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Introduction

Introduction
Let us denote T = R /Z. We are interested in the pointwise convergence of the
Fourier partial sums

Snf : x 7→
n∑

k=−n

< f, ek > ek(x) where ek : x 7→ e2iπkx

• Du Bois Reymond (1873) : There is f ∈ C(T) such that Snf(x) diverges at 0

• Kolmogorov (1926) : There is f ∈ L1(T) such that Snf(x) diverges at every x

• Kahane et Katznelson (1966) : If A ⊂ T is a Fσ of Lebesgue measure zero, there
is f ∈ C(T) such that Snf(x) diverges at every x ∈ A

• Carleson et Hunt (1967) : If f ∈ Lp(T) (1 < p < +∞), Snf converges almost
everywhere.

Question.
Let x be a divergent point of the Fourier series of f ∈ Lp(T). Characterization of the
divergence rate ? What about the size of the set of the points with a given divergence
rate ?
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Introduction

Hausdorff dimension

Let B ⊂ Rn and s > 0. We set

Hsδ(B) = inf

∑
j∈N

diam(Bj)
s : (Bj)j∈N δ − covering of B

 .

and we define the s-dimensional Hausdorff outer measureHs by

Hs(B) = sup
δ>0
Hsδ(B) = lim

δ→0+
Hsδ(B)

There is a critical value of s for which the graph of s 7→ Hs(B) “jumps” from +∞ to 0.
This critical value is called the Hausdorff dimension dimH(B) of B :

dimH(B) = sup{s ≥ 0 :Hs(B) = +∞}
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Introduction

Divergence of Fourier series
Nikolsky’s inequality. If f ∈ Lp(T),

‖Snf‖∞ ≤ Cpn1/p‖f‖p

Question.
Let β ∈ [0, 1/p]. What can we say about the size of the set

{
x : |Snf(x)| ≈ nβ

}
?

Aubry (2006)
If p > 1 and f ∈ Lp(T), then

dimH

{
x : lim sup

n→∞
n−β |Snf(x)| > 0

}
≤ 1− βp, ∀β ∈ [0, 1/p].

Moreover, if β ∈ [0, 1/p] is fixed, this result is optimal : Given a set E such that
dimHE < 1− βp, there is f ∈ Lp(T) such that

lim sup
n→∞

n−β |Snf(x)| = +∞ ∀x ∈ E.
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Introduction

• Divergence index at x :

βf (x) := lim sup
n→+∞

log |Snf(x)|
log n

• Level set : E(β, f) :=
{
x : βf (x) = β

}
• Multifractal spectrum of the divergence : β 7→ dimHE(β, f)

Bayart, Heurteaux (2011)
Quasi-all (in the sense of Baire category theorem) function f ∈ Lp(T) satisfies

dimHE(β, f) = 1− βp, ∀β ∈ [0, 1/p].

For these functions, one has in particular

dimH

{
x : lim sup

n→∞
n−β |Snf(x)| > 0

}
= 1− βp, ∀β ∈ [0, 1/p].
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Divergence of wavelet series

Wavelet basis

The Fourier series of a continuous function may diverge at some points. Is this
property inherent to any orthogonal decomposition ?

Haar basis (1910). In this orthonormal basis of L2(R), the expansion of any
continuous function converges uniformly on any compact.
This basis is given by{

ϕk : x 7→ ϕ(x− k), k ∈ Z

ψj,k : x 7→ 2j/2ψ(2jx− k), j ∈ N, k ∈ Z

where ϕ = 1[0,1[ and ψ = 1[0, 12 [ − 1[ 1
2 ,1[

−→ Prototype of wavelet basis. Uniform convergence of the expansion of any
continuous function on any compact set (Walter 1995)
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Divergence of wavelet series

Divergence of wavelet series

Wavelet basis of L2(R). Orthonormal basis of the form{
ϕk : x 7→ ϕ(x− k), k ∈ Z

ψj,k : x 7→ 2j/2ψ(2jx− k), j ∈ N, k ∈ Z

Classical assumptions. The wavelet ψ is

• well localized : ψ is rapidly decreasing, i.e. for all N ∈ N, there is CN > 0 such
that

|ψ(x)| ≤ CN
(1 + |x|)N

, ∀x ∈ R

• oscillating : there is M ∈ N such that∫
R
xmψ(x)dx = 0 ∀m ∈ {0, . . . ,M − 1}.

• regular : ψ is at least piecewise continuous
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Divergence of wavelet series

We are interested in the pointwise convergence of the wavelet expansion of f∑
k∈Z

< f,ϕk > ϕk(x) +
∑
j∈N

∑
k∈Z

< f,ψj,k > ψj,k(x)

Remark. Unlike the Fourier series, there is no “natural order” for the wavelets.
Consequently, the notion of pointwise convergence has no natural definition.

• We study the pointwise convergence of∑
k∈Z
| < f,ϕk > ϕk(x)|+

∑
j∈N

∑
k∈Z
| < f,ψj,k > ψj,k(x)|

which does not depend on the chosen order (similar behavior, unlike Fourier
series)

• We consider the periodic case : An orthonormal wavelet basis of L2(T) is given
by the constant function equal to 1 and the periodized wavelets

Ψj,k : x 7→
∑
l∈Z

ψj,k(x− l), j ∈ N, k ∈
{

0, . . . , 2j − 1
}
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Divergence of wavelet series

Case of Lp spaces
Hölder’s inqualities If f ∈ Lp(T),

| < f,Ψj,k > | ≤ CΨ2j(
1
p−

1
2 )‖f‖p =⇒ ‖ < f,Ψj,k > Ψj,k‖∞ ≤ C2

j
p

since ‖Ψj,k‖∞ ≤ 2−
j
2 .

Aubry (2006)
If p > 1 and f ∈ Lp(T), then for all β ∈ [0, 1/p],

dimH

x : lim sup
J→∞

2−βJ
J∑
j=0

2j−1∑
k=0

| < f,Ψj,k > Ψj,k(x)| > 0

 ≤ 1− βp

Conversely, if ψ is the Haar wavelet and if β ∈ [0, 1/p] is fixed, given a set E such that
dimHE < 1− βp, there exists f ∈ Lp(T) such that

lim sup
J→∞

2−βJ

∣∣∣∣∣∣
J∑
j=0

2j−1∑
k=0

< f,Ψj,k > Ψj,k(x)

∣∣∣∣∣∣ = +∞ ∀x ∈ E.
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Divergence of wavelet series

Multifractal analysis of the divergence

• Divergence rate at x :

γf (x) = sup
{
γ : ∃C > 0, ∃(jn, kn), | < f,ψjn,kn > ψjn,kn(x)| ≥ C2γjn

}
• Multifractal spectrum of the divergence :

Df : γ 7→ dimH
{
x : γf (x) = γ

}

Remarks.

• Since the wavelet is rapidly decreasing, we have

γf (x) = lim sup
J→∞

log

 J∑
j=0

∑
k∈Z
| < f,ψj,k > ψj,k(x)|


log 2J

• A divergence rate gives a divergence of the wavelet series only if it is positive !
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Divergence of wavelet series

Sobolev and Besov spaces

Sobolev spaces. If p ≥ 1 and s ∈ R,

Lp,s :=
{
f ∈ Lp(R) : F−1

(
(1 + |ξ|2)s/2Ff

)
∈ Lp(R)

}
=

{
f ∈ Lp(R) : Dkf ∈ Lp(R) ∀k ≤ s

}
if s ∈ N

Besov spaces. If p, q > 0 and s ∈ R,

Bs,qp :=
{
f ∈ Lp(R) :

(
2sj‖F−1

(
φjFf

)
‖Lp(R)

)
j∈N ∈ l

q
}

We will work in the Besov spaces. Thanks to the inclusions

Bs,1p ↪→ Lp,s ↪→ Bs,∞p

for all p ≥ 1, s ∈ R, we will get similar results in Sobolev spaces.
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Divergence of wavelet series

Besov spaces and wavelets

We use a L∞ normalization of the wavelets, i.e. we set

ϕk(x) := ϕ(x− k) and ψj,k(x) := ψ(2jx− k) j ∈ N, k ∈ Z

The wavelet coefficients of f are denoted

Ck :=

∫
R
f(x)ϕk(x)dx and cj,k := 2j

∫
R
f(x)ψj,k(x)dx

Caracterization of Besov spaces. Let s ∈ R and p, q > 0. Then

f ∈ Bs,qp ⇐⇒



(∑
k∈Z

∣∣∣cj,k2(s− 1
p )j
∣∣∣p)1/p

= εj with εj ∈ lq(∑
k∈Z
|Ck|p

)1/p

< +∞
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Divergence of wavelet series

f ∈ Bs,qp =⇒

(∑
k∈Z

∣∣∣cj,k2(s− 1
p )j
∣∣∣p)1/p

= εj with εj ∈ lq

In particular,

∃C > 0 : ∀j
∑
k∈Z
|cj,k2(s− 1

p )j |p ≤ C =⇒ |cj,k| ≤ C
1
p 2( 1

p−s)j

Consequence. If f ∈ Bs,qp , then

γf (x) ≤ 1

p
− s, ∀x ∈ R

Remark. The interesting case is s < 1
p .
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Divergence of wavelet series

Proposition

If f ∈ Bs,qp , then for all γ ∈ [−s, 1
p − s], we have

dimH
{
x : γf (x) ≥ γ

}
≤ 1− sp− γp.

In particular, the divergence spectrum of f satisfies

Df (γ) ≤ 1− sp− γp.

Idea. We set

Eεγ := lim sup
j→+∞

⋃
k:|cj,k|≥2γj

]
k2−j − 2(ε−1)j , k2−j + 2(ε−1)j

[

Since
∑
k |cj,k2(s− 1

p )j |p ≤ C, one has #
{
k : |cj,k| ≥ 2γj

}
≤ C 2(1−sp−γp)j so that

dimH(Eεγ) ≤ 1− sp− γp
1− ε

.
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Divergence of wavelet series

Let us show that
x /∈ Eεγ =⇒ γf (x) ≤ γ

We wish to estimate |cj,kψj,k(x)|. Let us recall that

Eεγ = lim sup
j→+∞

⋃
k∈Ej,γ

]
k2−j − 2(ε−1)j , k2−j + 2(ε−1)j

[

1. If |cj,k| < 2γj , then |cj,kψj,k(x)| ≤ 2γj .

2. If |cj,k| ≥ 2γj , then from the fast decay of the wavelets,

∀N, ∃CN such that |ψ(2jx− k)| ≤ CN
(1 + |2jx− k|)N

.

Since x /∈ Eεγ and |cj,k| ≥ 2γj , we have |2jx− k| ≥ 2εj if j � and therefore

|ψ(2jx− k)| ≤ CN2−εNj .

Let us recall that |cj,k| ≤ C2−(s−1/p)j , hence

|cj,kψj,k(x)| ≤ CNC2−(s−1/p)j2−εNj ≤ 2γj if j � .
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Optimality of the result

Optimality of the result

Theorem
Quasi-all fonction f ∈ Bs,qp satisfies

γf (x) ∈
[
−s, 1

p
− s
]
∀x

and

Df (γ) = dimH
{
x : γf (x) = γ

}
= 1− sp− γp, ∀γ ∈

[
−s, 1

p
− s
]
.

Steps of the proof.

1. Construction of a “saturation function” Fa
2. Construction of the dense Gδ set from Fa
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Optimality of the result

Steps of the proof.

1. Construction of a “saturation function” Fa such that

• Fa ∈ Bs,qp using the wavelet characterization of the Besov spaces

• γFa(x) ∈
[
−s, 1

p
− s

]
for all x : the wavelet does not vanish “too often”

• Tα ⊆
{
x : γFa(x) ≥ 1

p
− s− 1

αp

}
where Tα denotes the points α-aproximable by

dyadic numbers with a condition of non-annulation of the wavelet

• Using ubiquity techniques, dimH Tα = 1
α

• Deduce that dimH
{
x : γFa(x) =

1
p
− s− 1

αp

}
= 1

α
, for all α ≥ 1

2. Construction of the dense Gδ set :
• The set {fn :n ∈ N} of finite wavelet series with rational coefficients is dense in Bs,qp
• gn = fn + 1

Nn
Fa has the same divergence properties than Fa and {gn :n ∈ N} is

still dense in Bs,qp

• We consider the dense Gδ set
⋂
m∈N

⋃
n≥mB(gn, rn), where rn = 1

2Nan
2
−Nn

p
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Optimality of the result

Other results

• Similar results obtained with the notion of prevalence. The idea is to consider the
coefficients

cj,k =
ξj,k
ja

2( 1
p−s)j2−

1
pJ

where ξj,k ∼iid N (0, 1)

• Similar results obtained with the notion of lineability, considering the linear span of
the functions Fa, a > 1

p + 1
q .

Thank you for your attention !
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