919 +/- 0.8927179 -1.7722141
mean anomaly [deg] 198.8833775 +/- 0.1172267 0.3005865
East longitude [deg] 19.1797207 +/- 0.0001016 -0.0013481

Convergence (4 Iterations)
position 0.02 m
velocity 0.00000 m/s

A.6.2. Residual and Output

Other main outputs are the residual and outputs files, additionally to the residual plots.
Nevertheless these files are very large and their presentation is not necessary here.
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A.7. Simulation plan tables

A.7.1. First group of simulations

The two simulations realised to check that the estimators are unbiased may be
summarised in Table 1.

Stations Process Noise (a) Initial Error (b} Dynamic Model (c)
| Std_00 4 Standard (2) Standard (2) Full Model (1)
Error Model (d) Gaussian Noise Station Schedule (g)
(e) Combination {f}
Sim 0 | Sch 1 None (2) White (1) 4 stations (1) Standard (1)
Sim_1 | Sch_1 None (2) Fitted (2) 4 stations (1) Standard (1)
Table 1

A.7.2. Second group of simulations

The 36 simulations realised to characterise the EKF may be summarised in Table 2
and Table 3 for model and set-up files, with four and two stations. The 27 first one are
realised with four stations and the 9 next ones with two stations.

Statiens Process Noise (a) Initiat Error (b) Dynamic Model (c}
Std_01 4 Standard (2) Standard (2) Full Model (1)
Std_02 4 Low (1) Standard (2) Full Model (1)
Std_03 4 High (3) Standard (2) Full Model (1)
Std_04 4 Standard (2) Nuli (1) Full Model (1)
Std_05 4 Low (1) Null{1) Full Model (1)
Std_06 4 High (3) Null (1) Full Model (1)
Std_07 4 Standard (2) Large (3) Full Model (1)
Std_08 4 Low {1) Large (3) Full Model (1)
Std_09 4 High (3) Large (3) Full Model (1)
Error Model (d) | Gaussian Noise Station Schedule (g)
(e) Combination (f)

Sim 2 | Sch_1 Full (1) Fitted (2) 4 stations (1) Standard (1)

Sim 3 | Sch_ 2 Full (1) Fitted (2) 4 stations (1) Beginning (2)

Sim 4 | Sch_3 Full (1) Fitted (2) 4 stations (1) End (3)

Table 2
Stations Process Noise (a) Initial Error (h) Dynamic Model (c)

Std_10 2 Standard (2) Standard (2) Full Model (1)
Std_1i1 2 Low (1) Standard (2) Full Model (1)
Std_12 2 High (3) Standard {2) Full Medel (1)
Std_13 2 Standard (2) Null (1) Full Model (1)
Std_14 2 Low (1) Null (1) Full Moedel (1)
Std_15 2 High (3) Null (1) Full Model (1)
Std_16 2 Standard (2) Large (3) Full Model (1)
Std_17 2 Low (1) Large (3) Full Model (1)
Std_18 2 High (3) Large (3) Full Model (1)
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Error Model (d) | Gaussian Noise Station Schedule (g)
(e Combination (f)
| Sim_5 | Sch_4 Full (1) Fitted (2) 2 stations (2) Standard (1)
Table 3

A.7.3. Third group of simulations

The six simulations realised to analyse the effect of the dynamic model on the EKF
are summarised in Table 4.

Stations Process Neoise (a) Initial Error (b) Dynamic Model (c)
Std_19 4 Standard (2) Standard (2) Simplified (2)
Std_20 4 Standard (2) Standard (2) Wrong Cr and Crp (3)
Std_21 4 Standard (2) Standard (2) Wrong SRFmodel (4)
Std_22 4 High (3) Standard (2) Simplified (2)
Std_23 4 High (3) Standard (2) Wrong Cr and Crp (3)
Std_24 4 High (3) Standard (2) Wrong SRFmodel (4)
Error Model (d) | Gaussian Noise Station Schedule (g)
(e) Combination (f)
, Sim_6 ] Sch_1 Full (1) Fitted (2) 4 stations (1) Standard (1)
Table 4

A.7.4. Simulations with real data

The last eight simulations realised with real data are summarised in Table 5.

Stations Process Noise (a) Initial Error (b) Dynamic Model (c)
Std_25 3 Standard (2) Standard (2) Full Model (1)
Std_26 3 Standard (2) Standard (2) Wrong SRFmodel (2)
Std_27 3 High (3) Standard (2) Full Model (1)
Std_28 3 High (3) Standard (2) Wrong SRFmodel (2)
Error Model (d) | Gaussian Noise Station Schedule (g)
(e) Combination (f)
Sim_7 - Full (1) White (1) 4 stations (3) -
Sim_8 - Full (1) Fitted (2) 4 stations (3) -
Table 5

A.7.5. Set-up and model files characteristics
Table 6 contains the parameters values corresponding to the characteristics level of

the set-up and model files used in the simulations as presented above in the different
corresponding tabies.
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Process Noise (a)’ Low (1) Standard (2) High (3)

Q) (mvs?)? (10E-11)° (10E-9) * (10E-7) *
Initial Guess Error Nuli (1) Standard (2) Large (3)
(b)

Initial guess error 0-0-0 100 -100- 10 1000 - 1000 - 100
{m m m nv/'s m/s m/s) 0-0-0 0.01-0.01-0.001 0.1-0.1-0.01
Initiai state variance 100 - 100 - 100 10000 - 10000 - 10000 1GES5 - 10ES5 - 10E5
(m m m m/s m/s mv/s) 0.01-0.01-0.01 0.1-01-01 1-1-1

Dynamic Model (¢) | Full (1) | Simplified (2) Wrong CR, CRP (3) Wrong SR¥ Model (4)
CR 1.2715 0 1.3 Estimated in reference
setup / 1.27151in
standard set-up
CRP 0.0364 0 0.03 Estimated in reference
set-up/ 0.0364 in
standard set-up

Potential order 10 3 10 10 in both set-ups

Error Model Full(1) : Standard None (2) : Standard
parameters (d)* Mean deviation Mean deviation

C, (constant term) 0.0m 20m 0.0m 0.0m

CZ (]mear tenn) 0.0m 01lm 0.0m 0.0m

(j'3 (periodic term) 0.0m 0.2m 0.0m 0.0m

C, (phase) 1.57 rad 1.0 rad 0.0 rad 0.0 rad

CS (ion_ Day te:ﬂn) 0.53m 037m 00m 0.0 m
C6 (ion. Night term) 0.053 m 0.037m 0.0m 0.0m

C, (ion. Phase) 1.57 rad 0.26 rad 0.0 rad 0.0 rad

Gaussian Noise (¢) ‘White (1) Fitted (2)
Mean 0.8 m Stations File when real data
Ref Stations File when no data
Standard deviation 3E-001l m Stations File when real data
Ref Stations File when no data
Ref Stations File Ref Stations 1 Ref Stations 2
Time Step Non applicable 2 hours
Station Combination (f) Four Stations (1) Two Stations (2) Four Stations (3)
Index of stations 8000-8001-8002-30:03 8000-8001 8000-8001-8002-8003
Status e  Betzdorf master e  Betzorf master s  Betzorf master
. 3 other slaves . Seville slave * 3 others slaves
Time Step (in set-up) 120 s 60 s 90s
Sigma (m) 1.8-18-1.8-138 18-.1.8 18-18-18
Bias® (m) 0.0-0.0 0.0-0.0 0.0-0.0
for Betzdorf and for Betzdorf and for Betzdorf and
Seville Seville Seville

* These values may be very small here because trilateration induce less EKF divergence. Furthermore,
these small values do not disadvantage the EKF against LS.

* Theses values are given for Betzdorf. The other station have different ionospheric values due to the
sin(el_i) term included in C and C . The values are 0.53 - 0.43, 0.44 - 0.78, 0.37- 0.30and 0.31 - 0.56.

* The stations bias are fixed to zero for Betzdorf and Seville and estimated for the two other stations.

Indeed with two days of data, 4 bias estimation is unrealistic and gives large erroneous values and
differences results diverge.
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Schedule (g)

Middle (1)

Beginning (2)

End (3)

Period (s)

3600

3600

3600

Number of stations

4 stations : Sch_1
2 stations : Sch_4

4 stations : Sch 2

4 stations : Sch 3

Offset (s) +  (-900-1800-2700 0-300 - 600 - 900 2400 - 2700 - 3000 -
s 0-1800 3300
Number of samples 3 3 3
Cycle duration (s) 150 150 150

A.8.

A8.1.

INTEGER,PARAMETER
INTEGER, PARAMETER
REAL*8,PARAMETER
REAL*8,PARAMETER
INTEGER,PARAMETER
REAL*8,PARAMETER
INTEGER,PARAMETER
TYPE S METHOD
REAL*8
REAL*S

END TYPE S _METHOD

TYPE S _COORD

TYPE (S_METHOD)
TYPE (S_METHOD)
TYPE (S_METHOD)

END TYPE S_COORD

Table 6

Data structures of the F90 programs

= NDAYS =2

1 MAX _DIFF =100
t ALPHA_MAX =05

: ALPHA =0.05 ! Confidence level
:: STEPSIZE = 100
:: PSIREF= PSI/86400.D0

: KCLASS =8
LQ
KF

X

Y

Z

Hierarchical design of the post process

! Maximum number of differences
! Maximum probability for K-S test

I Number of classes

A.8.2. Subroutines and Programs Specifications

1+*********************************************************************

! MAXP.F90
!

! Purpose: This program treat the difference files LQ and KF coming from the simulator.

! It reads the differences and the interpolated vectors at the eight epochs for the N
realisations and build the corresponding differences in the satellite axes.
It then propagates them over two days with the EULER_HILL subroutine.

Input files : DIF_MC_LQ, DIF._ MC_KF

!
!
! It also transform the input differences into Keplerian elements.
'
!
1

Output files : DIF_MAXP_LQ, DIF_MAXP_KF, DIF_EQ LQ, DIF_EQ KF

!
1 98/02/16 J.Ph. Halain

1***********************************************************************
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PROGRAM MAXP

USE PANLIB
IMPLICIT NONE

r+**#****************************************************************k*

I STATISTICS.F50
I

! Purpose: This program treat the propagated difference LQ and KF as samples

! of N realisations. It runs the subroutines GO1ABF,GOLAEF and GO1ASF to
produce mean, variance, max and min of the two samples for the eight
epochs, and box and whisker point plots matrix for the eight epochs.

!
!
!
! Input files : DIF_MAXP_LQ, DIF MAXP KF

! Output files : STAT MAXP, FREQ MAXP,PLOT MAXP
!

z

:

98/02/16 J.Ph. Halain

f**********************************************************************

PROGRAM STATISTICS
USE PANLIB
IMPLICIT NONE
REAL*R :: MID,SV(6)
INTEGER 1 SCALE
INTEGER 1)k EN
TYPE (§ COORD) » MAXP(MAX DIFF,8)
TYPE (S_COORD_REAL) = RES MAXP(13,8)
TYPE (S_COORD) - MAX MAXP(8)MIN_MAXP(8),CINT MAXP(KCLASS,8)
TYPE (S_COORD_INT)  IFREQ _MAXP(KCLASS,®)
1--—-G01 ABF subrouting-—-me==—me—————
TYPE (§_COORD) 1 ZZ(MAX DIFF) lin
REAL*8. - RES(13) ! out
INTEGER : IWT, IFAIL] ! in/out
REAL*S i WT(MAX DIFF) ! imfout
1----GO1AEF subrouting-------m--m-mmmv
INTEGER - ICLASS Vin
REAL*8 o XMIN, XMAX ! out
INTEGER 1 IFREQ(KCLASS) ! out
INTEGER s IFAIL2 ! infout
REAL*8 : CINT(KCLASS) ! in/out
1--—-GOIASF subrouting-———r=amemmu_—
CHARACTER zPRT 'in
INTEGER i NM(M),LDX !in
TYPE (S_COORD) » MAXPGM.MAX_DIFF) lin
TYPE (S_COORD) i WORK._ MAXP(5*M) ! out
TYPE (S_COORD CHAR) = PLOT_MAXP(LDP,NSTEPX) ! out
INTEGER = IFATL3 ! infout
INTEGER 11 LWORK(MAX_RUNS)
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!+**************************************************************************ﬂ
' ANATYSIS.FO0

!

! Purpose: Test normality of the population and compute its parameters with confidence

! nterval of mean, and determine if there are enough run. If population is normal, it

! computes the probability value that the variable is lower than a fixed value.

!

! Input files : DIF_ MAXP_LQ, DIF MAXP KF

! Output files : POP_MAXP PROBA_MAXP

t

! 88/01/15 IPh. Halain

e b b e o o ey R R A o0 TR R TR e ARt P SN PR PR MEAPIE S

PROGRAM ANALYSIS

USE PANLIB

IMPLICIT NONE

INTEGER “1,],k, LN

REAL*8 _ = MID, SV(6),SV2(6)

INTEGER  SCALE

TYPE (S_COORD)  MAXP(MAX DIFF,8) Lin

TYPE (8_COORD) 1 SX_MAXP(MAX DIFF,8)

TYPE (S_COORD) : PROBA_MAXP(8) ! out GOSCGF

TYPE (S COORD LOG) :: NORM MAXP ENOUGH

TYPE (S_COORD) 1 CONF_INT MAXP(8),TAIL MAXP(8) !out

INTEGER ;- IFAIL.MORE

1-=---GO8CBF subrouting-—--------——--—--

TYPE (5_COORD) 1 ZZ(MAX DIFF) lin

CHARACTER*1 :: DIST,ESTIMA lin

INTEGER : NTYPE lin

REAL*§ 1 SX(MAX_DIFF) ! out

TYPE (S§_COORD) 1 D_MAXP(8),Z MAXP(8),p MAXP(8) ! out

TYPE (S_COORD) : PAR(2) ! infout

INTEGER » IFATL1 ! in/out

1----GO8CGF subrouting----————-———-

INTEGER : NPEST l'in

TYPE (S METHOD INT) :: IFREQ_P(KCLASS), IFREQ V(KCLASS), &
IFREQ_MAXP(KCLASS) !'in

TYPE (S METHOD) it CINT_P(KCLASS-1), CINT_V(KCLASS-1),
CINT_MAXP(KCLASS-1) in

REAL*3 1 PAR2(2),PROB(KCLASS) 'in

CHARACTER*1 :: DIST !in

REAL*8 :: CHISQ,PROBA,CHISQI(KCLASS),EVAL(KCLASS) ! out

INTEGER » NDF ! out

INTEGER : TFAIL2 ! in/out!

CONTAINS
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+

! Subroutine POPULATION
|

! Purpose: Computes confidence intervals of population parameters with unknown
! population variance (robust if not normal), and determine the number of runs

! needed to reach a confidence interval corresponding to the fixed confidence level.
!

SUBROUTINE POPULATION (NN JALPHA,PAR,DIFF,CONF_INT,ENOUGH,MORE)

! ARGUMENTS
INTEGER, INTENT(IN) - NN,DIFF
REAL*8, INTENT(IN) = PAR(2),ALPHA

REAL*8, INTENT(OUT) : CONF_INT
LOGICAL, INTENT(OUT) : ENOUGH
INTEGER, INTENT(OUT) :: MORE

TFUNCTION REAL*8 : T CENTILE

I

! Purpose : Search the student centile corresponding to confidence level 1-alpha/2 by

! inverting numerically the lower tail probability of the Student's t-distribution

! versus centile t, for N-1 degree of freedom.
!

REAL*8 FUNCTION T_CENTILE(N,Y0)

! ARGUMENTS
REAL*8 INTENT(IN)  :: Y0
REAL*8 INTENT(IN) =N
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Summary.

Performance of Kalman Filter versus Least Squares estimator for
orbit determination using trilateration.

The purpose of this work is to compare the Least Squares and Kalman Filtering
methods for orbit determination of geostationnary satellites, when tracking
measurements are realised via a trilateration system.

For this purpose a simulator process has been developed. It compares the differences
between a reference trajectory and estimations obtained with the two methods, for
different observation and propagation models. Statistical analysis based on Monte
Carlo simulations has been applied to compare the results of both methods, and
determine if one method is better suited to the process of trilateration data.

This work has been realised for the Société Européenne des Satellites who has in
charge 7 geostationnary satellites governed in real-time from Betzdorf (Luxembourg),
whose 6 are co-located. Additionally, an article for the 13% International Symposium
on Space Flight Dynamies, Goddard Space Flight Center, NASA, has been published.
It extends the comparison of the present work to both single- and multi-stations
tracking systems.

The Monte Carlo simulations performed in the framework of this Diploma Thesis
have shown that there is a close agreement between estimation errors of both iterated
Least Squares and extended Kalman Filter algorithms. Moreover, trilateration
measurements, as compared to single-stations, seem to make both estimators less
sensitive fo the observation, dynamic and algorithmic input parameters. So, the
Kalman Filter algorithm might offer an alternative to the usual Least Squares
implementation, as for long correction manoeuvres where an important process noise
1s introduced.

Jean-Philippe Halain
3éme Technique Ingénieur Civil Physicien, 1997-1998
Faculté des Sciences Appliquées, Université de Liege

Société Européenne des Satellites
Space System Division
L-6815 Chéateau de Betzdorf, Luxembourg
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