fincoil

ECOS 2016 - The 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact Of Energy Systems JUNE 19 – 23, 2016, PORTOROZ, SLOVENIA

ORCmKit:

An open-source library for organic Rankine cycles modelling and analysis

by

R. Dickes, D. Ziviani, M. de Paepe, M. van den Broek, S. Quoilin, V. Lemort

Presentation outline

- Context
- Goal of ORCmKit
- Simulation environment
- Models description
- Additional features of ORCmKit
- Conclusion

Context

ORC = Rankine cycle + organic working fluid

Thermal engine for low-grade temperature/ small-capacity applications:

- Rising interest in ORC systems over a decade
- Simulation tools are crucial and unavoidable (sizing, control, etc.)
- Commercial tools exist but are very expensive (up to 10.000\$/year)
- Self model development is time consuming

Goal of ORCmKit

ORCmKit: open-source modelling repository

- Aimed to provide, at a single place, <u>open-source</u>, <u>reliable</u> and <u>robust</u>
 <u>models</u> for the **steady-state simulation of ORC systems** and their
 components
- Initiated by the authors but aimed to be <u>actively updated and improved</u> by researchers in the field
- <u>Very diversified</u>: large variety of modelling approaches, different modelling environments, component an cycle models, different system architecture, etc.

Simulation environment

Currently, three modelling environments covered by **ORCmKit**:

	E _{ES}	Matlab	Python
Distribution	Non-free	Non-free	Open-access
Causality	Acausal	Causal	Causal
Thermophysical library	EES libraryCoolPropREFPROPuser-implementedetc.	CoolPropREFPROPuser-implementedetc.	CoolPropREFPROPuser-implementedetc.
Model development	Fast	Slow if complex implicit model	Slow if complex implicit model
Model flexibility	High	Low	Medium (causal but object- oriented modelling)
Model robustness	Low for complex systems	High if properly implemented	High if properly implemented
Cascaded tasks	Not user-friendly	User-friendly	User-friendly

Models description

Component-level models

Heat Exchangers:

- Pinch-based model
- Efficiency-based model
- Moving- boundary models

Pump/Expander:

- Efficiency-based model
 - Constant values
 - Polynomial regressions
 - Empirical correlation (Pacejka, etc.)
- Semi-empirical model

Pipelines

- Pressure drops
- Ambient losses

Models description

Cycle-level models

→ Multiple system architecture

Recuperative ORC

Multiple HEX ORC

→ Multiple operating conditions

20 1100 1200 1300 1400 1500 1600 1700 1800 1900

Zeotropic mixtrure

Transcritical ORC

Models description

- Cycle-level models (example)
 - Off-design performance simulation
 - Model inputs:

 - m˙_{htf}, T_{htf,su}, P_{htf,su}
 m˙_{ctf}, T_{ctf,su}, P_{ctf,su}
 N_{exp}, N_{pp}, M_{ref} (or ΔT_{sc})

- Model outputs:
 - $T_{i,cycle}, P_{i,cycle}, S_{i,cycle}$ $Q_{i, hex}, W_{mec}$

 - ε_{ORC}

Example: Sun2Power ORC

Effect of the refrigerant mass on the off-design cycle performance

Additionally to the model source codes, ORCmKit includes other useful features, for example:

Additionally to the model source codes, ORCmKit includes other useful features, for example:

Convenient <u>pre-implemented graphical tools</u> (Ts diagram, temperature profiles in the heat exchangers, etc.)

Additionally to the model source codes, ORCmKit includes other useful features, for example:

- Convenient <u>pre-implemented graphical tools</u> (Ts diagram, temperature profiles in the heat exchangers, etc.)
- <u>Calibration codes</u> to tune the different models parameters based on user-provided data

ECOS 2016

Evaporator model

Expander model

Additionally to the model source codes, ORCmKit includes other useful features, for example:

- Convenient <u>pre-implemented graphical tools</u> (Ts diagram, temperature profiles in the heat exchangers, etc.)
- <u>Calibration codes</u> to tune the different models parameters based on user-provided data
- A <u>documentation</u> describing the different models and codes

Additionally to the model source codes, ORCmKit includes other useful features, for example:

- Convenient <u>pre-imp</u> diagram, temperatu etc.)
- <u>Calibration codes</u> to parameters based of
- A <u>documentation</u> do codes

A <u>user-friendly GUI</u> (for the Python-based models)

Link to ORCmKit and conclusion

Find ORCmKit:

on GitHub

- → https://github.com/orcmkit/ORCmKit
- through the KCORC website:
 - → http://www.kcorc.org/en/open-source-software/

We want YOU for ORCmKit!

Thanks for your attention Any questions?

Rémi Dickes

rdickes@ulg.ac.be

Thermodynamics laboratory - University of Liège (BEL) www.labothap.ulg.ac.be

