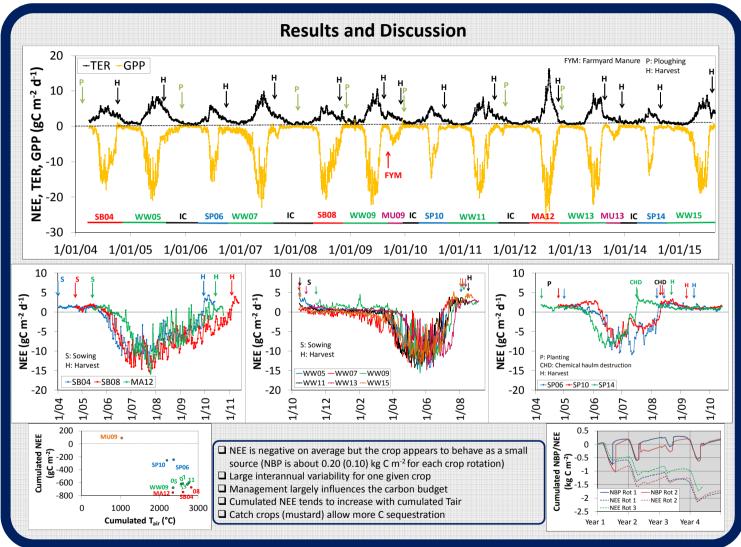
CLIMATIC AND CROP MANAGEMENT DRIVERS OF CARBON SEQUESTRATION OVER THREE SUCCESSIVE 4-YEAR CROP ROTATION CYCLES

<u>Pauline Buysse</u>⁽¹⁾, Tanguy Manise⁽²⁾, Christine Moureaux⁽²⁾, Bernard Bodson⁽²⁾, Marc Aubinet⁽¹⁾
(1) University of Liège - Gembloux Agro-Bio Tech, Unit TERRA, Ecosystems-Atmosphere Exchanges, Belgium
(2) University of Liège - Gembloux Agro-Bio Tech, Unit TERRA, Crop Science, Belgium

Objectives

- To establish the three crop rotation carbon budgets and to analyze the different budget terms.
- □ To determine climatic and crop management drivers within each crop type.
- To identify and propose to farmers levers of action to help reduce CO₂ emissions from crop and sequester more carbon into the soil.

Lonzée Terrestrial Observatory (LTO)


- □ Temperate climate (mean annual T and P: 10 °C, 800 mm)
- Land cultivated for more than 80 years
- Luvisol (FAO), SOC stock [0-60 cm]: 6.23 ± 0.16 kg C m⁻²
- 4-year crop rotation: Sugar beet (SB) Winter wheat (WW) – Seed Potatoes (SP) – Winter wheat (WW)

Methods

- □ Eddy-covariance measurements over the crop (2.8 m): sonic anemometer (Solent Research Gill R3) + infrared gas analyzer (Li-COR Li-7200)
- Measurements active since 2004
- Crop biomass samplings
- □ U* filtering

Data gap-filling and flux partitioning based on air temperature with the online tool provided by the MPI-BGC Jena (www.bgc-jena.mpg.de/~MDIwork/eddyproc/)

Conclusions

- \Box At LTO, the crop tends to behave as a small source (NBP ranges about [0.05-0.15] kg C m⁻² y⁻¹ on average)
- Next to climate, the crop carbon budget is largely affected by management
- The estimated average amount of carbon lost each year by the crop would represent [1-2] % of the soil C stock over [0-60cm], which is not a negligible amount