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SUMMARY

A common endpoint of general anesthetics is behav-
ioral unresponsiveness [1], which is commonly
associated with loss of consciousness. However,
subjects can become disconnected from the envi-
ronment while still having conscious experiences,
as demonstrated by sleep states associated with
dreaming [2]. Among anesthetics, ketamine is
remarkable [3] in that it induces profound unre-
sponsiveness, but subjects often report ‘‘ketamine
dreams’’ upon emergence from anesthesia [4–9].
Here, we aimed at assessing consciousness during
anesthesia with propofol, xenon, and ketamine, inde-
pendent of behavioral responsiveness. To do so, in
18 healthy volunteers, we measured the complexity
of the cortical response to transcranial magnetic
stimulation (TMS)—an approach that has proven
helpful in assessing objectively the level of con-
sciousness irrespective of sensory processing and
motor responses [10]. In addition, upon emergence
from anesthesia, we collected reports about
conscious experiences during unresponsiveness.
Both frontal and parietal TMS elicited a low-ampli-
tude electroencephalographic (EEG) slow wave cor-
responding to a local pattern of cortical activation
with low complexity during propofol anesthesia, a
high-amplitude EEG slow wave corresponding to a
global, stereotypical pattern of cortical activation
with low complexity during xenon anesthesia, and a
wakefulness-like, complex spatiotemporal activation

pattern during ketamine anesthesia. Crucially, partic-
ipants reported no conscious experience after emer-
gence from propofol and xenon anesthesia, whereas
after ketamine they reported long, vivid dreams unre-
lated to the external environment. These results are
relevant because they suggest that brain complexity
may be sensitive to the presence of disconnected
consciousness in subjects who are considered un-
conscious based on behavioral responses.

RESULTS

TMS during Unresponsiveness Reveals Drug-Specific
Cortical Reactivity Patterns
Transcranial magnetic stimulation (TMS)-evoked electroenceph-
alographic (EEG) potentials (TEPs) recorded at the stimulation
site in the various experimental conditions (responsive wakeful-
ness, propofol-, xenon-, and ketamine-induced unresponsive-
ness) are depicted in Figure 1A for all the participants in the
study. As in previous studies [11], TEPs recorded after stimula-
tion of both Brodmann area (BA) 6 and BA 7 during responsive
wakefulness (Ramsay score 2) before drug administration were
low-amplitude, fast-frequency recurrent scalp waves (Figure 1A,
gray traces). After drug administration and behavioral unrespon-
siveness (Ramsay score 6), we observed distinct, drug-specific
TEP patterns that were consistent across participants. During
propofol-induced unresponsiveness, we recorded low-ampli-
tude, low-frequency positive-negative TEPs (Figure 1A, left).
Xenon-induced unresponsiveness was associated with large-
amplitude but stereotyped positive-negative TEPs (Figure 1A,
middle). Finally, during ketamine-induced unresponsiveness,
TEPs were characterized by fast-frequency components closely
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resembling those evoked during wakefulness (Figure 1A, right).
These results were confirmed when measuring the global
mean field power (GMFP) for each TMS-EEG session across
participants and sessions (Figure 1B). During wakefulness, the
GMFP time course induced by TMS was highly reproducible
across experiments (see Figure S1), in line with previous exper-
iments [12]. During propofol-induced unresponsiveness, GMFP
was reduced as compared to wakefulness soon after the first
components (p < 0.05 at 91–94, 102–141, and 247–287 ms
post-TMS). In contrast, xenon significantly increased GMFP
both at early and late time points (p < 0.05 at 33–38 and 77–
157 ms). Finally, ketamine GMFP was similar to wakefulness
except for a reduction at late time points (p < 0.05 at 248–
280 ms post-TMS).

We then characterized the spatiotemporal dynamics of TEPs
by computing the corresponding cortical current density. Fig-
ure 2 shows the representative voltage and current maps during
wakefulness as well as under propofol-, xenon-, and ketamine-
induced unresponsiveness. As compared to wakefulness (Fig-
ure 2A), propofol-induced unresponsiveness was associated
with local, short-lasting currents that did not propagate from
the stimulated cortical site (white cross in Figure 2B). On the
other hand, xenon resulted in a long-lasting, global response.
This response was characterized by a large negative deflection
associated with long-range, long-lasting currents that spread
broadly to the surrounding cortex from a fixed local maximum

Figure 1. Different Patterns of Cortical
Reactivity Induced by Propofol, Xenon, and
Ketamine Anesthesia
(A) Averaged TMS-evoked potentials during

wakefulness (gray traces), propofol (left, blue

traces), xenon (middle, black traces), and ketamine

(right, red traces) are shown for a representative

EEG derivation located under the TMS coil for each

of the 18 participants.

(B) Global cortical reactivity as measured by the

global mean field power (GMFP) in the three ex-

periments. Each trace (color coded as in A) rep-

resents the grand average (thick line) ± SEM (thin

lines) GMFP normalized for each participant on the

mean baseline value (100 ms pre-stimulus). For

each experiment, statistical comparison between

wakefulness and drug-induced unresponsiveness

was performed by means of t tests on individual

GMFP time series values. Color-coded, horizontal

bars at the bottom of each panel represent signif-

icant time points (pairwise comparisons p < 0.05).

Statistical comparisons of global cortical reactivity

during the wakefulness condition across the three

experiments are presented in Figure S1A. The ef-

fect of the three anesthetics on the spontaneous

EEG activity patterns is presented Figure S2.

See also Figures S1 and S2.

(white cross in Figure 2C). In contrast, ke-
tamine-induced unresponsiveness was
characterized by a low-amplitude, com-
plex wave associated with a spatially
and temporally differentiated cortical acti-
vation pattern. In this case, the instanta-

neous maximum of cortical activation shifted over time among
distant cortical areas (white cross in Figure 2D) giving rise to a
widespread and complex response strongly resembling that ob-
tained during wakefulness. We then quantified these results by
generating a binary matrix from TMS-evoked significant cortical
activations (Figure 3A), cumulated between 8 and 400 ms (Fig-
ure 3B). The resulting values were normalized within experiment
for the wakefulness condition (see Figure S1). Results showed
a larger spatiotemporal activation during xenon-induced unre-
sponsiveness as compared to both propofol and ketamine
condition (one-way ANOVA: F(2,15) = 8.47, p = 0.003; pairwise
comparison p < 0.05, Bonferroni corrected). In addition, the
overall spatiotemporal activation during propofol-induced unre-
sponsiveness was significantly reduced compared to wakeful-
ness (mean ratio ± SEM: 0.31 ± 0.08; n = 6; Wilcoxon test,
Z = 2.2, p < 0.05).
Finally, based on the same spatiotemporal matrices, we

derived the perturbational complexity index (PCI) [13]. Figure 3C
illustrates PCI values for the three experiments. A mixed-model
ANOVA showed a clear ‘‘experiment’’ 3 ‘‘condition’’ interaction
(F(2,15) = 18.08, p=0.0001). Nodifferencewasobserved forwake-
fulness PCI values across experiments (Figure S1). Pairwise
comparisons highlighted a decrease in complexity of the TMS/
EEG response for both propofol-induced (mean: 0.24, range:
0.20 to 0.30) and xenon-induced (mean: 0.17, range: 0.08 to
0.24) unresponsiveness condition as compared to wakefulness
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(propofol experiment mean: 0.50, range: 0.42 to 0.59; xenon
experiment mean: 0.47, range: 0.44 to 0.53; p < 0.05, Bonferroni
corrected). On the other hand, ketamine-induced unresponsive-
ness was characterized by high PCI values (mean: 0.44, range:
0.35 to 0.55), comparable to those obtained during wakefulness
(ketamine experiment mean: 0.48, range: 0.41 to 0.58; p > 0.05).

Drug-Induced Unresponsiveness Is Characterized by an
Increase of Low-Frequency EEG Power
Changes in spontaneous EEG induced by the three anesthetics
are reported in Figure S2. Overall, as compared to wakefulness,
anesthetics induced a significant global increase in the ampli-
tude of EEG traces accompanied by the occurrence of high-
amplitude slow waves (Figure S2A). These were prominent,
frequent, and rhythmic in the case of propofol and xenon
(mean number of waves/min ± SEM propofol: 12.78 ± 2.88;
xenon: 24.31 ± 3.82; data not shown) and sporadic as well
as polymorphic in the case of ketamine (mean number of
waves/min ± SEM: 2.77 ± 1.19; data not shown). Spectral anal-
ysis (Figure S2B) revealed increased slow wave activity (SWA;
0.5–4.5 Hz) for all three anesthetics (p < 0.05), but to a
greater extent for propofol and xenon than for ketamine (one-
way ANOVA: F(2,15) = 15.37, p = 0.001; pairwise comparison
p < 0.05, Bonferroni corrected). Theta (5–8 Hz) power was also
increased by all three anesthetics (p < 0.05) to a similar extent
(one-way ANOVA: F(2,15) = 0.18, p > 0.05). Sigma (12–16 Hz)
power increased (p < 0.05) only during propofol-induced unre-
sponsiveness. Finally, power in the gamma frequency range
(30–40 Hz) was decreased (p < 0.05) by xenon and increased
(p < 0.05) by ketamine.

Retrospective Reports Are Present Only after Ketamine
Anesthesia
Participants anesthetized with propofol or xenon did not report
any conscious experiences when questioned upon emergence.
One participant of the xenon experiment reported the impression
of having felt something just before awakening but had no
explicit recall. In contrast, all the participants of the ketamine
experiment reported having experienced full-fledged dreams
during the unresponsiveness phase, as previously reported
[4–7, 9]. In all cases, the dream reports shared the following:
(1) they contained many vivid experiences rich in visual and
emotional components; (2) they had an explicit narrative struc-
ture; (3) they were extended in time; and (4) they were unrelated
to the anesthesia environment. In addition to dreams, immedi-
ately upon emergence from ketamine unresponsiveness, four
out of six participants reported hallucinations and perceptual

Figure 2. Different Spatiotemporal Dynamics Induced by Propofol,
Xenon, and Ketamine
(A–D) Representative averaged TMS-evoked potentials at all electrodes, su-

perimposed in butterfly plots together with voltage topographies and absolute

cortical current density reconstructions estimated with L2 norm in periods of

significant TMS-evoked activation during wakefulness (A), propofol (B), xenon

(C), and ketamine (D). Black circle superimposed to the cortical surface rep-

resents TMS target; the current density distribution is thresholded to highlight

the location of maximum current sources (white cross). The effect of the

three anesthetics on the spontaneous EEG activity patterns is presented in

Figure S2.

See also Figure S2.
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distortions of the surroundings, also as previously reported [7].
A representative excerpt from a ketamine dream report after
emergence is included in the Supplemental Information.

DISCUSSION

In this study, we evaluated EEG responses to TMS during wake-
fulness and during behavioral unresponsiveness induced by pro-
pofol, xenon, and ketamine. We found that the complexity of
EEG responses was high during wakefulness, lowwhen subjects
reported no conscious experiences upon emergence from anes-
thesia (propofol and xenon), and highwhen they reported intense
dreams (ketamine).

During propofol, TMS triggered a low-amplitude, local posi-
tive-negative wave (Figure 1) that rapidly faded without propa-
gating from the stimulated cortical site (Figure 2). Intracranial
recordings during propofol-induced unresponsiveness suggest
that the occurrence of asynchronous, local slow waves associ-
ated with periods of neuronal spiking suppression (down states)
may substantially impair cortico-cortical communication [14].
The present study corroborates this view by showing that the
neuronal effects of TMS remain confined to the stimulated site.
The main effect of propofol is a strong enhancement of
GABAergic inputs [15], which are likely involved in initiating
down states in cortical neurons after an initial activation [16].
Large-scale computational models also suggest that increased
inhibition is a potent mechanism for blocking cortico-cortical
communication [17]. Hence, the local positive-negative wave eli-
cited by TMS under propofol may reflect a local down state due
to an increase in GABA inhibition that immediately gates cortico-
cortical interactions. Consistent with this view, EEG responses to
TMS delivered under anesthetic doses of midazolam, a benzodi-
azepine also potentiating GABA neurotransmission, are similar
to those obtained with propofol, namely an initial cortical activa-

tion that remains local and fades rapidly [18]. Although the
observed changes in cortical responsiveness during propofol
may be contributed for by thalamic [19] and other subcortical
[20] mechanisms, their role cannot be directly assessed in the
current experiments.
During xenon anesthesia, instead, TMS triggered an initial

positive component followed by a high-amplitude, stereotypical
negative wave (Figure 1) that spread like an oil spot to the rest of
the cortex (Figure 2). This pattern closely resembles the one
evoked by high-intensity TMS during NREM sleep as well as
spontaneously occurring sleep slow waves [21]. During NREM
sleep, cortical neurons engage in large-scale bistable dynamics
[22, 23] and oscillate synchronously between a depolarized up
state and a hyperpolarized down state, which is reflected by a
high-amplitude negative deflection in the scalp EEG. The key
permissive factor that allows for the occurrence of global down
states during sleep is the increased conductance of K+ channels
due to the reduced firing of brainstem neuromodulatory systems
[24]. Since xenon strongly potentiates the conductance of 2PK+
channels [15], in addition to antagonizing NMDA receptors, it
may induce a state of diffuse cortical bistability through a similar
mechanism. Hence, the large negative wave evoked by TMS
during xenon anesthesia may reflect the occurrence of a wide-
spread down state engaging large portions of the cortex, similar
to evoked [25] and spontaneous [26, 27] sleep slow waves.
Finally, during ketamine-induced unresponsiveness, TMS

evoked a series of fast, recurrent waves of activation (Figure 1)
giving rise to a complex, long-range spatiotemporal dynamics
closely resembling that evoked during wakefulness (Figure 2).
While ketamine also antagonizes NMDA receptors, it does not
potentiate GABA receptor activity like propofol, or K+ currents
like xenon, which may explain why it may not be as effective in
disrupting the complexity of cortico-cortical interactions. Fur-
thermore, unlike propofol [28] and some inhalation anesthetics

Figure 3. Overall Extent and Complexity of
the Spatiotemporal Activations Induced by
Propofol, Xenon, and Ketamine
(A) Representative examples of the binarized

spatiotemporal matrices of significant sources

(black marks: active source at a given time

point; white otherwise) during wakefulness, pro-

pofol, xenon, and ketamine. In each matrix,

sources are sorted from bottom to top ac-

cording to their total amount of significant acti-

vation during the post-stimulus period. Vertical

dashed line represents the time point in which

TMS is delivered. The insets within the red

frames show an expanded portion of the spatio-

temporal matrix to highlight its structure at a

finer grain.

(B) Average (±SEM) binarized significant post-

TMS currents across cortical sources and time

points (cumulated between 8 and 400 ms post-

TMS) during propofol (blue), xenon (black), and

ketamine (red). For each participant, values have

been normalized for the values obtained in the

wakefulness (W) condition. Statistical compari-

sons of global cortical reactivity during the wakefulness condition between the three experiments are presented in Figure S1B. *p < 0.05, **p < 0.005.

(C) Individual PCI values for the three experiments in the two conditions. Triangles indicate BA7 while squares indicate BA6 TMS cortical targets. Statistical

comparisons of PCI values during the wakefulness condition across the three experiments are presented in Figure S1C.

See also Figure S1.
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[29], ketamine increases cortical acetylcholine concentrations
[30]. A TMS/EEG response similar to that evoked by ketamine
can also be recorded during REM sleep [31], a state of high
cholinergic tone [32] during which subjects almost invariably
experience dreams [33, 34]. Notably, during ketamine unrespon-
siveness, TMS evoked complex patterns of cortical interactions
in a state that, at difference with REM, was characterized by the
occurrence of high-amplitude slow waves in the spontaneous
EEG (see Figure S2) and by unarousable unresponsiveness
(Ramsay score 6).
The complexity of TMS-evoked activations was quantified by

applying the PCI metric [13]. PCI computes the algorithmic
compressibility of TMS-evoked deterministic activations and is
high only when the initial perturbation is transmitted to a large
set of integrated areas that react in a differentiated manner
and low otherwise. Thus, PCI captures the joint presence of
functional integration and functional differentiation in cortical cir-
cuits, which is considered a fundamental requirement for con-
sciousness [35–37]. During both propofol and xenon, PCI values
were comparable and invariably lower than in wakefulness
across participants and stimulated sites. Notably, PCI was
equally low despite the substantial difference in the extent of
the activation evoked by TMS during propofol and xenon unre-
sponsiveness (Figure 3C). Specifically, during propofol, PCI
dropped because the matrix of activation engaged by TMS
was spatially restricted (Figure 3A, second column), consistent
with a loss of integration; during xenon, instead, PCI dropped
because the pattern of spatiotemporal activation triggered by
TMS was a widespread but stereotypical slow wave (Figure 3A,
third column), consistent with a loss of differentiation. By
contrast, the spatiotemporal activation during ketamine-induced
unresponsiveness showed a complex pattern (Figure 3A, fourth
column) leading to PCI values that were always higher than the
ones obtained during propofol and xenon and comparable to
those achieved during wakefulness (Figure 3C).

Complexity, Consciousness, and Responsiveness
Upon awakening from both propofol and xenon anesthesia,
characterized by lowPCI, all participants (n = 12) reported having
had no conscious experience and/or no recall. On the other
hand, when emerging from ketamine unresponsiveness, all par-
ticipants (n = 6) reported conscious experience under the form of
long, vivid dreams. The present report of ‘‘ketamine dreams’’ is
consistent with many previous studies with pure ketamine anes-
thesia. In a large proportion of cases, subjects who had been un-
responsive at surgical levels reported upon awakening, either
spontaneously or upon questioning, that they had experienced
dreams unrelated to the operating room [4, 6–9]. Assessing con-
sciousness through retrospective reports requires a note of
caution because subjects may forget their dreams or may
confabulate upon awakening. However, the systematic collec-
tion of retrospective reports remains the only available proce-
dure to behaviorally assess consciousness above and beyond
responsiveness, allowing for the possibility of internally gener-
ated and stimulus-independent experiences to be recognized
[38]; as such, dream reports upon awakening are commonly em-
ployed to study mentation during sleep [2, 34]. In the present
study, it is unlikely that all subjects forgot their dreams upon
awakening from propofol and xenon anesthesia because partic-

ipants (1) were healthy volunteers with no memory deficits, (2)
underwent the administration of a single anesthetic agent, and
(3) were prompted for a report a few minutes after recovery of
responsiveness (see [38]). On the other hand, it is unlikely that
the recalls of subjects undergoing ketamine anesthesia were
solely affected by confabulation or hallucinations upon emer-
gence and recovery of responsiveness. These reports, which
were collected a few minutes after recovery of responsiveness
and confirmed 1 hr later, were highly structured and explicitly
narrative, were rich in emotional components, and were
extended in time like full-fledged dreams. Moreover, the four
participants who reported hallucinations were retrospectively
able to discern a long phase during which experience was
completely unrelated to the external environment from a final
phase (occurring upon recovery of responsiveness), character-
ized by perceptual distortions of the surroundings, including
the experimental setting. In this context, the finding of a complex
pattern of cortical interactions, typical of the awake conscious
state, throughout the state of ketamine-induced unresponsive-
ness provides strong support to the view that consciousness
and behavioral responsiveness may decouple in various
conditions [1], including pharmacological interventions and brain
injury [39, 40].
The finding of high brain complexity (PCI) observed during un-

responsiveness induced by ketamine anesthesia is interesting in
the context of previous studies employing sensory-evoked po-
tentials and functional connectivity analyses. For example, the
late positive P3b evoked by auditory stimuli is equally sup-
pressed during both propofol [41] and ketamine [42, 43], even
at sub-anesthetic concentrations, and can be absent in awake
subjects who do not pay attention to the stimulus [44]. Similarly,
front-to-back functional connections were found to be selec-
tively reduced both during propofol- and ketamine-induced
unresponsiveness (though coherence is preserved [45, 46]) at
dosages comparable to the ones employed in the present study
and in the presence of a similar background EEG. A parsimo-
nious explanation is that while event-related potentials and
fronto-parietal functional connectivity may reflect connected-
ness to the environment or executive functions, measuring the
overall complexity of cortico-cortical effective interactions with
TMS-EEG may capture the brain’s capacity for experience as
such, thus including ketamine dreams.

Conclusions
The present work aimed at differentiating states of equally deep
unresponsiveness and profound disconnection from the external
environment through direct cortical perturbations with TMS-EEG
and retrospective reports. We find three distinct patterns of
cortical reactivity to TMS underlying propofol-, xenon- and
ketamine-induced unresponsiveness: a local, low-complexity
response during propofol, a global, low-complexity response
during xenon, and a complex spatio-temporal activation during
ketamine. While the first two patterns are associated with loss
of consciousness based on the lack of post-anesthesia reports,
the complex pattern observed during ketamine precedes the
report of vivid conscious experiences upon awakening. These
findings are theoretically relevant, confirming the prediction
that loss of consciousness during anesthesia is tied to a reduc-
tion of brain complexity, defined as the joint presence of
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functional integration and functional differentiation in neural sys-
tems [47], and may have practical implications for those vegeta-
tive state patients who, just like ketamine-anesthetized subjects,
often show an EEG characterized by polymorphic delta activity
and may be open eyed, unresponsive, but conscious.

EXPERIMENTAL PROCEDURES

Here, we provide a brief summary of the experimental procedures. For full de-

tails, please refer to Supplemental Experimental Procedures. Eighteen healthy

participants were randomly assigned to one of the three experiments (n = 6

for propofol, xenon, and ketamine, respectively). For each experiment, the

EEG responses to TMS (150–200 pulses with a 2,000–2,300 ms randomly jit-

tered period) performed over BA 6 (n = 3) and over BA 7 (n = 3) were recorded

before drug administration, while the participants were fully responsive (Ram-

say Scale score 2). TEPs were then recorded using the same stimulation

parameters after subjects reached deep unresponsiveness (Ramsay Scale

score 6, corresponding to no response external stimuli) following anesthesia

administration. In addition, spontaneous EEG was also recorded during both

wakefulness and unresponsiveness conditions. Finally, in order to assess

the presence of conscious experience during anesthesia-induced behavioral

unresponsiveness, retrospective reports were collected in all participants after

awakening. We attained Ramsay Scale score 6 for all the subjects in the three

experiments by employing anesthetic procedures based on previous works.

Specifically, for propofol anesthesia see [45], for xenon see [48], while for ke-

tamine we adopted induction procedures similar to [49] and anesthesia main-

tenance following several reports reviewed in [50]. TMS/EEG responses were

quantified by calculating the GMFP [51] from the 60 channels averaged sig-

nals. Also, the primary electromagnetic sources of scalp EEG activity were

calculated by performing source modeling, and the significant responses

were estimated by applying a nonparametric bootstrap-based statistical pro-

cedure to TMS-evoked cortical currents as in [52]. The ensuing spatiotemporal

matrices were then binarized and processed following the methods presented

in [13] in order to derive PCI. Spontaneous EEG signals were analyzed

computing power spectral density estimates with a 2-s Hamming window.

Average power density across segments was computed for SWA, theta, alpha,

sigma, beta, and gamma frequency bands. Data analysis was performed using

the MATLAB (MathWorks) signal processing toolbox as well as custom scripts

and EEGLAB (http://sccn.ucsd.edu/eeglab/) routines. Comparisons between

conditions (wakefulness, unresponsiveness) within the same experiment

were performed by means of the non-parametric Wilcoxon signed-rank test

(p < 0.05). When testing differences across experiments, mixed-model

ANOVAs were performed. To test contrasts, post hoc two-tailed t tests were

used (p < 0.05, Bonferroni corrected).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and two figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2015.10.014.
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