
Submitted to INFORMS Journal on Computing

manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A Machine Learning-Based Approximation
of Strong Branching

Alejandro Marcos Alvarez, Quentin Louveaux, Louis Wehenkel
Université de Liège, Department of EE&CS,

Sart-Tilman B28, Liège, Belgium, {amarcos,q.louveaux,l.wehenkel}@ulg.ac.be

We present in this paper a new generic approach to variable branching in branch-and-bound for mixed-

integer linear problems. Our approach consists in imitating the decisions taken by a good branching strategy,

namely strong branching, with a fast approximation. This approximated function is created by a machine

learning technique from a set of observed branching decisions taken by strong branching. The philosophy of

the approach is similar to reliability branching. However, our approach can catch more complex aspects of

observed previous branchings in order to take a branching decision. The experiments performed on randomly

generated and MIPLIB problems show promising results.

Key words : branch-and-bound; variable branching; strong branching; supervised machine learning

1. Introduction

Most Mixed-Integer Programming (MIP) solvers are based on the branch-and-bound

(B&B) algorithm (Land and Doig 1960). Over the years, numerous fundamental features,

such as cutting planes, presolve, heuristics or advanced branching strategies, have been

added to the solvers in order to improve their performances (Achterberg and Wunderling

2013). However, among those additional features, branching, i.e., the process that divides

the feasible region into two or more subproblems, is probably the key component that most

affects the efficiency of the solver (Achterberg and Wunderling 2013).

Branching strategies have been extensively studied in the literature, and we briefly review

here some key contributions to that field. The simplest criterion, known as most-infeasible

branching, consists in branching on the variable that has the greatest fractional part, i.e.,

the variable whose fractional part is closest to 0.5. However, most-infeasible branching is

known to perform poorly in practice, and other methods, such as pseudocost branching

1

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

(Benichou et al. 1971), have been developed later. Pseudocost branching keeps a history

of the dual bound increases observed during previous branchings, and uses this informa-

tion to estimate the dual bound improvements for each candidate variable at the current

node. Although pseudocost branching is very efficient in terms of computation time, the

branchings performed at the very beginning of the B&B tree might be inefficient, as no

reliable history has been recorded at that time. Later, Applegate et al. (1995) proposed

a strategy, known as strong branching, that overcomes this limitation. Strong branching

explicitly evaluates the dual bound increase for each fractional variable by actually com-

puting the LP relaxations resulting from the branching on that variable. The variable

that leads to the largest increases is chosen as branching variable for the current node.

Despite its apparent simplicity, strong branching is, up to now, the most efficient branch-

ing strategy in terms of the number of nodes in the B&B tree. However, this efficiency

is achieved at the expense of computation time, and strong branching is unfortunately

intractable in practice. More recently, Achterberg et al. (2005) proposed to combine the

advantages of both pseudocost and strong branching in a branching strategy called reli-

ability branching. Many other branching strategies have been developed for the past 15

years, such as inference branching (Li and Anbulagan 1997), non-chimerical branching

(Fischetti and Monaci 2012b), active constraint branching (Patel and Chinneck 2007), and

cloud branching (Berthold and Salvagnin 2013), but their thorough description is beyond

the scope of this paper. Finally, let us mention hybrid branching (Achterberg and Berthold

2009), which is probably today’s state-of-the-art branching strategy. Hybrid branching effi-

ciently combines five scores obtained from other common branching strategies (including

reliability branching as well as other strategies used in CSP and SAT solving), and is

used as the main branching strategy in CPLEX 12.5 (Achterberg and Wunderling 2013).

More specifically, hybrid branching uses the considered branching strategies to compute

five different scores for each candidate variable. These scores are first normalized and then

merged into a single value through a weighted sum. The variable that maximizes that sum

is chosen as branching variable.

Following the ideas introduced by pseudocost branching, researchers have recently

started investigating branching strategies that rely on information collected through multi-

ple B&B restarts. Backdoor branching (Fischetti and Monaci 2012a) and information-based

branching (Karzan et al. 2009) are two key contributions to this aspect. The mechanism

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

of these strategies is two-phased. During the first phase, the optimization of the current

problem is restarted from the beginning multiple times (using several heuristics to guide

the search), and the algorithm collects some information about each run (e.g., the conflict

clauses or the most important branching variables). In the second phase, the real optimiza-

tion starts, and the harvested information is used to take efficient branching decisions. The

idea behind those methods is to quickly and superficially explore different parts of the B&B

tree and to decide, based on those shallow explorations, which part it is best to focus on.

The work presented in this paper relies on the very same basic idea. Finally, let us mention

the work of Di Liberto et al. (2013) who recently proposed a method that uses machine

learning techniques to switch between several branching heuristics. More specifically, they

present an approach that first determines which strategy, among a restricted set of branch-

ing heuristics, produces the best results for a given set of problem instances. Then, when

a new problem is solved by B&B, the algorithm checks, at several points in time, which

strategy should be used at that particular moment, based on the optimal strategies that

were found in the first phase. Although the main mechanism of their approach is different,

the ideas are very similar, and their method has strong ties with the one developed in this

paper. Indeed, their method also relies on the idea of leveraging prior information through

principled learning techniques, but, while they use machine learning to switch between

existing branching strategies, we use machine learning to provide a quick approximation

to an existing branching strategy.

Our goal is to overcome the large computational overhead resulting from a strong

branching decision. Speeding up strong branching-like decisions is not a new idea, as it is

already behind other branching heuristics, such as reliability branching or non-chimerical

branching. In this paper, we propose an alternative approach that uses machine learning

techniques in order to imitate the strong branching decisions in an efficient way. More

specifically, we propose a two-phased approach that yields a ‘learned’ branching strategy

that can be used within B&B as an approximation of strong branching. The first phase

involves solving a set of training problems with strong branching as branching heuristic in

order to generate a set of branching decisions. During this phase, each branching decision

is recorded in a dataset, called training set, that will then be used by a machine learning

algorithm to learn a function imitating strong branching decisions. In the second phase, we

introduce, as any other branching heuristic, the learned heuristic into B&B, and evaluate

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

its efficiency on a set of test problems. An important characteristic of our approach is

that the first phase needs only to be done once. Indeed, once the branching heuristic is

learned from the training set, it can be included directly into B&B, without requiring a

new training phase each time a problem needs to be solved. In that sense, we can say that

the training phase can be done in an off-line fashion, thus avoiding useless computational

overhead at the beginning of each optimization.

In this paper, we address binary Mixed-Integer Linear Programming (MILP) problems

of the form

minimize c⊤x (1)

s.t. Ax≤ b

xj ∈ {0,1} ∀j ∈ I

xj ∈R+ ∀j ∈C,

where c ∈R
n, A∈R

m×n and b∈R
m respectively denote the cost coefficients, the coefficient

matrix and the right-hand side. I and C are two sets containing the indices of the integer

and continuous variables, respectively. We denote the solution at a given node of the B&B

by x∗, and we will call, with a little abuse, the variable xi, with i∈ I, a fractional variable

if it has a fractional value in the current solution x∗. The set of fractional variables of x∗

is denoted F .

2. Preliminaries

In this section, we first present the concept of branching in a general functional form, and

then briefly introduce the field of machine learning for the beginner.

2.1. Functional form of branching strategies

Any branching heuristic can be formulated in a generic functional form B such that

B : (i, ·) 7→R,

where i represents the index of the candidate branching variable, and · represents unspec-

ified arguments of B. The branching variable i∗ is chosen as the one that maximizes1 the

scores given by B, i.e.,

i∗ = argmax
i∈F

B (i, ·) .

1 If ties occur, the variable that arrives first in the lexicographical order, i.e., the one with the smallest i, is chosen.

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

The functional form B is different for every branching criterion, and proposing a new

branching heuristic merely consists in providing a new B, including its implementation and

the specification of its arguments. For example, in the case of most-infeasible branching

(MIB), Bmib only requires the current fractional solution to output a score for a variable.

Then, the functional form of MIB is written Bmib (i, x
∗) =min (1−x∗

i , x
∗
i). Another example

is strong branching, which requires more input arguments, as it needs more information

to take a decision. The functional form of strong branching (SB) is Bsb (i, c,A, b, x∗, l∗, u∗),

where l∗ and u∗ represent the lower and upper bounds of the variables at the current

node, respectively. The implementation of Bsb consists in creating two subproblems by

changing the upper and lower bounds of variable i in the current problem to ⌊x∗
i ⌋ and

⌈x∗
i ⌉, respectively. The LP-relaxations of the subproblems thus created are then solved,

and, for each subproblem, the difference between the objective value of the subproblem

and the current problem is computed. These differences represent the objective increases

observed between the current node and the subproblems when tighter bounds are used for

the variable i. The output of Bsb is finally given by the product of the computed differences.

2.2. Learning functions from data

A very popular use of supervised machine learning (ML) concerns the automatic construc-

tion, or learning, of functions from data. Basically, ML is used in the context of some task T ,

for which a function f mapping the current state of T to a given output space is needed.

Such a function maps inputs from a space Φ to an output space Y , i.e., f (·)∈F : Φ 7→ Y ,

where F is the set of possible mappings from Φ to Y . Formally, a general machine learning

algorithm A is a procedure of the form A : (Φ×Y)N 7→ F that takes as input a dataset

D = ((φi, yi))
N

i=1 ∈ (Φ×Y)N , and that outputs a function f ∈F that minimizes some loss

function L on the dataset D, where N represents the number of elements in the dataset.

Stated in mathematical terms, the function f ∗ resulting from the application of algorithm

A to dataset D is given by

f ∗ =A (D)∈ argmin
f∈F

N∑

i=1

L (yi, f (φi)) .

Ideally, the input of function f should be the state of T itself. However, representing

the complete state is often a difficult problem, e.g., because its dimensionality is too high,

or because it contains a lot of irrelevant information. For this reason, in the machine

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

learning community, the inputs φ of the functions f are usually ‘features’ representing a

simplified version of the state of T . Formally, features are characteristics extracted from

the state of T , such that those features represent part of the current state, ideally the

part that most influences the output. The features, which are typically designed by human

experts, often determine the efficiency of learning methods. As they represent only part of

the current state of the task, it is important that the parts described by the features are

indeed correlated with the desired output. Note that in this context, ‘correlated’ should

not be understood in the traditional sense of the Pearson or Spearman correlation between

individual features and the desired output. It rather means that it is crucial, for the learning

algorithm to work, that there exists a strong enough statistical dependency, possibly taking

very complex forms, between the set of chosen features and the desired output. For this

reason, the features need to be carefully designed and tailored to the problem of interest.

3. Learning branching decisions

Since machine learning techniques can be used to approximate (learn) functions, and since

branching can be determined by a function, it seems natural to consider machine learning as

a reasonable way to build a branching strategy. We must stress here that machine learning

does not provide a completely new branching criterion, as it requires the observation of

real branching decisions to actually build a branching function. Rather than providing a

new branching heuristic, machine learning constructs a branching strategy that imitates

the decisions of the branching strategy that generated the dataset D, in our case, strong

branching.

Our goal is to create an efficient approximation of strong branching that could be used

in practice. In other words, the branching heuristic Blearned (i, φi) that we propose is such

that

Blearned (i, φi)≈Bsb (i, c,A, b, x∗, l∗, u∗) , (2)

where φi is a feature vector describing the state of the optimization problem at the current

node from the perspective of variable i. The feature vector φi does not describe the current

node of the B&B tree, but rather describes variable i in the current node. Those features

need to be efficiently computable and have to well represent the problem at the current

B&B node from the perspective of variable i. Section 4 explains in more detail how the

features are designed.

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

3.1. Dataset generation

The first step towards the creation of Blearned with a machine learning technique is to

generate a dataset from which the function can be learned.

In order to create a dataset of pairs (φi, yi), we optimize the problems contained in some

sets, which we call training problems, with B&B, using strong branching as branching

heuristic. At each node explored by B&B during the optimization of those problems, the

strong branching score Bsb (i, c,A, b, x∗, l∗, u∗) = si is computed for each fractional variable

i∈F together with the features φi associated with that variable. These features-score pairs

are then saved in the dataset Dsb, which is then used as input of the learning algorithm to

generate a learned branching strategy Blearned (i, φi).

3.2. Machine learning algorithm

Once the features are designed to correctly describe each variable of the problem, and once

a dataset of input-output pairs is available, we can apply a machine learning algorithm

to learn a function from the dataset. In this work, we use Extremely Randomized Trees

(Geurts et al. 2006), or ExtraTrees. ExtraTrees are based on an ensemble of regression

trees and are a slightly modified version of the better known random forests (Breiman

2001). Our choice is motivated by the simplicity and the robustness of ExtraTrees. Indeed,

the performance of ExtraTrees is very robust against the choice of their parameters, and

the default values provided in (Geurts et al. 2006) work very well in practice.

4. Features describing the current subproblem

As mentioned earlier, the features are the key component of our approach, since they

critically condition the efficiency of the method. On the one hand, the features need to

be complete and precise in order to describe the subproblem as accurately as possible. On

the other hand, they need to be efficient to compute. It is important to keep this tradeoff

in mind, because there are many good features that could have a very positive impact on

the efficiency of the method, but that are too expensive to compute. An example of such

features is the objective increase obtained when branching is performed on a variable, i.e.,

the numbers that are actually used by strong branching to take a decision. Such features

cannot be used in our approach, because of the huge computational overhead required by

their computation.

Before describing the features we used, we need to emphasize the three properties that

these features should have. First, the number of features needs to be independent of the

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

size of the problem instance. Indeed, the learning algorithm that we selected can cope

only with datasets in which all the feature vectors φi have the same number of elements.

If this number depends on the size of the problem, a different branching strategy must

be learned for each problem size. This is of course an impractical situation, and enforcing

the size-independency is the best way to obtain a single learned branching strategy that

can be used for any problem size. This might seem a straightforward requirement, but the

size-independency is not trivial to achieve. Elementary features such as c, A or b cannot

be used directly in that case. Another important requirement is that the features should

be invariant with respect to irrelevant changes in the problem, such as row or column

permutation. Finally, the developed features need to be independent of the scale of the

problem, i.e., if the parameters (c, A, and b) are multiplied by some factor, the features

should remain identical.

The features φi that we describe assume that the problem is in the canonical form (1).

Each feature vector φi is computed for variable i at the current node, before being fed

to Blearned. The features are divided into three subsets representing different aspects of

the optimization state, namely ‘static problem features’, ‘dynamic problem features’, and

‘dynamic optimization features’.

Note that, Hutter et al. (2014) recently introduced a certain number of features describ-

ing MIP problems that are related to the ones presented in this work. Some of our features

are based on similar ideas as theirs. Specifically, features related to Aji/bj, Aji/
∑

Aji, and

the slack variables are used in both studies. There is one major difference however in the

design and use of those features. In Hutter et al. (2014)’s work, the features are aggregated

(either over the constraints or over the variables), because they are used to characterize a

problem instance as a whole. In our work, on the other hand, the features are not aggre-

gated over the variables, because they are meant to characterize a single variable within

the problem. The fact that the design choices are different is not surprising. Indeed, since

the use of ML in this paper and in Hutter et al. (2014)’s paper is in pursuit of different

goals, the features that are relevant for each task are likely to be different.

4.1. Static problem features

The first set of features are computed from the sole parameters c, A and b. They are

calculated once and for all and they represent the static state of the problem. Their goal

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9

is to give an overall description of the problem. These features are designed such that the

aforementioned requirements are fulfilled.

The first three of them are devoted to the description of the current variable in terms

of the cost function. Besides the sign of the element ci, we also use |ci|/
∑

j:cj≥0 |cj| and

|ci|/
∑

j:cj<0 |cj |. Distinguishing both is important, because the sign of the coefficient in

the cost function is of utmost importance for evaluating the impact of a variable on the

objective value.

The second class of static features is meant to represent the influence of the coefficients

of variable i in the coefficient matrix A. We develop three measures, namely M 1
j , M

2
j and

M 3
j , that describe variable i within the problem in terms of the constraint j. Once the

values of the measure Mj are computed, the corresponding features added to the feature

vector φi are given by minj Mj and maxj Mj. The rationale behind this choice is that,

when it comes to describing the constraints of a given problem, only the extreme values

are relevant.

The first measure M 1
j is composed of two parts: M 1+

j computed by Aji/ |bj|, ∀j such that

bj ≥ 0, and M 1−
j computed by Aji/ |bj |, ∀j such that bj < 0. The minimum and maximum

values ofM 1+
j andM 1−

j are used as features, to indicate by how much a variable contributes

to the constraint violations.

Measure M 2
j models the relationship between the cost of a variable and the coefficients

of the same variable in the constraints. Similarly to the first measure, M 2
j is split in

M 2+
j = |ci|/Aji, ∀j with ci ≥ 0, and M 2−

j = |ci|/Aji, ∀j with ci < 0. As for the previous

measure, the feature vector φi contains both the minimum and the maximum values of

M 2+
j and M 2−

j .

Finally, the third measure M 3
j represents the inter-variable relationships within

the constraints. The measure is split into M 3+
j = |Aji|/

∑
k:Ajk≥0 |Ajk| and M 3−

j =

|Aji|/
∑

k:Ajk<0 |Ajk|. M
3+
j is in turn divided in M 3++

j and M 3+−
j that are calculated using

the formula of M 3+
j for Aji ≥ 0 and Aji < 0, respectively. The same splitting is performed

for M 3−
j . Again, the minimum and maximum of the four M 3

j computed for all constraints

are added to the features.

4.2. Dynamic problem features

The second type of features is related to the solution of the problem at the current B&B

node. Those features contain the proportion of fixed variables at the current solution, the

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

up and down fractionalities of variable i, the up and down Driebeek penalties (Driebeek

1966) corresponding to variable i, normalized by the objective value at the current node,

and the sensitivity range of the objective function coefficient of variable i, also normalized

by |ci|.

4.3. Dynamic optimization features

The last set of features is meant to represent the overall state of the optimization. These

features summarize global information that is not available from the single current node.

When branching is performed on a variable, the objective increases are stored for that

variable. From these numbers, we extract statistics for each variable: the minimum, the

maximum, the mean, the standard deviation, and the quartiles of the objective increases.

These statistics are used as features to describe the variable for which they were com-

puted. As those features should be independent of the scale of the problem, we divide

each objective increase by the objective value at the current node, such that the computed

statistics correspond to the relative objective increase for each variable. Finally, the last

feature added to this subset is the number of times variable i has been chosen as branching

variable, normalized by the total number of branchings performed.

5. Experiments

This section describes the experimental procedure that we set up in order to assess the

efficiency of our approach. It is composed of three steps: (1) we generate a dataset Dsb

using strong branching, (2) we learn from it a branching heuristic, and (3) we compare

the learned heuristic with other branching strategies on various problems. This section

describes the different datasets used within our approach as well as the experimental setup.

5.1. Problem sets

We use two types of problem sets, namely randomly generated problem sets and standard

benchmark problems from the MIPLIB (Bixby et al. 1996, Achterberg et al. 2006). The

random problem sets are used for both training (steps 1 and 2) and assessing (step 3) the

heuristics, whereas MIPLIB problems are only used for assessment (step 3). The reasons

for using random problems are two-fold.

First, the typical evaluation procedure in machine learning consists in evaluating a func-

tion learned from a dataset on a different dataset. If the function is both learned and

evaluated on the same dataset, the estimated performance might be too optimistic and

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

might thus not reflect the overall performance of the learned function. To prevent this,

the datasets are separated into two parts: the first part is used for training and the sec-

ond part is used for assessing the method. Since the MIPLIB is the traditional evaluation

benchmark for MIP methods, and in order to comply with the machine learning assessment

methodology, we decided to use other problems, i.e., the randomly created problems, to

learn our branching heuristic. Note that it would have been possible to use other tech-

niques, such as k-fold cross validation, to correctly evaluate the performance of different

branching strategies on the MIPLIB without requiring new problems to be created.

Secondly, the performance of any machine learning procedure increases with the size and

the variety of the dataset used by the learning algorithm. In theory, the expected accuracy

of the ML procedure over the entire input space of the learned function is a monotonically

increasing function of the size of the dataset D. As this dataset is created by optimizing

a set of problems, increasing the number of problems in the problem set yields a bigger

dataset D. It is thus to our advantage to consider as many problems as possible to create D.

The problems used in this work are rather small. The small problem size used in our

experiments is justified by the need to observe the entire B&B tree in the dataset D.

Indeed, the learned branching heuristic can only reflect the branching decisions found in

the dataset. If the training problems are too big or too difficult to solve, the dataset will

only contain branching decisions observed at the beginning of the B&B tree, and will

not reflect all the possible branching decisions. It is thus important that the dataset also

contains branching decisions from the very bottom of the B&B tree. This consideration has

to be taken into account when choosing the problems to include in our problem sets. For

this reason, the size of the training problems has to be limited, so that the problems can be

solved as much as possible with strong branching in a reasonable amount of time. Similarly,

since the size of the training problems is limited, so is the size of the test problems.

5.1.1. Random problems. We randomly generate three sets of binary-integer or mixed

binary-integer minimization problems that each contain two different types of constraints.

The possible constraints are chosen among set covering (SC), multi-knapsack (MKN),

bin packing (BP), and equality constraints (EQ). We generated problems that contain

constraints of type BP-EQ, BP-SC, and MKN-SC. The number of variables, the number

of constraints, and the values of the elements in the matrices c, A and b are randomly

generated. More specifically, we arbitrarily choose some bounds on the number of variables,

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 1 Randomly generated problem sets. ‘all’, ‘bin’ and ‘cont’ indicate the total number, and the number of binary and
continuous variables in the problems, respectively.

Variables

all bin cont
prob. min max min max min max

BPEQ train 25 201 225 150 179 43 54
BPEQ test 50 193 234 145 185 43 54
BPSC train 25 109 136 109 136 0 0
BPSC test 50 109 137 109 137 0 0
MKNSC train 25 188 358 188 358 0 0
MKNSC test 50 185 342 185 342 0 0

Table 2 Randomly generated problem sets. ‘all’, ‘EQ’, ‘BP’, ‘SC’ and ‘MKN’ specify the total number, and the number of
equality, bin packing, set covering, and multi-knapsack constraints in the problem sets, respectively.

Constraints

all EQ BP SC MKN
min max min max min max min max min max

BPEQ train 94 138 39 50 55 89 0 0 0 0
BPEQ test 94 135 39 50 53 89 0 0 0 0
BPSC train 80 110 0 0 50 73 28 40 0 0
BPSC test 80 112 0 0 50 75 27 39 0 0
MKNSC train 108 156 0 0 0 0 61 77 42 84
MKNSC test 108 160 0 0 0 0 58 77 43 89

Table 3 List of problems from MIPLIB3 and MIPLIB2003.

10teams aflow30a aflow40b air03 air04 air05 cap6000 dcmulti

egout fiber fixnet6 harp2 khb05250 l152lav lseu mas74

mas76 misc03 misc06 misc07 mitre mod008 mod010 mod011

modglob nw04 opt1217 p0033 p0201 p0282 p0548 p2756

pk1 pp08a pp08aCUTS qiu rentacar rgn set1ch stein27

stein45 tr12-30 vpm1 vpm2

on the number of constraints, and on the elements contained in the matrices c, A and b.

Then, we generate the parameters defining the problem with a distribution that is uniform

between the chosen bounds.

The number of variables in these problems is of the order of a couple of hundreds, and

the number of constraints is of the order of one hundred. As some of those problems are

going to be used to generate the training dataset, we randomly split each family into

a ‘train’ and a ‘test’ set. In the end, we have six datasets ‘BPEQ train’, ‘BPEQ test’,

‘BPSC train’, ‘BPSC test’, ‘MKNSC train’ and ‘MKNSC test’. The test sets contain 50

problems each, while the train sets each contain 25. Tables 1 and 2 summarize statistics

about the randomly generated problems. More specifically, those tables respectively contain

the bounds on the number of variables and on the number of constraints of the problems

belonging to each randomly generated set. Remember that, as explained in the previous

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

section, the generated problems are intentionally kept small. Those datasets are available

online2, or can be provided upon request.

5.1.2. MIPLIB. We also compare different branching strategies on a set composed of

problems from MIPLIB3 (Bixby et al. 1996) and MIPLIB2003 (Achterberg et al. 2006).

We eliminated the non-binary problems and the problems that were too big in order to

match the size of the randomly generated problems. The set finally contains 44 problems.

Table 3 lists the test problems taken from MIPLIB3.0 and MIPLIB2003.

5.2. Experimental setup

The computations have been performed on a 16-core computer, equipped with two Intel

Xeon E5520 (2.27GHz, 8 cores, and 8MB cache) and 32GB RAM, running CentOS 5.4 and

CPLEX 12.2. We ran our experiments on our selection of the MIPLIB problems and on

the problem sets ‘BPEQ test’, ‘BPSC test’ and ‘MKNSC test’, described in Section 5.1.

The training dataset Dsb is generated from the problem sets ‘BPEQ train’, ‘BPSC train’

and ‘MKNSC train’.

To assess only the performance of the different branching strategies, we disable heuris-

tics, cuts, and presolve in CPLEX (except for the last experiment). For each optimiza-

tion, only one core is made available, so that parallelism is disabled as well. We com-

pare our approach to five other branching strategies, namely random branching (random),

most-infeasible branching (MIB), non-chimerical branching (NCB) (Fischetti and Monaci

2012b), full strong branching (FSB), and reliability branching (RB) (Achterberg et al.

2005). Random branching is a branching strategy in which the variable is randomly chosen

among the fractional variables. We use the perseverant version of non-chimerical branching

(Fischetti and Monaci 2012b), and the default parameter values λ= 4 and η =8 for reliabil-

ity branching (Achterberg et al. 2005). Moreover, the strong branching LP-relaxations are

solved to optimality, and there is no limit on the number of candidate fractional variables

at each node.

The dataset Dsb contains around 7× 107 training examples. This number is too large

and we thus use only 105 of them, randomly selected without replacement from the original

dataset Dsb. The chosen parameters of ExtraTrees are N = 100, k = |φ|, and nmin = 20.

More details about the parameters of the ExtraTrees can be found in the supplemental

2 http://www.montefiore.ulg.ac.be/~ama/research.php

http://www.montefiore.ulg.ac.be/~ama/research.php

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

material. In this setup and on the considered computers (without parallelization), training

the branching heuristic takes around 6 minutes. Naturally, this time can be amortized

if the same heuristic is used to optimize several problems and even reduced by slightly

changing the parameters of the ExtraTrees (at the potential expense of performance).

In this work, we use only a fraction of the dataset that we generate in order to train a

model that approximates strong branching. This choice is motivated by the fact that the

computational efficiency of ExtraTrees is heavily dependent on the size of the training set.

The more samples there are in the set, the longer it takes to predict a value. This conflicts

with the speed requirements of our method. There exist other learning techniques that do

not suffer from this limitation and for which more data could be used without impacting

the prediction speed. Note that including more data is beneficial to the prediction accuracy,

but, in our case, the gain in the accuracy of the strong branching estimates is not sufficient

to counterbalance the additional time taken to make a prediction.

Two types of experiments are performed: one where the optimization is stopped early

based on a limit either on the number of explored nodes or on the time spent, and another

one where the problems are solved until optimality however long it takes. For the first

experiment, the rationale behind the two considered limits is to evaluate different aspects

of the branching strategies. When the optimization is limited by the number of explored

nodes, we can compare the branching strategies based on the closed gap3 and on the time

spent to actually explore that given number of nodes. This sheds some light on how good a

branching strategy is compared to other branching strategies. In these conditions, FSB is

usually the best in terms of closed gap and the worst in terms of time spent. On the other

hand, the time limit is useful to assess different strategies in practical conditions where

the number of nodes matters less than the time required to solve a problem. The closed

gap is also used in that experiment to assess how far from the optimum the optimization

is after a given amount of time. In this case, FSB is typically outperformed, in terms of

closed gap, by other strategies. The second experiment (without limit) is used to assess

all branching strategies in a practical situation where the problems need to be solved to

optimality.

3 The closed gap (∈ [0; 1]) is the ratio of the difference between the current dual bound and the objective value of
the initial LP-relaxation, to the difference between the optimal objective value and the objective value of the initial
LP-relaxation. A value close to 1 indicates that the optimization is almost finished.

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15

5.3. Results

We now present a selection of results comparing our approach to other branching strategies

(random, MIB, NCB, FSB, and RB). Tables 4, 5, and 7 report these results. In these tables,

‘Cl. Gap’ refers to the closed gap, and ‘S/T’ indicates the number of problems solved within

the provided nodes or time limit, versus the total number of problems. ‘Nodes’ and ‘Time’

respectively represent the number of explored nodes and the time spent (in seconds) before

the optimization either finds the optimal solution, or stops earlier because of one stopping

criterion. Those values are measured separately for each problem and are averaged in the

tables.

5.3.1. Experiments with limits. Table 4 first shows the results achieved on the random

test problem sets for both stopping criteria. Those results show that our approach succeeds

in efficiently imitating FSB. Indeed, the experiments performed with a limit on the number

of nodes show that the closed gap is only 9% smaller, while the time spent is reduced by

85% compared to FSB. The experiments with a time limit show that the reduced time

required to take a decision allows the learned strategy to explore more nodes, and to thus

further close the gap than FSB. While these results are encouraging, they are still slightly

worse than the results obtained with RB, which is both closer to FSB and faster than our

approach.

In addition to the previously presented branching strategies, Table 4 contains one extra

experiment for each family of random problems. The normal learned branching strategy,

i.e., (nmin = 20, all), is learned based on a dataset containing samples from the three types

of training problems, i.e., BPSC, BPEQ, and MKNSC. We also investigate, for each type

of random problem, the effect of training the branching strategy from a dataset generated

with training problems of the same type as the target test problems. In other words, when

we test this strategy on the BPSC test problems, the branching rule is learned based

on samples generated with BPSC train problems only, which is indicated in the table by

(nmin = 20, BPSC only). Overall, the results show that the strategies learned only on the

type of problem on which they are tested perform a bit better than the strategy learned

from a dataset containing a mixture of the three types of problems. This indicates that the

approach can benefit from training on a specific type of problem, and that the performance

of the learned branching policy improves when the problems to optimize are aligned with

the problems that are used to generate the training dataset.

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 4 Optimization results for the random problems.

Node limit (105 nodes) Time limit (10 min.)

BPSC test problems S/T Cl. Gap Time (s) S/T Cl. Gap Nodes

Random 0/50 0.36 6.73 0/50 0.65 879,696
MIB 0/50 0.39 7.02 0/50 0.68 836,675
NCB 0/50 0.54 117.45 0/50 0.66 45,048
FSB 0/50 0.55 243.70 0/50 0.63 27,157
RB 0/50 0.52 28.29 1/50 0.77 223,369
Learned (nmin =20, all) 0/50 0.48 56.36 0/50 0.67 112,918
Learned (nmin =20, BPSC only) 0/50 0.51 60.54 0/50 0.70 109,066

BPEQ test problems

Random 0/50 0.33 17.44 0/50 0.55 366,982
MIB 0/50 0.40 17.27 0/50 0.61 368,309
NCB 0/50 0.81 290.49 0/50 0.86 22,605
FSB 0/50 0.83 681.75 0/50 0.82 9,492
RB 0/50 0.80 74.53 10/50 0.95 90,273
Learned (nmin =20, all) 0/50 0.75 77.97 5/50 0.92 106,057
Learned (nmin =20, BPEQ only) 0/50 0.77 85.68 4/50 0.92 86,370

MKNSC test problems

Random 0/50 0.56 7.26 24/50 0.95 587,123
MIB 0/50 0.60 7.39 31/50 0.97 496,475
NCB 0/50 0.67 102.23 5/50 0.83 51,749
FSB 0/50 0.68 135.41 5/50 0.83 46,832
RB 0/50 0.65 27.79 18/50 0.94 173,513
Learned (nmin =20, all) 0/50 0.64 28.37 18/50 0.93 177,006
Learned (nmin =20, MKNSC only) 0/50 0.64 34.93 16/50 0.92 165,412

Table 5 then shows the results obtained with a node limit and a time limit on the

MIPLIB problems. In those experiments, we separated the problems that were solved by all

methods from the problems that were not solved by at least one of the compared methods.

Similarly to the results obtained on the random problem sets, the proposed branching

strategy compares favorably with strong branching both on the node limit and time limit

experiments. Nonetheless, the results obtained with the learned branching strategy are

still a little below the results obtained with reliability branching. The results presented

here are averaged over all considered problems. The detailed results for all problems in the

MIPLIB set are available in the supplemental material.

5.3.2. Experiments without limits. Finally, Tables 6 and 7 report the results form our

last set of experiments. We apply all branching heuristics on all MIPLIB problems initially

contained in Table 3, and let the computers solve the problem for five days4. After this time

4 The computers are given a time budget of five CPU days, after which the B&B process stops automatically. The
only exception is the problem instance pp08aCUTS, which is solved in due time by all branching heuristics except for

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

Table 5 Optimization results for the MIPLIB problems of Table 3.

Solved by all methods Not solved by at least one method

Node limit = 105 nodes S/T Nodes Time (s) S/T Cl. Gap Nodes Time (s)

Random 9/44 1,974 2.24 0/44 0.43 10,000 124.50
MIB 9/44 2,532 6.03 6/44 0.50 9,274 233.19
NCB 9/44 879 10.70 11/44 0.72 7,322 232.74
FSB 9/44 692 14.48 12/44 0.73 7,184 629.87
RB 9/44 1,123 15.78 10/44 0.64 7,806 219.39
Learned (nmin =20, all) 9/44 1,194 2.73 10/44 0.62 8,073 162.87

Time limit = 10 min

Random 19/44 29,588 30.50 0/44 0.47 867,837 600.01
MIB 19/44 14,931 14.68 3/44 0.52 764,439 561.27
NCB 19/44 7,051 41.55 5/44 0.73 101,408 513.00
FSB 19/44 5,687 70.84 3/44 0.66 49,008 534.65
RB 19/44 6,895 27.38 7/44 0.69 257,375 515.40
Learned (nmin =20, all) 19/44 14,008 34.12 5/44 0.63 130,081 512.72

limit, the problems that are not solved by all branching methods are discarded. We create

thus a new set of MIPLIB problems (reported in Table 6) that is used to compare different

branching strategies until the end of the optimization procedure. Additionally, in another

experiment, we let CPLEX use cuts and heuristics (with default CPLEX parameters) in

the course of the optimization in order to observe their impact on the efficiency of each

branching strategy. The optimization results are shown in Table 7.

Overall, our method compares favorably to its competitors when cuts and heuristics are

used by CPLEX. Indeed, in that case, our learned branching strategy is the fastest (almost

three times faster than the second fastest method, i.e., MIB) to solve all the 30 considered

problems. Note that the apparent bad results of RB are due to three problems that are

especially hard for that branching heuristic (air04, air05, and mod011). If we remove them

from the computation of the average optimization time, both RB and the learned branching

strategy take 74 sec on average to solve the remaining 27 problems. That average time is

still 40% smaller than the average time of the runner-up (MIB). These experiments show

that our strategy behaves very well when cuts and heuristics are used by CPLEX to solve

the problems. The detailed results are available in the supplemental material.

Things appear to be different when cuts and heuristics are not used. Indeed, based on

the results of Table 7, our method seems to be very slow, but the large number of nodes

the random branching strategy. We therefore granted additional budget for that configuration (problem + branching
heuristic) in order to maximize the number of problems considered in our experiments.

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 6 Updated list of problems from MIPLIB3 and MIPLIB2003. This list contains the problems from Table 3 that are
solved to optimality with each branching heuristic in less than five days.

aflow30a air03 air04 air05 cap6000 dcmulti

egout khb05250 l152lav lseu mas76 misc03

misc06 misc07 mitre mod008 mod010 mod011

nw04 p0033 p0201 pk1 pp08aCUTS qiu

rentacar rgn stein27 stein45 vpm1 vpm2

Table 7 Optimization results (until termination) for the updated list of the MIPLIB problems (Table 6).

w/o cuts and heuristics w/ cuts and heuristics

Nodes Time (s) Nodes Time (s)

Random 7,809,341 29,377.10 152,564 503.38
MIB 3,472,431 7,387.09 105,692 356.52
NCB 145,244 1,136.34 34,500 1,451.74
FSB 129,047 1,597.12 25,941 895.36
RB 318,384 886.12 51,913 2,836.93
Learned (nmin =20, all) 1,037,055 3,023.34 57,652 124.94

and the large amount of time is actually due to a small number of problems for which

the method does not work well. These problems artificially increase the average number of

nodes and average amount of time reported in the table. A finer analysis can be conducted

by interpreting the detailed results reported in the supplemental material. When done,

we see that our method is faster than RB in 11/30 cases and faster than FSB in 21/30

cases, thus alleviating the a priori bad performance of the learned branching strategy. A

possible explanation for why our method does not perform well on those problems can be

that these problems, because too large, are not well represented in the dataset that we use

in order to learn the branching strategy. This again shows the importance of considering

a large and diverse dataset for the learning of an efficient branching strategy.

6. General observations about the proposed method

The goal of this section is to give some general observations about the method that we

propose in this paper, and to try to draw a parallel with other existing branching strategies.

6.1. Comparison with other branching strategies

The idea behind our approach can be seen as a combination of the ideas behind reliability

branching and information-based branching. On the one hand, our approach is similar to

reliability branching in the sense that we want to find a fast proxy to strong branching.

However, the approaches differ in the means by which the information is collected, and in

how the information is used. On the other hand, our approach is similar to information-

based branching in the sense that it tries to use general information collected during a

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

preliminary phase in order to speed up the current optimization. In both cases, the idea

is to obtain a broad overview of the B&B process and to use this overview to take sen-

sible branching decisions. The main difference lies in the way information is collected:

information-based branching harvests information through multiple restarts on the same

problem, while our method collects optimization information obtained through the opti-

mization of a set of different optimization problems. Another important difference is that,

in the case of information-based branching, the collection phase needs to be performed for

each problem to optimize, while our approach only requires the information to be collected

once. In the light of Table 4, it is to be noted, however, that customizing the branching

strategy to the problem being optimized could supposedly yield better results, which would

be in favor of the approach that involves collecting some data for each problem to solve.

6.2. Another branching strategy?

The underlying mechanism of our approach is not different from other branching strategies.

Indeed, in all cases, features are computed from the current state of the problem (in some

way or another) and then used to decide which variable to branch on. Those features can

be, e.g., the fractionality of the variable in the current solution (used in most-infeasible and

reliability branching), the pseudocosts of the variables (used in reliability branching), or the

objective increases observed when the branching is performed (used in strong branching).

In our approach, we include many types of features, including some of the aforementioned.

The difference lies in how these features are used. While, in traditional methods, the

features are assumed to explain everything and are all used to take the branching decision,

we let the learning algorithm decide which features are relevant and which are not. The

hope is that the machine will make a better choice than the humans when they decide

to choose some features and to leave others aside. In that sense, we can see our method

as a very general branching strategy that can imitate any other heuristic, as long as the

appropriate features are provided.

For example, in its current implementation, our approach can be tied to pseudocost

and reliability branching. Indeed, our features include the value of the fractionality of the

variables and their pseudocosts (see Section 4). This means that all the information that

pseudocost branching uses to take a decision is provided to the learning algorithm. Our

approach can thus, in principle, use only the pseudocosts and the variable fractionalities to

take a branching decision, if the learning algorithm decides that these features best explain

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

the desired output. But the learning algorithm can also produce a different branching cri-

terion, using other features together with the pseudocosts, hopefully better approximating

the desired output. Note that the desired output that we are focusing on is the strong

branching score, which is different from the score used by pseudocost branching to take a

branching decision.

6.3. Connections with the no free lunch theorems

The no free lunch theorems (NFL) (Wolpert and Macready 1997) state that, for certain

types of mathematical problems, the performance of any optimization algorithm, averaged

over all problems in the class, is equivalent. Additional NFL results indicate that matching,

or aligning, algorithms to problems is a way to achieve better performance. This suggests

that incorporating knowledge about the problem into the optimization algorithm has the

potential to improve its efficiency. Although NFL theorems do not apply to MIP solving

and branch-and-bound (Wolpert and Macready 1997), a similar behavior is often observed

in practice. For example, while strong branching is very effective (in terms of the number

of explored nodes) on general MIP problems, this strategy is not optimal for Constraint

Satisfaction Problems (CSP), where other branching strategies are preferred. This indi-

cates that, even if the NFL theorems do not apply as is, it is realistic to imagine that

incorporating prior knowledge about the problem could help to improve the performance of

traditional MIP solving approaches. The results published in prior work in similar contexts

further support this conclusion (see, e.g., Hutter et al. 2010).

Surprisingly, in the MIP optimization area, hybrid branching (Achterberg and Berthold

2009) is the only strategy that takes this fact into consideration. Hybrid branching com-

bines, in a weighted sum, several criteria known to be effective for different types of prob-

lems. This probably explains why hybrid branching outperforms other branching strategies

across multiple problem sets (Achterberg and Berthold 2009, Achterberg and Wunderling

2013). Despite its simplicity, hybrid branching is a state-of-the-art strategy used in the last

CPLEX release (Achterberg and Wunderling 2013). However, one might be interested in

what would happen if the criteria were combined in a more elaborated way.

Although our work is completely devoted to the imitation of strong branching, we believe

that the same framework can be applied to adapt the branching heuristic to the problem

being optimized. In that aspect, the proposed method has a great potential to achieve

better performance across large sets of problems, as the branching strategy generated using

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

machine learning can, in principle, imitate decisions made by different branching strategies

at the same time.

7. Conclusion

In this paper, we proposed a new approach to design branching strategies for MILP prob-

lems. It consists in observing branching decisions taken by a supposedly good strategy,

FSB in our case, and to imitate those decisions with a strategy obtained by machine learn-

ing. To this end, we develop a set of features that are used to characterize the current

state of the problem in the B&B tree from the perspective of a particular variable. This

set of features is then used as the input of the learned branching heuristic in order to

predict the expected increase of the objective function that a branching on this variable

would produce. The experiments show promising results and suggest that further research

in this direction may lead to a practical approach to tune branching strategies to particular

subclasses of MILP problems.

The underlying mechanism of our approach is not different from other popular branch-

ing heuristics. Indeed, in both cases, features are computed from the current state of the

problem, and then used to decide which variable to branch on. In our approach, however,

we may include many types of features, including those used by popular strategies. The

approach is able to sort out which of those features are useful, and to automatically deter-

mine how to combine them to rank branching decisions. In that sense, we can see our

method as a very general branching strategy that can imitate any other heuristic, as long

as the appropriate features are provided. Our method can also discover novel heuristics by

combining the features used by several popular methods with novel ones.

Beyond the imitation of existing strategies, another interesting research direction could

be to design learning procedures that can distinguish, in a dataset of decisions obtained

from different heuristics, the decisions that are productive, from those that are counter-

productive.

Acknowledgments

This work was funded by the Dysco IUAP network of the Belgian Science Policy Office and the Pascal2

network of excellence of the EC. AMA’s thesis is funded by a FRIA scholarship from the F.R.S.-FNRS. The

scientific responsibility rests with the authors.

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

References

Achterberg, T., T. Berthold. 2009. Hybrid branching. Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems . Springer, 309–311.

Achterberg, T., T. Koch, A. Martin. 2005. Branching rules revisited. Operations Research Letters 33 42–54.

Achterberg, T., T. Koch, A. Martin. 2006. MIPLIB 2003. Operations Research Letters 34 361–372.

Achterberg, T., R. Wunderling. 2013. Mixed integer programming: analyzing 12 years of progress. Facets of

Combinatorial Optimization. Springer, 449–481.

Applegate, D., R.E. Bixby, V. Chvátal, W. Cook. 1995. Finding cuts in the tsp (a preliminary report). Tech.

Rep. 05, DIMACS.

Benichou, M., J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, O. Vincent. 1971. Experiments in mixed-

integer linear programming. Mathematical Programming 1 76–94.

Berthold, T., D. Salvagnin. 2013. Cloud branching. Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems . Springer, 28–43.

Bixby, R.E., S. Ceria, C. McZeal, M.W.P. Savelsbergh. 1996. An updated mixed integer programming library:

MIPLIB 3.0.

Breiman, L. 2001. Random forests. Machine learning 45 5–32.

Di Liberto, G., S. Kadioglu, K. Leo, Y. Malitsky. 2013. Dash: Dynamic approach for switching heuristics.

arXiv preprint arXiv:1307.4689 .

Driebeek, N.J. 1966. An algorithm for the solution of mixed integer programming problems. Management

Science 12 576–587.

Fischetti, M., M. Monaci. 2012a. Backdoor branching. INFORMS Journal on Computing 25 693–700.

Fischetti, M., M. Monaci. 2012b. Branching on nonchimerical fractionalities. Operations Research Letters

40 159–164.

Geurts, P., D. Ernst, L. Wehenkel. 2006. Extremely randomized trees. Machine learning 63 3–42.

Hutter, F., H. H. Hoos, K. Leyton-Brown. 2010. Automated configuration of mixed integer programming

solvers. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-

tion Problems . Springer, 186–202.

Hutter, F., L. Xu, H. H. Hoos, K. Leyton-Brown. 2014. Algorithm runtime prediction: Methods & evaluation.

Artificial Intelligence 206 79–111.

Karzan, F.K., G.L. Nemhauser, M.W.P. Savelsbergh. 2009. Information-based branching schemes for binary

linear mixed integer problems. Mathematical Programming Computation 1 249–293.

Land, A.H., A.G. Doig. 1960. An automatic method of solving discrete programming problems. Economet-

rica: Journal of the Econometric Society 497–520.

Marcos Alvarez, Louveaux, and Wehenkel: A Machine Learning-Based Approximation of Strong Branching
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

Li, C.M., Anbulagan. 1997. Look-ahead versus look-back for satisfiability problems. Principles and Practice

of Constraint Programming-CP97 . Springer, 341–355.

Patel, J., J.W. Chinneck. 2007. Active-constraint variable ordering for faster feasibility of mixed integer

linear programs. Mathematical Programming 110 445–474.

Wolpert, D.H., W.G. Macready. 1997. No free lunch theorems for optimization. Evolutionary Computation,

IEEE Transactions on 1 67–82.

Submitted to INFORMS Journal on Computing

manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A Machine Learning-Based
Approximation of Strong Branching

Supplemental material

Alejandro Marcos Alvarez, Quentin Louveaux, Louis Wehenkel
Université de Liège, Department of EE&CS,

Sart-Tilman B28, Liège, Belgium, {amarcos,q.louveaux,l.wehenkel}@ulg.ac.be

These appendices constitute the supplemental material of the paper entitled A Machine Learning-Based

Approximation of Strong Branching made available to the reader.

Appendix A: About ExtraTrees parameters

As mentioned in Section 3.2 of the main document, the performances of the ExtraTrees are very robust

with respect to the choice of their parameters. The ExtraTrees actually have three parameters: N , which is

the number of trees in the method, k, which is the number of features evaluated at each node during the

creation of the trees, and nmin, which is the number of learning samples contained in a node below which

that node becomes a leaf. The number of trees is set to the default value of N = 100 in our experiments. The

parameter k, which represents the number of features that are considered for the creation of the next node

in the ExtraTrees, is also set to a default value of k = |φ|. The exact understanding of these parameters is

beyond the scope of this appendix, and we refer the reader to (Geurts et al. 2006) for a deeper explanation.

Tables 1, 2, 3 and 4 compare the influence of the parameter nmin on the performance of the method.

The experiments are the same as those shown in Section 5.3 of the main document. The main observation

that can be made from those tables is that the parameter nmin influences the computational time, but not

the accuracy of the taken decisions. Indeed, the greater the nmin, the faster the method. This behavior was

expected, as a large nmin produces smaller trees, generally yielding a reduced computational time required to

take a branching decision. On the other hand, the third column of the tables 1 and 4, and the sixth column

of the table 2, all of which correspond to the gap closed after the node limit has been reached, show that

1

Marcos Alvarez, Louveaux, and Wehenkel: Machine Learning Approx. of Strong Branching - Supplemental material
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 1 Results for the problems of BPEQ test, BPSC test and MKNSC test.

Node limit (105 nodes) Time limit (10 min.)
S/T Cl. Gap Time (s) S/T Cl. Gap Nodes

Learned - nmin =1 0/150 0.62 72.23 16/150 0.81 104,090
Learned - nmin =5 0/150 0.62 63.28 19/150 0.82 114,389
Learned - nmin =10 0/150 0.62 61.91 21/150 0.83 122,038
Learned - nmin =20 0/150 0.62 54.23 23/150 0.84 131,994

Table 2 Results for the MIPLIB problems. Node limit = 105 nodes.

Solved by all methods Not solved by at least one method
S/T Nodes Time (s) S/T Cl. Gap Nodes Time (s)

Learned - nmin =1 9/44 1,436 3.42 11/44 0.63 8,084 110.70
Learned - nmin =5 9/44 1,229 3.25 10/44 0.62 8,176 103.34
Learned - nmin =10 9/44 1,437 5.45 10/44 0.63 8,083 84.75
Learned - nmin =20 9/44 1,194 2.73 10/44 0.62 8,073 162.87

Table 3 Results for the MIPLIB problems. Time limit = 10 min.

Solved by all methods Not solved by at least one method
S/T Nodes Time (s) S/T Cl. Gap Nodes Time (s)

Learned - nmin =1 19/44 13,887 36.19 5/44 0.64 112,810 510.72
Learned - nmin =5 19/44 15,310 38.46 5/44 0.64 116,493 525.46
Learned - nmin =10 19/44 14,647 37.42 7/44 0.65 124,346 499.55
Learned - nmin =20 19/44 14,008 34.12 5/44 0.63 130,081 512.72

Table 4 Results for the problems from BPSC test. Comparison between the strategy learned on the entire dataset and the
strategy learned only from BPSC train examples.

Node limit (105 nodes) Time limit (10 min.)
S/T Cl. Gap Time (s) S/T Cl. Gap Nodes

Learned - nmin =1 0/50 0.47 76.20 0/50 0.63 83,938
Learned - nmin =5 0/50 0.47 67.31 0/50 0.64 94,826
Learned - nmin =10 0/50 0.47 68.58 0/50 0.65 102,941
Learned - nmin =20 0/50 0.48 56.36 0/50 0.67 112,918

Learned - nmin =1 - BPSC only 0/50 0.51 90.69 0/50 0.67 77,174
Learned - nmin =5 - BPSC only 0/50 0.51 79.53 0/50 0.67 82,535
Learned - nmin =10 - BPSC only 0/50 0.51 72.79 0/50 0.68 92,586
Learned - nmin =20 - BPSC only 0/50 0.51 60.54 0/50 0.70 109,066

the accuracy of the taken decision is not influenced by nmin in the range of tested values. These observations

illustrate that the method is actually robust to the choice of nmin.

Besides the experiments included in this appendix, further work should focus on a more detailed study of

the influence of the different parameters of the ExtraTrees on the performance of the optimization procedure.

Marcos Alvarez, Louveaux, and Wehenkel: Machine Learning Approx. of Strong Branching - Supplemental material
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

Table 5 List of problems from MIPLIB3 and MIPLIB2003.

10teams aflow30a aflow40b air03 air04 air05 cap6000 dcmulti

egout fiber fixnet6 harp2 khb05250 l152lav lseu mas74

mas76 misc03 misc06 misc07 mitre mod008 mod010 mod011

modglob nw04 opt1217 p0033 p0201 p0282 p0548 p2756

pk1 pp08a pp08aCUTS qiu rentacar rgn set1ch stein27

stein45 tr12-30 vpm1 vpm2

Table 6 Updated list of problems from MIPLIB3 and MIPLIB2003. This list contains the problems from Table 5 that are
solved to optimality with each branching heuristic in less than five days.

aflow30a air03 air04 air05 cap6000 dcmulti

egout khb05250 l152lav lseu mas76 misc03

misc06 misc07 mitre mod008 mod010 mod011

nw04 p0033 p0201 pk1 pp08aCUTS qiu

rentacar rgn stein27 stein45 vpm1 vpm2

Appendix B: Detailed experimental results

This appendix contains the detailed experimental results for the MIPLIB problems used in our experiments.

Averaging the following results over all problems gives the aggregated results shown in the main paper. The

detailed results are given in Tables 7 through 20.

The first set of tables, i.e., Tables 7 through 14, reports the results for the MIPLIB problems contained

in Table 5 when limits are set either on the number of nodes or on the time spent. The B&B version that is

used for these experiments is pure, i.e., no cuts nor heuristics are used.

The second set of tables, i.e., Tables 15 through 20, reports the optimization results for the problems

contained in Table 6. These problems are obtained by keeping from the initial list the problems that are

solved within a 5 days time limit with all considered branching strategies. Tables 15 through 20 then report

the optimization results with no time (or node) limit on the second list of MIPLIB problems. Additionally,

the second half of these tables contain the results when CPLEX’s cuts and heuristics are used in the course

of the optimization. The first half still corresponds to the pure version of B&B.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

4
A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 7 Detailed results for the MIPLIB problems (1/4). Node limit = 105 nodes.

Problem names 10teams aflow30a aflow40b air03 air04 air05 cap6000 dcmulti egout fiber fixnet6

LP Obj. 917 983.17 1,005.66 338,864 55,535.40 25,877.60 -2,450,000 183,976 149.59 156,083 1,200.88

True Obj. 924 1,158 1,170 340,160 56,100 26,374 -2,450,000 188,182 568.10 405,935 3,983

Fin. by all 0 0 0 1 0 0 0 0 0 0 0

Method

Random Fin. 4 5 5 0 4 4 5 5 4 5 5

Obj. 917 1,051.18 1,043.31 340,160 55,946.50 26,234.50 -2,450,000 187,298 562.60 189,746 1,573.11

Nodes 10,000 10,000 10,000 25 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Time 364.40 9.35 44.47 1.45 2,219.56 1,173.48 30.70 5.61 1.12 5.39 4

Cl. Gap 0 0.39 0.23 1 0.68 0.72 0.41 0.79 0.99 0.13 0.13

MIB Fin. 4 5 5 0 4 5 5 0 0 5 5

Obj. 920 1,059.97 1,038.70 340,160 55,980.80 26,270.30 -2,450,000 188,182 568.10 184,391 2,004.30

Nodes 10,000 10,000 10,000 7 10,000 10,000 10,000 9,493 7,015 10,000 10,000

Time 251.55 10.44 46.41 0.60 5,965.28 1,516.76 29.02 4.44 0.79 5.91 4.12

Cl. Gap 0.43 0.44 0.20 1 0.74 0.79 0.41 1 1 0.11 0.29

NCB Fin. 0 5 5 0 0 0 5 0 0 5 5

Obj. 924 1,117.99 1,099.12 340,160 56,137 26,374 -2,450,000 188,182 568.10 359,328 2,528.38

Nodes 1,453 10,000 10,000 3 131 215 10,000 1,065 5,713 10,000 10,000

Time 456.18 98.16 354.31 2.04 1,146.13 772.90 147.50 2.99 1.94 52.82 74.06

Cl. Gap 1 0.77 0.58 1 1 1 0.44 1 1 0.81 0.48

FSB Fin. 0 5 5 0 0 0 5 0 0 5 5

Obj. 924 1,120.14 1,099.87 340,160 56,137 26,400 -2,450,000 188,182 568 362,329 2,482.51

Nodes 259 10,000 10,000 3 111 177 10,000 927 4,730 10,000 10,000

Time 1,215.41 217.34 979.50 2.75 3,249.42 3,840 159 4.83 2.16 267.72 246.11

Cl. Gap 1 0.78 0.58 1 1 1 0.44 1 1 0.83 0.46

RB Fin. 5 5 5 0 0 0 5 0 0 5 5

Obj. 917 1,103.69 1,089.99 340,160 56,137 26,374 -2,450,000 188,182 568.10 287,517 2,322.90

Nodes 10,000 10,000 10,000 3 3,601 1,489 10,000 1,013 9,143 10,000 10,000

Time 1,200.43 37.74 136.16 0.53 2,786.84 1,461.74 118 1.79 2.37 18.77 18.36

Cl. Gap 0 0.69 0.52 1 1 1 0.44 1 1 0.53 0.40

Learned Fin. 0 5 5 0 0 4 5 0 0 5 5

Obj. 924 1,064.88 1,039.41 340,160 56,137 26,284.40 -2,450,000 188,182 568.10 313,565 2,239.68

Nodes 1,739 10,000 10,000 3 3,833 10,000 10,000 1,565 3,007 10,000 10,000

Time 108.16 57.10 146.12 0.48 1,648.75 2,237.31 45.80 2.76 1.31 42.17 61.90

Cl. Gap 1 0.47 0.21 1 1 0.82 0.44 1 1 0.63 0.37

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

5

Table 8 Detailed results for the MIPLIB problems (2/4). Node limit = 105 nodes.

Problem names harp2 khb05250 l152lav lseu mas74 mas76 misc03 misc06 misc07 mitre mod008

LP Obj. -74,300,000 95,900,000 4,656.36 834.68 10,482.80 38,893.90 1,910 12,841.70 1,415 114,741 290.93

True Obj. -73,900,000 107,000,000 4,722 1,120 11,801.20 40,005.10 3,360 12,850.90 2,810 115,155 307

Fin. by all 0 0 0 0 0 0 1 1 0 0 0

Method

Random Fin. 5 4 4 5 5 5 0 0 4 5 4

Obj. -74,300,000 107,000,000 4,700.21 1,005.77 10,860.40 39,280.80 3,360 12,851.10 2,294.29 115,094 305.69

Nodes 10,000 10,000 10,000 10,000 10,000 10,000 1,179 527 10,000 10,000 10,000

Time 16.92 6.17 32.30 1.10 3.37 3.04 0.51 0.69 10.44 182.61 1.50

Cl. Gap 0.16 0.98 0.67 0.60 0.29 0.35 1 1.02 0.63 0.85 0.92

MIB Fin. 5 0 4 5 5 5 0 0 4 0 0

Obj. -74,300,000 107,000,000 4,705.10 1,062.44 10,877 39,301.10 3,360 12,850.90 2,574.11 115,155 307

Nodes 10,000 7,477 10,000 10,000 10,000 10,000 629 551 10,000 986 9,091

Time 15.67 4.95 35.04 1.11 3.42 3.08 0.32 0.76 9 30.06 1.49

Cl. Gap 0.14 1 0.74 0.80 0.30 0.37 1 1 0.83 1 1

NCB Fin. 5 0 0 4 5 5 0 0 4 0 0

Obj. -74,100,000 107,000,000 4,722 1,093.29 11,041.20 39,371.80 3,360 12,850.90 2,487.50 115,155 307

Nodes 10,000 1,527 213 10,000 10,000 10,000 579 56 10,000 617 4,605

Time 95.59 4.76 4.53 5.16 28.23 23.72 2.65 0.58 152.62 49.18 2.85

Cl. Gap 0.63 1 1 0.91 0.42 0.43 1 1 0.77 1 1

FSB Fin. 5 0 0 5 5 5 0 0 4 0 0

Obj. -74,100,000 107,000,000 4,722 1,088.06 11,041.80 39,410.90 3,360 12,850.90 2,537.50 115,000 307

Nodes 10,000 1,502 238 10,000 10,000 10,000 371 55 10,000 709 3,333

Time 336 7.27 47.67 8.37 44.55 35.20 2.78 1.20 378.26 139 1.77

Cl. Gap 0.65 1 1 0.89 0.42 0.47 1 1 0.80 1 1

RB Fin. 5 0 0 4 5 5 0 0 4 0 0

Obj. -74,100,000 107,000,000 4,722 1,095.03 11,008 39,368 3,360 12,850.90 2,668.33 115,155 307

Nodes 10,000 1,685 611 10,000 10,000 10,000 641 62 10,000 1,900 2,927

Time 43.14 2.21 6.71 2.68 9.43 8.12 1.89 0.54 48.44 130.35 1.24

Cl. Gap 0.56 1 1 0.91 0.40 0.43 1 1 0.90 1 1

Learned Fin. 5 0 0 4 5 5 0 0 5 0 0

Obj. -74,100,000 107,000,000 4,722 1,083.23 10,914.30 39,321 3,360 12,850.90 2,410 115,155 307

Nodes 10,000 5,790 1,061 10,000 10,000 10,000 1,865 161 10,000 470 6,365

Time 59.84 8.29 8.77 6.90 21.87 16.38 2.29 0.53 35.01 26.31 3.81

Cl. Gap 0.41 1 1 0.87 0.33 0.38 1 1 0.71 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

6
A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 9 Detailed results for the MIPLIB problems (3/4). Node limit = 105 nodes.

Problem names mod010 mod011 modglob nw04 opt1217 p0033 p0201 p0282 p0548 p2756 pk1

LP Obj. 6,532.08 -62,100,000 20,400,000 16,310.70 -20.02 2,520.57 6,875 176,868 429.68 2,698.95 0

True Obj. 6,548 -54,600,000 20,700,000 16,862 -16 3,089 7,615 258,411 8,691 3,124 11

Fin. by all 0 0 0 1 0 1 1 0 0 0 0

Method

Random Fin. 4 5 5 0 5 0 0 5 5 5 5

Obj. 6,543 -57,400,000 20,500,000 16,862 -20.02 3,089 7,615 184,159 1,422.30 2,713.04 2.38

Nodes 10,000 10,000 10,000 259 10,000 4,859 649 10,000 10,000 10,000 10,000

Time 21.46 67.20 3.31 10.80 6.83 0.31 0.45 2.36 4.10 12.33 2.72

Cl. Gap 0.69 0.62 0.33 1 0 1 1 0.09 0.12 0.03 0.22

MIB Fin. 0 5 5 0 5 0 0 5 5 5 5

Obj. 6,548 -55,700,000 20,600,000 16,862 -20.02 3,089 7,615 181,564 512.38 2,702.63 3.05

Nodes 532 10,000 10,000 1,737 10,000 6,265 4,747 10,000 10,000 10,000 10,000

Time 3.74 77.08 3.34 45.13 6.82 0.35 2.37 2.56 3.16 9.92 2.66

Cl. Gap 1 0.84 0.57 1 0 1 1 0.06 0.01 0.01 0.28

NCB Fin. 0 5 5 0 5 0 0 0 5 5 5

Obj. 6,548 -55,000,000 20,600,000 16,862 -19.80 3,089 7,615 258,411 8,678.53 2,925.78 4.79

Nodes 96 10,000 10,000 355 10,000 745 173 624 10,000 10,000 10,000

Time 2.47 2,764.36 24.84 62.49 17 0.10 1.16 1.12 24.01 142.83 33.08

Cl. Gap 1 0.94 0.66 1 0.06 1 1 1 1 0.53 0.44

FSB Fin. 0 5 5 0 5 0 0 0 0 5 5

Obj. 6,548 -55,000,000 20,600,000 16,862 -19.77 3,089 7,615 258,411 8,690 2,942.55 4.54

Nodes 31 10,000 10,000 233 10,000 363 186 502 8,920 10,000 10,000

Time 3.33 3,815.40 63.53 82.35 150.78 0.07 3.71 1.29 24.80 483.98 53.50

Cl. Gap 1 0.94 0.70 1 0.06 1 1 1 1 0.57 0.41

RB Fin. 0 5 5 0 5 0 0 0 5 5 5

Obj. 6,548 -55,300,000 20,600,000 16,862 -19.92 3,089 7,615 258,411 4,881.29 2,715.33 4.07

Nodes 83 10,000 10,000 1,201 10,000 1,150 359 767 10,000 10,000 10,000

Time 3.26 991.97 9.07 116.97 16.27 0.15 1.51 0.97 20.97 64.81 9.59

Cl. Gap 1 0.90 0.58 1 0.03 1 1 1 0.54 0.04 0.37

Learned Fin. 0 5 5 0 5 0 0 0 5 5 5

Obj. 6,548 -55,900,000 20,600,000 16,862 -19.98 3,090 7,615 258,411 8,640.78 2,721.47 2.96

Nodes 123 10,000 10,000 235 10,000 291 612 8,614 10,000 10,000 10,000

Time 1.58 127.51 22.36 10.80 39.96 0.07 1.78 7.55 23.56 110.99 17.70

Cl. Gap 1 0.83 0.45 1 0.01 1 1 1 0.99 0.05 0.27

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

7

Table 10 Detailed results for the MIPLIB problems (4/4). Node limit = 105 nodes.

Problem names pp08a pp08aCUTS qiu rentacar rgn set1ch stein27 stein45 tr12-30 vpm1 vpm2

LP Obj. 2,748.35 5,480.61 -931.64 28,800,000 48.80 32,007.70 13 22 14,210.40 15.42 9.89

True Obj. 7,350 7,350 -132.87 30,400,000 82.20 54,537.80 18 30 131,000 20 13.75

Fin. by all 0 0 0 1 1 0 1 0 0 0 0

Method

Random Fin. 5 5 5 0 0 5 0 5 5 5 5

Obj. 4,270.24 6,265.34 -350.96 30,400,000 82.20 36,346.60 18 27.50 21,683.40 16.63 11.33

Nodes 10,000 10,000 10,000 41 5,947 10,000 4,283 10,000 10,000 10,000 10,000

Time 1.77 4.44 97.92 4.54 0.83 3.73 0.60 3.99 4.40 2.48 3.01

Cl. Gap 0.33 0.42 0.73 1 1 0.19 1 0.69 0.06 0.27 0.37

MIB Fin. 5 5 5 0 0 5 0 5 5 5 5

Obj. 4,601.49 6,269.34 -344.50 30,400,000 82.20 35,370.60 18 27.33 23,785.10 16.97 11.32

Nodes 10,000 10,000 10,000 26 4,147 10,000 4,681 10,000 10,000 10,000 10,000

Time 1.77 5.07 88.89 3.48 0.58 3.87 0.64 3.75 4.73 2.58 3.17

Cl. Gap 0.40 0.42 0.74 1 1 0.15 1 0.67 0.08 0.34 0.37

NCB Fin. 5 5 5 0 0 5 0 5 5 5 5

Obj. 5,078.04 6,729.63 -156.37 30,400,000 82.20 39,908.60 18 27.50 26,409.90 18.23 12.53

Nodes 10,000 10,000 10,000 26 2,735 10,000 3,240 10,000 10,000 10,000 10,000

Time 18.01 58.62 1,403.40 24.52 1.03 37.06 1.77 47.48 50.81 10.54 36.48

Cl. Gap 0.51 0.67 0.97 1 1 0.35 1 0.69 0.10 0.61 0.69

FSB Fin. 5 5 5 0 0 5 0 5 5 5 5

Obj. 5,174.11 6,697.22 -216.31 30,400,000 82.20 40,156.80 18 28.07 27,009.20 18.05 12.50

Nodes 10,000 10,000 10,000 26 2,849 10,000 2,141 10,000 10,000 10,000 10,000

Time 73.86 199.13 3,404.77 32.19 1.74 592 3.51 181.32 1,724.58 28.28 66.18

Cl. Gap 0.53 0.65 0.90 1 1 0.36 1 0.76 0.11 0.57 0.67

RB Fin. 5 5 4 0 0 5 0 5 5 5 5

Obj. 4,659.35 6,567.33 -143.30 30,400,000 82.20 40,319 18 27.50 26,487 17.78 11.89

Nodes 10,000 10,000 10,000 21 2,701 10,000 3,980 10,000 10,000 10,000 10,000

Time 6.23 15.49 436.22 18.23 0.77 9.60 1.41 21.27 13.61 5.67 19

Cl. Gap 0.42 0.58 0.99 1 1 0.37 1 0.69 0.11 0.52 0.52

Learned Fin. 5 5 5 0 0 5 0 5 5 5 5

Obj. 4,730.36 6,490.81 -279.63 30,400,000 82.20 39,600 18 27.50 24,065.90 16.95 11.35

Nodes 10,000 10,000 10,000 36 3,401 10,000 4,140 10,000 10,000 10,000 10,000

Time 42.04 51.12 152.68 4.32 1.20 120 3.13 31.06 366.50 16.07 31.62

Cl. Gap 0.43 0.54 0.82 1 1 0.34 1 0.69 0.08 0.33 0.38

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

8
A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 11 Detailed results for the MIPLIB problems (1/4). Time limit = 600 seconds.

Problem names 10teams aflow30a aflow40b air03 air04 air05 cap6000 dcmulti egout fiber fixnet6

LP Obj. 917 983.17 1,005.66 338,864 55,535.40 25,877.60 -2,451,540 183,976 149.59 156,083 1,200.88

True Obj. 924 1,158 1,168 340,160 56,137 26,374 -2,451,200 188,182 568.10 405,935 3,983

Fin. by all 0 0 0 1 0 0 1 1 1 0 0

Method

Random Fin. 4 5 5 0 5 4 0 0 0 5 5

Obj. 917 1,105.30 1,061.77 340,160 55,798.10 26,181.90 -2,451,380 188,182 568.10 217,681 1,837.57

Nodes 20,337 603,128 141,714 25 762 3,742 81,127 87,985 11,855 1,076,478 1,304,269

Time 600.01 600.01 600.01 1.45 600.02 600.02 263.52 46.17 1.31 600.01 600.01

Cl. Gap 0 0.70 0.35 1 0.44 0.61 0.47 1 1 0.25 0.23

MIB Fin. 4 5 5 0 5 5 0 0 0 5 5

Obj. 920.27 1,114.89 1,057.98 340,160 55,849.90 26,221 -2,451,340 188,182 568.10 216,400 2,481.05

Nodes 28,721 565,662 133,573 7 872 3,877 22,637 9,493 7,015 966,294 1,250,501

Time 600.01 600.01 600.01 0.60 600.10 600.02 64.25 4.48 0.80 600.01 600.01

Cl. Gap 0.47 0.75 0.32 1 0.52 0.69 0.59 1 1 0.24 0.46

NCB Fin. 0 5 4 0 5 5 0 0 0 0 5

Obj. 924 1,103.67 1,141.45 340,160 55,787.30 26,285.90 -2,451,340 188,182 568.10 405,935 2,766.69

Nodes 1,453 16,178 52,727 3 12 104 17,214 1,065 5,713 88,143 69,931

Time 456.95 600.01 600.01 2.04 600.06 600.01 261.12 3.04 1.99 275.17 600.01

Cl. Gap 1 0.69 0.84 1 0.42 0.82 0.59 1 1 1 0.56

FSB Fin. 5 4 5 0 5 5 0 0 0 4 5

Obj. 923 1,135.33 1,095.06 340,160 55,632.60 26,139.10 -2,451,340 188,182 568.10 380,621 2,593.05

Nodes 102 27,814 6,023 3 6 23 15,732 927 4,725 24,604 25,867

Time 600.10 600.01 600.01 2.76 600.18 600.16 254.21 4.87 2.23 600.01 600.01

Cl. Gap 0.86 0.87 0.55 1 0.16 0.53 0.59 1 1 0.90 0.50

RB Fin. 5 4 5 0 5 5 0 0 0 4 5

Obj. 917 1,149.05 1,102.58 340,160 55,823.60 26,227.20 -2,451,340 188,182 568.10 382,623 2,773.55

Nodes 4,018 147,308 44,452 3 247 612 18,989 1,013 9,143 289,900 343,403

Time 600.01 600.01 600.01 0.52 600.03 600.02 225.13 1.80 2.39 600.01 600.01

Cl. Gap 0 0.95 0.60 1 0.48 0.70 0.59 1 1 0.91 0.57

Learned Fin. 0 5 5 0 5 5 0 0 0 5 5

Obj. 924 1,104.13 1,046.45 340,160 55,992.20 26,224.70 -2,451,380 188,182 568.10 372,086 2,411.64

Nodes 1,739 120,872 43,281 3 553 2,083 66,587 1,565 3,007 150,084 104,029

Time 108.28 600.01 600.01 0.49 600.01 600.01 314.71 2.74 1.31 600.01 600.01

Cl. Gap 1 0.69 0.25 1 0.76 0.70 0.47 1 1 0.86 0.44

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

9

Table 12 Detailed results for the MIPLIB problems (2/4). Time limit = 600 seconds.

Problem names harp2 khb05250 l152lav lseu mas74 mas76 misc03 misc06 misc07 mitre mod008

LP Obj. -74,325,200 95,919,500 4,656.36 834.68 10,482.80 38,893.90 1,910 12,841.70 1,415 114,741 290.93

True Obj. -73,899,300 106,940,000 4,722 1,120 11,801.20 40,005.10 3,360 12,850.90 2,810 115,155 307

Fin. by all 0 1 1 1 0 0 1 1 1 0 1

Method

Random Fin. 5 0 0 0 5 4 0 0 0 5 0

Obj. -74,231,300 106,940,000 4,722 1,120 11,227.40 39,899.60 3,360 12,851.10 2,810 115,131 307

Nodes 219,404 11,555 57,281 112,035 1,092,445 1,662,754 1,179 527 82,081 63,300 10,307

Time 600.03 7.15 107.70 10.23 600.01 600.01 0.52 0.70 53.43 600.01 1.54

Cl. Gap 0.22 1 1 1 0.56 0.91 1 1.02 1 0.94 1

MIB Fin. 5 0 0 0 5 4 0 0 0 0 0

Obj. -74,236,200 106,940,000 4,722 1,120 11,245.90 39,888.20 3,360 12,850.90 2,810 115,155 307

Nodes 260,188 7,477 42,037 52,413 1,046,064 1,230,909 629 551 24,005 986 9,091

Time 600.03 4.96 96.91 6.10 600.01 600.01 0.33 0.77 15.88 30.04 1.51

Cl. Gap 0.21 1 1 1 0.58 0.89 1 1 1 1 1

NCB Fin. 5 0 0 0 5 4 0 0 0 0 0

Obj. -74,019,800 106,940,000 4,722 1,120 11,349.60 39,784.90 3,360 12,850.90 2,810 115,155 307

Nodes 52,988 1,527 213 18,533 171,360 234,705 579 56 32,873 617 4,605

Time 600.01 4.79 4.57 7.24 600.01 600.01 2.71 0.59 254.98 49.25 2.91

Cl. Gap 0.72 1 1 1 0.66 0.80 1 1 1 1 1

FSB Fin. 5 0 0 0 5 4 0 0 0 0 0

Obj. -74,040,700 106,940,000 4,722 1,120 11,310.80 39,786.60 3,360 12,850.90 2,810 115,155 307

Nodes 17,259 1,502 238 24,957 132,769 178,936 371 55 25,551 709 3,333

Time 600.02 7.40 48.17 16.65 600.01 600.01 2.83 1.22 591.65 139.18 1.81

Cl. Gap 0.67 1 1 1 0.63 0.80 1 1 1 1 1

RB Fin. 5 0 0 0 5 0 0 0 0 0 0

Obj. -74,034,800 106,940,000 4,722 1,120 11,481.90 40,005.10 3,360 12,850.90 2,810 115,155 307

Nodes 115,774 1,685 611 16,933 547,986 621,181 641 62 19,179 1,900 2,927

Time 600.03 2.24 6.76 3.99 600.01 496.77 1.92 0.53 59.87 130.55 1.25

Cl. Gap 0.68 1 1 1 0.76 1 1 1 1 1 1

Learned Fin. 5 0 0 0 5 4 0 0 0 0 0

Obj. -74,115,700 106,940,000 4,722 1,120 11,230.50 39,753 3,360 12,850.90 2,810 115,155 307

Nodes 90,166 5,790 1,061 23,707 301,782 403,888 1,865 161 97,197 470 6,365

Time 600.01 8.24 8.66 11.39 600.01 600.01 2.24 0.53 174.27 26.21 3.59

Cl. Gap 0.49 1 1 1 0.57 0.77 1 1 1 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

1
0

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 13 Detailed results for the MIPLIB problems (3/4). Time limit = 600 seconds.

Problem names mod010 mod011 modglob nw04 opt1217 p0033 p0201 p0282 p0548 p2756 pk1

LP Obj. 6,532.08 -62,122,000 20,430,900 16,310.70 -20.02 2,520.57 6,875 176,868 429.68 2,698.95 0

True Obj. 6,548 -54,558,500 20,740,500 16,862 -16 3,089 7,615 258,411 8,691 3,124 11

Fin. by all 1 0 0 1 0 1 1 0 0 0 0

Method

Random Fin. 0 5 5 0 5 0 0 5 5 5 4

Obj. 6,548 -55,956,000 20,607,600 16,862 -20.02 3,089 7,615 192,124 2,085.24 2,733.15 10.92

Nodes 27,055 82,469 1,293,324 259 687,665 4,859 649 1,712,728 1,285,332 529,728 1,346,758

Time 47.98 600.01 600.01 10.81 600.01 0.32 0.45 600.01 600.01 600.01 600.01

Cl. Gap 1 0.82 0.57 1 0 1 1 0.19 0.20 0.08 0.99

MIB Fin. 0 0 5 0 5 0 0 5 5 5 0

Obj. 6,548 -54,558,500 20,706,800 16,862 -20.02 3,089 7,615 184,470 524.95 2,705.50 11

Nodes 532 49,533 989,483 1,737 670,264 6,265 4,747 1,504,144 1,121,079 634,588 927,663

Time 3.76 419.22 600.01 44.77 600.01 0.37 2.43 600.01 600.01 600.01 382.10

Cl. Gap 1 1 0.89 1 0 1 1 0.09 0.01 0.02 1

NCB Fin. 0 5 5 0 5 0 0 0 0 5 5

Obj. 6,548 -56,157,900 20,682,800 16,862 -19.65 3,089 7,615 258,411 8,691 2,984.96 9.95

Nodes 96 2,518 176,901 355 260,272 745 173 624 18,782 34,910 151,768

Time 2.50 600.05 600.01 62.35 600.01 0.12 1.17 1.14 42.31 600.01 600.01

Cl. Gap 1 0.79 0.81 1 0.09 1 1 1 1 0.67 0.90

FSB Fin. 0 5 5 0 5 0 0 0 0 5 5

Obj. 6,548 -56,661,700 20,686,000 16,862 -19.66 3,089 7,615 258,411 8,691 2,950.75 9.23

Nodes 31 1,260 101,090 233 38,913 363 186 502 8,920 12,364 125,603

Time 3.36 600.03 600.01 82.23 600.01 0.07 3.78 1.31 25.15 600.01 600.01

Cl. Gap 1 0.72 0.82 1 0.09 1 1 1 1 0.59 0.84

RB Fin. 0 5 5 0 5 0 0 0 0 5 0

Obj. 6,548 -55,719,100 20,686,900 16,862 -19.76 3,089 7,615 258,411 8,691 2,763.77 11

Nodes 83 6,180 493,119 1,201 389,380 1,145 359 767 145,693 92,008 366,151

Time 3.27 600.06 600.01 117.90 600.01 0.15 1.52 0.97 174.10 600.01 358.78

Cl. Gap 1 0.85 0.83 1 0.07 1 1 1 1 0.15 1

Learned Fin. 0 0 5 0 5 0 0 0 0 5 5

Obj. 6,548 -54,558,500 20,600,400 16,862 -19.93 3,089 7,615 258,411 8,691 2,728.89 8.60

Nodes 123 46,907 259,394 235 135,183 291 612 8,614 86,603 53,100 362,383

Time 1.59 564.95 600.01 10.68 600.01 0.07 1.73 7.56 110.72 600.01 600.01

Cl. Gap 1 1 0.55 1 0.02 1 1 1 1 0.07 0.78

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

1
1

Table 14 Detailed results for the MIPLIB problems (4/4). Time limit = 600 seconds.

Problem names pp08a pp08aCUTS qiu rentacar rgn set1ch stein27 stein45 tr12-30 vpm1 vpm2

LP Obj. 2,748.35 5,480.61 -931.64 28,806,100 48.80 32,007.70 13 22 14,210.40 15.42 9.89

True Obj. 7,350 7,350 -132.87 30,356,800 82.20 54,537.80 18 30 130,596 20 13.75

Fin. by all 0 0 0 1 1 0 1 1 0 0 0

Method

Random Fin. 5 5 4 0 0 5 0 0 5 5 5

Obj. 5,198.76 6,756.75 -226.26 30,356,800 82.20 37,522.60 18 30 24,059.40 18.25 12.60

Nodes 1,725,290 1,103,681 74,246 41 5,947 1,351,176 4,283 63,115 1,251,955 1,608,231 1,455,001

Time 600.01 600.01 600.01 4.54 0.85 600.01 0.60 20.25 600.01 600.01 600.05

Cl. Gap 0.53 0.68 0.88 1 1 0.24 1 1 0.08 0.62 0.70

MIB Fin. 5 5 4 0 0 5 0 0 5 5 5

Obj. 5,625.42 6,817.68 -211.52 30,356,800 82.20 35,814.40 18 30 26,437.20 18.55 12.60

Nodes 1,525,690 1,001,129 80,056 26 4,147 1,174,846 4,681 86,199 1,049,709 1,563,746 1,331,407

Time 600.01 600.01 600.01 3.49 0.60 600.01 0.66 26.17 600.02 600.01 600

Cl. Gap 0.63 0.72 0.90 1 1 0.17 1 1 0.11 0.68 0.70

NCB Fin. 5 5 5 0 0 5 0 0 5 5 5

Obj. 5,800.71 6,988.93 -229.11 30,356,800 82.20 41,291.10 18 30 28,983.30 19.25 13.16

Nodes 223,945 86,240 4,592 26 2,735 122,404 3,239 44,219 120,874 501,139 142,007

Time 600.01 600.01 600.01 24.52 1.06 600.01 1.80 149.92 600.01 600.01 600

Cl. Gap 0.66 0.81 0.88 1 1 0.41 1 1 0.13 0.84 0.85

FSB Fin. 5 5 5 0 0 5 0 0 5 5 5

Obj. 5,666.07 6,864.18 -399.43 30,356,800 82.20 40,157.30 18 30 25,847.50 19 13.06

Nodes 87,459 32,806 1,360 26 2,849 10,008 2,141 24,835 3,496 282,230 105,079

Time 600.01 600.01 600.01 32.21 1.80 600.02 3.61 285.03 600.02 600.01 600.01

Cl. Gap 0.63 0.74 0.67 1 1 0.36 1 1 0.10 0.78 0.82

RB Fin. 5 5 0 0 0 5 0 0 5 0 5

Obj. 5,649.88 7,082.74 -132.87 30,356,800 82.20 42,397.10 18 30 30,376.10 20 12.79

Nodes 643,995 305,396 14,923 21 2,701 492,097 3,975 50,335 418,805 649,531 299,538

Time 600.01 600.01 477.28 18.20 0.78 600.01 1.44 70.49 600.01 446.18 600.01

Cl. Gap 0.63 0.86 1 1 1 0.46 1 1 0.14 1 0.75

Learned Fin. 5 5 5 0 0 5 0 0 5 5 5

Obj. 5,318.51 6,828.05 -179.74 30,356,800 82.20 40,650.20 18 30 24,425.10 18.18 12.24

Nodes 166,483 129,426 47,914 36 3,401 52,779 4,141 50,013 16,200 448,168 219,927

Time 600.01 600.01 600.01 4.32 1.20 600.01 3.12 97.31 600.03 600.01 600

Cl. Gap 0.56 0.72 0.94 1 1 0.38 1 1 0.09 0.60 0.61

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

1
2

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 15 Detailed results for the updated list of MIPLIB problems (1/3). Time limit = none.

Problem names aflow30a air03 air04 air05 cap6000 dcmulti egout khb05250 l152lav lseu

LP Obj. 983.17 338,864 55,535.40 25,877.60 -2,451,540 183,976 149.59 95,919,500 4,656.36 834.68

True Obj. 1,158 340,160 56,137 26,374 -2,451,200 188,182 568.10 106,940,000 4,722 1,120

Fin. by all 1 1 1 1 1 1 1 1 1 1

Method

Random Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,450,000 188,182 568.10 107,000,000 4,722 1,120

Nodes 15,800,801 25 130,471 88,241 81,127 87,985 11,855 11,555 57,281 112,035

Time 19,276.30 1.44 9,228.73 4,613 259.32 45.45 1.27 6.85 106.19 9.82

Cl. Gap 1 1 1 1 4.53 1 1 1.01 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 7,691,239 7 105,821 66,991 22,637 9,493 7,015 7,477 42,037 52,413

Time 9,109.39 0.59 14,008.90 5,642.01 63.34 4.44 0.77 4.77 95.61 5.78

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 137,895 3 131 215 17,214 1,065 5,713 1,527 213 18,533

Time 1,296.89 2.02 1,133.76 768.24 256.47 2.98 1.93 4.71 4.51 6.93

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 118,057 3 111 177 15,732 927 4,725 1,502 238 24,957

Time 2,073.98 2.73 3,224.13 3,812.73 250.59 4.81 2.13 7.22 47.27 15.98

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,340 188,182 568.10 106,940,000 4,722 1,120

Nodes 230,038 3 3,601 1,489 18,989 1,013 9,143 1,685 611 16,933

Time 898.36 0.52 2,760.38 1,449.85 222.89 1.77 2.31 2.17 6.66 3.83

Cl. Gap 1 1 1 1 0.59 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,380 188,182 568.10 106,940,000 4,722 1,120

Nodes 2,825,981 3 3,833 65,305 66,587 1,565 3,007 5,790 1,061 23,707

Time 8,755.66 0.48 1,613.37 5,141.27 310.41 2.30 1.07 7.13 7.88 8.99

Cl. Gap 1 1 1 1 0.47 1 1 1 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

1
3

Table 16 Detailed results for the updated list of MIPLIB problems (2/3). Time limit = none.

Problem names mas76 misc03 misc06 misc07 mitre mod008 mod010 mod011 nw04 p0033

LP Obj. 38,893.90 1,910 12,841.70 1,415 114,741 290.93 6,532.08 -62,122,000 16,310.70 2,520.57

True Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Fin. by all 1 1 1 1 1 1 1 1 1 1

Method

Random Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,851.10 2,810 115,155 307 6,548 -54,600,000 16,862 3,089

Nodes 2,306,195 1,179 527 82,081 288,265 10,307 27,055 517,237 259 4,859

Time 693.85 0.50 0.70 52.66 1,606.37 1.49 47.67 4,072.82 10.63 0.30

Cl. Gap 1 1 1.02 1 1 1 1 0.99 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 2,097,725 629 551 24,005 986 9,091 532 49,533 1,737 6,265

Time 760.55 0.32 0.77 15.67 29.70 1.45 3.70 410.90 44.66 0.35

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 783,139 579 56 32,873 617 4,605 96 19,617 355 745

Time 1,491.35 2.65 0.58 250.44 48.30 2.82 2.47 5,422.18 61.96 0.10

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 597,109 371 55 25,551 709 3,333 31 18,283 233 363

Time 1,466.68 2.78 1.19 581.55 137.07 1.75 3.28 6,409.24 81.40 0.06

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 621,181 641 62 19,179 1,900 2,927 83 25,873 1,201 1,145

Time 477.96 1.89 0.53 59.32 128.88 1.22 3.23 2,715.15 116.54 0.13

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 1,722,679 1,865 161 97,197 470 6,365 123 46,907 235 291

Time 2,232.96 1.90 0.50 153.05 24.88 2.94 1.51 544.07 10.78 0.05

Cl. Gap 1 1 1 1 1 1 1 1 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

1
4

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 17 Detailed results for the updated list of MIPLIB problems (3/3). Time limit = none.

Problem names p0201 pk1 pp08aCUTS qiu rentacar rgn stein27 stein45 vpm1 vpm2

LP Obj. 6,875 0 5,480.61 -931.64 28,806,100 48.80 13 22 15.42 9.89

True Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Fin. by all 1 1 1 1 1 1 1 1 1 1

Method

Random Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,400,000 82.20 18 30 20 13.75

Nodes 649 1,400,487 172,918,239 411,879 41 5,947 4,283 63,115 14,838,614 25,017,647

Time 0.44 585.92 793,141 2,523.43 4.48 0.81 0.58 19.91 17,681.30 27,319.80

Cl. Gap 1 1 1 1 1.03 1 1 1 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 4,747 927,663 63,144,303 337,813 26 4,147 4,681 86,199 8,953,981 20,513,193

Time 2.36 365.08 161,744 2,058.33 3.44 0.56 0.63 25.79 7,629.32 19,579.40

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 173 257,925 1,744,935 16,865 26 2,735 3,239 44,219 621,984 640,044

Time 1.15 957.74 17,663.10 1,610.02 24.15 1.02 1.76 146.05 735.40 2,188.64

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 186 306,805 1,561,719 49,693 26 2,849 2,141 24,835 465,770 644,925

Time 3.69 1,041.17 17,645.50 7,136.80 31.84 1.73 3.49 276.55 954.07 2,692.21

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 359 366,151 2,668,423 14,923 21 2,701 3,975 50,335 649,531 4,837,431

Time 1.49 344.92 4,815.89 476.17 17.96 0.75 1.39 69.08 431.22 11,571.10

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 612 1,545,753 7,272,423 116,593 36 3,401 4,141 50,013 6,606,414 10,639,147

Time 1.43 2,187.65 22,281.40 1,074.32 4.26 1.01 2.42 76.64 10,218.50 36,031.50

Cl. Gap 1 1 1 1 1 1 1 1 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

1
5

Table 18 Detailed results for the updated list of MIPLIB problems (1/3). Time limit = none and CPLEX’s cuts and heuristics applied.

Problem names aflow30a air03 air04 air05 cap6000 dcmulti egout khb05250 l152lav lseu

LP Obj. 983.17 338,864 55,535.40 25,877.60 -2,451,540 183,976 149.59 95,919,500 4,656.36 834.68

True Obj. 1,158 340,160 56,137 26,374 -2,451,200 188,182 568.10 106,940,000 4,722 1,120

Fin. by all 1 1 1 1 1 1 1 1 1 1

Method

Random Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,450,000 188,188 568.10 107,000,000 4,722 1,120

Nodes 58,369 0 50,847 29,149 180 641 3 5 45,433 185

Time 256.88 0.59 3,956.43 1,839.59 4.06 1.58 0.01 0.41 324.38 0.13

Cl. Gap 1 1 1 1 4.53 1 1 1.01 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,188 568.10 106,940,000 4,722 1,120

Nodes 35,205 0 46,139 38,793 60 125 3 3 29,545 97

Time 203.06 0.60 4,403.65 2,607.30 1.30 0.71 0.01 0.42 227.48 0.11

Cl. Gap 1 1 1 1 0.56 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,182 568.10 106,940,000 4,722 1,120

Nodes 115,987 0 365 487 20 8,135 7 9 187 223

Time 2,043.61 0.59 3,488.17 1,844.01 0.87 33.28 0.02 0.46 4.74 0.22

Cl. Gap 1 1 1 1 0.56 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,180 188,186 568.10 106,940,000 4,722 1,120

Nodes 31,323 0 231 211 49 40 7 5 169 133

Time 1,158.81 0.60 10,229.90 3,941.68 1.53 0.77 0.02 0.42 18.73 0.27

Cl. Gap 1 1 1 1 1.06 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,187 568.10 106,940,000 4,722 1,120

Nodes 84,014 0 336,711 78,761 20 429 7 7 459 99

Time 590.75 0.59 57,934.10 17,733.40 0.93 1.67 0.02 0.45 6.45 0.15

Cl. Gap 1 1 1 1 0.56 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 1,158 340,160 56,137 26,374 -2,451,350 188,195 568.10 106,940,000 4,722 1,120

Nodes 42,389 0 553 5,785 20 111 5 7 799 75

Time 296.91 0.60 237.80 969.80 0.74 0.87 0.02 0.44 7.27 0.17

Closed gap 1 1 1 1 0.56 1 1 1 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

1
6

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 19 Detailed results for the updated list of MIPLIB problems (2/3). Time limit = none and CPLEX’s cuts and heuristics applied.

Problem names mas76 misc03 misc06 misc07 mitre mod008 mod010 mod011 nw04 p0033

LP Obj. 38,893.90 1,910 12,841.70 1,415 114,741 290.93 6,532.08 -62,122,000 16,310.70 2,520.57

True Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Fin. by all 1 1 1 1 1 1 1 1 1 1

Method

Random Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,600,000 16,862 3,089

Nodes 2,869,383 1,009 7 55,815 15 1,589 1,505 58,297 255 1

Time 1,004.72 0.93 0.55 48.61 4.33 0.47 3.96 3,726.60 46.53 0.01

Cl. Gap 1 1 1 1 1 1 1 0.99 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 1,742,607 279 11 13,707 29 1,537 39 4,027 337 1

Time 518.99 0.47 0.56 13.28 4.27 0.47 0.65 333.87 51.31 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 400,115 455 7 26,769 20 783 13 160,639 39 1

Time 311.09 1.99 0.59 222.85 4.26 0.47 0.64 34,024.60 34.68 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 355,507 301 7 17,299 20 423 11 19,789 55 1

Time 394.68 3.60 0.61 410.78 4.44 0.52 0.91 6,564.28 47.72 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 561,667 305 9 19,231 15 1,755 115 64,870 1,213 1

Time 188.54 1.02 0.61 61.48 4.30 0.78 1.24 7,436.06 143.11 0.01

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 40,005.10 3,360 12,850.90 2,810 115,155 307 6,548 -54,558,500 16,862 3,089

Nodes 564,679 1,979 9 110,751 10 993 99 5,064 55 1

Time 307.45 3.43 0.56 212.24 4.05 0.67 1.03 541.92 34.02 0.01

Closed gap 1 1 1 1 1 1 1 1 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

M
a
r
c
o
s
A
lv
a
r
e
z
,
L
o
u
v
e
a
u
x
,
a
n
d

W
e
h
e
n
k
e
l:

M
a
c
h
in

e
L
e
a
r
n
in

g
A
p
p
ro

x
.
o
f
S
tro

n
g
B
ra

n
c
h
in

g
-
S
u
p
p
le
m
e
n
ta
l
m
a
te
r
ia
l

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

1
7

Table 20 Detailed results for the updated list of MIPLIB problems (3/3). Time limit = none and CPLEX’s cuts and heuristics applied.

Problem names p0201 pk1 pp08aCUTS qiu rentacar rgn stein27 stein45 vpm1 vpm2

LP Obj. 6,875 0 5,480.61 -931.64 28,806,100 48.80 13 22 15.42 9.89

True Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Fin. by all 1 1 1 1 1 1 1 1 1 1

Method

Random Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,400,000 82.20 18 30 20 13.75

Nodes 40 861,991 4,965 462,433 9 2,605 4,499 61,825 0 5,869

Time 0.73 265 8.08 3,565.69 12.75 0.60 0.78 22.17 0.02 4.95

Cl. Gap 1 1 1 1 1.03 1 1 1 1 1

MIB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 57 892,187 5,157 265,859 7 2,233 4,633 82,377 0 5,721

Time 0.83 272.01 7.98 1,999.22 12.93 0.51 0.80 27.61 0.01 5.15

Cl. Gap 1 1 1 1 1 1 1 1 1 1

NCB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 67 243,581 12,497 12,541 7 3,007 3,499 39,787 0 5,781

Time 1.31 430.17 68.16 913.26 14.27 1.80 1.79 90.07 0.01 14.19

Cl. Gap 1 1 1 1 1 1 1 1 1 1

FSB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 67 284,851 7,523 27,779 7 1,489 2,153 24,949 0 3,847

Time 2.60 651.97 70.38 3,074.14 14.23 0.82 3.46 244.19 0.02 18.59

Cl. Gap 1 1 1 1 1 1 1 1 1 1

RB Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 113 308,491 9,515 26,277 11 2,271 4,231 53,623 0 3,197

Time 1.13 153.21 22.80 745.02 14.98 0.83 1.58 58.58 0.01 4.18

Cl. Gap 1 1 1 1 1 1 1 1 1 1

Learned Fin. 0 0 0 0 0 0 0 0 0 0

Obj. 7,615 11 7,350 -132.87 30,356,800 82.20 18 30 20 13.75

Nodes 43 897,129 3,131 25,065 7 1,619 4,449 54,541 0 10,207

Time 0.88 651.99 8.18 363.04 13.03 0.65 2.78 69.59 0.01 18.03

Closed gap 1 1 1 1 1 1 1 1 1 1

The row ‘Cl. Gap’ refers to the gap closed at the end of the optimization whether it achieved optimality or not. The row ‘Fin. by all’ indicates whether all methods were able to

solve this problem to optimality. For each method, the ‘Fin.’ rows indicate the termination status of the optimization: 0 for optimality, 1 for unfeasibility, 2 for unboundedness,

3 for unfeasibility or unboundedness, 4 for another stopping criterion with a feasible solution found, and 5 for another stopping criterion with no feasible solution found.

Marcos Alvarez, Louveaux, and Wehenkel: Machine Learning Approx. of Strong Branching - Supplemental material
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

References

Geurts, P., D. Ernst, L. Wehenkel. 2006. Extremely randomized trees. Machine learning 63 3–42.

	ijoc.pdf
	ijoc-appendices-1.pdf

