Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

Abstract E6999 - ECCOMAS 2016

Julien Leclerc, Ling Wu, Van-Dung Nguyen, Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> B52 - Quartier Polytech 1 Allée de la découverte 9, B4000 Liège Julien.Leclerc@ulg.ac.be

Introduction

- Modelling failure of ductile materials (metals,...) = a challenging topic
- Objective:
 - To model / capture the whole ductile failure process:
 - Diffuse damage stage followed by
 - Crack initiation and propagation

[http://radome.ec-nantes.fr/]

State of art: two main approaches - Continuous approaches

- Material properties degradation modelled by internal variables (= damage):
 - Gurson model and its extensions:
 - Description of porosity evolution
 - Void nucleation, growth and coalescence
 - Mean-field homogenisation model:
 - Description of elliptic pores evolution (size, shape and orientation) [Song et al. 2015]

- Continuous Damage Model (CDM) implementation:
 - Local form:
 - Strongly mesh-dependent / loss of solution uniqueness
 - Non-local form needed: [Peerlings et al. 1998]
 - Implicit formulation: one more degree of freedom per node

State of art: two main approaches - Approach comparison (1)

	Continuous: Continuous Damage Model (CDM) in a non-local form	Discontinuous: Cohesive Zone Model + Discontinuous Galerkin elements (CZM/DG)
Advantages (+)	 Capture the diffuse damage stage Capture stress triaxiality and Lode variable effects 	 Multiple crack initiation and propagation naturally managed Highly scalable + simple implementation Consistent structural response
Drawbacks (-)	 Cannot represent discontinuities (cracks,) without remeshing Numerical problems with highly damaged elements requiring element deletion (loss of accuracy, mesh modification,) Crack initiation observed for lower damage values 	 Cannot capture diffusing damage nor shear localisation No stress triaxiality effect Currently valid for brittle / small scale yielding elasto-plastic materials
TERES		<u>.</u>

State of art: two main approaches - Discontinuous approaches

- Similar to fracture mechanics
- One of the most used methods:
 - Cohesive Zone Model (CZM) modelling the crack tip behaviour inserted via:
 - Interface elements between two volume elements
 - Element enrichment (EFEM) [Armero et al. 2009]
 - Mesh enrichment (XFEM) [Moes et al. 2002]
 - ...

• Hybrid framework for brittle fragmentation

[Radovitzky et al. 2011]

- Extrinsic cohesive interface elements
 +
- Discontinuous Galerkin (DG) framework (enable inter-elements discontinuities)

State of art: two main approaches - Approach comparison (2)

	Continuous: Continuous Damage Model (CDM) in a non-local form	Discontinuous: Extrinsic Cohesive Zone Model + Discontinuous Galerkin elements (CZM/DG)
Advantages (+)	 Capture the diffuse damage stage Capture stress triaxiality and Lode variable effects 	 Multiple crack initiation and propagation naturally managed Highly scalable + simple implementation Consistent structural response
Drawbacks (-)	 Cannot represent discontinuities (cracks,) without remeshing Numerical problems with highly damaged elements requiring element deletion (loss of accuracy, mesh modification,) Crack initiation observed for lower damage values 	 Cannot capture diffusing damage nor shear localisation No stress triaxiality effect Currently valid for brittle / small scale yielding elasto-plastic materials
TERES		<u>ŝ</u>

- Objective:
 - To model / capture the whole ductile failure process
- Main idea:
 - Combination of 2 complementary methods in a single finite element framework:
 - Continuous (damage model)
 - + transition to
 - Discontinuous (cohesive zone model with triaxiality effects)

- How to combine both methods?
 - Problems:
 - Energetic consistency? Cohesive traction-separation law (TSL) under complex 3D loadings? Triaxiality-dependency of ductile behaviour?
 - − Solution: Cohesive SURFACE model → Cohesive BAND model
 - CZM with a numerical thickness h₀ to recreate a 3D state [Remmers et al, 2013]
 - Replace cohesive law by the behaviour of a uniform thin band of thickness h_0
 - Band strains = composed of bulk strains and contributions from crack opening
 - $t(\llbracket u \rrbracket) \rightarrow t(\llbracket u \rrbracket, <\epsilon >)$

- Cohesive Band Model (CBM) to incorporate triaxiality effects
 - Methodology:
 - 1. Computation of band deformation gradient at the interface: $\tilde{\mathbf{F}} = \langle \mathbf{F} \rangle + \frac{[\mathbf{u}] \times N}{h_0}$
 - 2. Band stress computation: $\tilde{\sigma} = \tilde{\sigma} (\tilde{F}, D(\tilde{F}, \text{Internal variables}))$
 - 3. Traction force computation: $t = \tilde{\sigma} \cdot n$
 - Values of thickness h_0 ?
 - Not a new parameter!
 - A priori determined with underlying non-local CDM to ensure energy consistency

Proof of concept

- Basic material law:
 - Small strains and displacements,
 - Elastic material (no plasticity) coupled with non-local damage
- Energetic equivalence (computation of h_0)
 - 1D semi-analytical simulations
- Finite element simulation
 - 3D tests in GMSH
- Comparison with non-local models as reference

- Implicit non-local damage model:
 - Damaged material with the damage variable *D* from 0 (undamaged) to 1 (totally damaged):

 $\boldsymbol{\sigma} = (1 - D)\boldsymbol{\mathcal{H}}:\boldsymbol{\epsilon}$

• Damage power-law in terms of a memory variable κ :

$$D = \begin{cases} 0 & \text{if } \kappa < \kappa_i \\ 1 - \left(\frac{\kappa_i}{\kappa_c}\right)^{\beta} \left(\frac{\kappa_c - \kappa}{\kappa_c - \kappa_i}\right)^{\alpha} & \text{if } \kappa_i < \kappa < \kappa_c \\ 1 & \text{if } \kappa_c < \kappa \end{cases}$$

• Memory variable determined in terms of a **non-local equivalent strain**:

 $\kappa(t) = \max_{\tau} (e(\tau < t))$

• Non-local strain resulting from a diffusion equation:

$$e - c_L^2 \Delta e = \sqrt{\sum_{i=1,2,3} (\epsilon_i^+)^2}$$

With ϵ_i^+ = positif **local** principal strains c_L = non – local length [m]

- Energetic equivalence (computation of h_0):
 - Semi-analytic solving:
 - Bar of uniform area with constrained displacement at the extremities

- Discretisation of the strain field $\epsilon_x(x) \rightarrow \epsilon_i$
 - Computation of non-local strains by convolution with Green's functions linked to the non-local problem:

$$e(x) = \int_0^L W(x - y)\epsilon(y)dy$$

• Defect at the middle to trigger localisation

Energetic equivalence (2)

- Influence of h_0 :
 - Acts as effective thickness of damage zone / process zone
 - Has to be chosen to conserve energy dissipation (physically based)

Material properties (short GFRP)						
Ε	3.2 GPa	L	0.04 m			
κ _i	0.11	α	5.0			
κ _c	0.50	β	0.75			
c_L/L	0,2	D _c	0.9			
h_0	2.8 <i>c</i> _L					

- h_0 value for energy consistency = linked to the process/damage zone size
 - Dependent on only 2 key parameters:
 - Non-local length
 - h_0 is proportional to c_L
 - Critical damage value
 - Damage zone size decreases with damage evolution
 - h_0 independent of other damage model parameters

- Influence of triaxiality on dissipated energy
 - Possibility to add perpendicular uniform stress triaxiality along the bar $(\sigma_{22}, \sigma_{33} = \alpha, \sigma_{11}, so \epsilon_{22}, \epsilon_{33} \neq 0$, and other components = 0)

Non-local model only

Damage (0/368) 0.5

• Non-local model with cohesive band model

Damage (0/250) 0.5

- Comparison of force vs. displacement curve
 - Relative error on dissipated energy: \sim 3.0 %

de Liège

Conclusion

- Objective:
 - To model material degradation and crack initiation / propagation with high accuracy in ductile materials
- Already done:
 - Cohesive Band Model created to include triaxiality effects:
 - Determination of thickness with a 1D elastic bar
 - Proof of sensibility to triaxiality state
 - Currently tested in 3D
- Perspectives:
 - Cohesive band model
 - Extend to more complex cases (plasticity, Gurson model, large displacements,...)
 - Hybrid framework for metals
 - Choice of a non-local model
 - Determination of transition criterion and cohesive model parameters
 - Model comparison and validation with literature or experimental results

[http://radome.ec-nantes.fr/]

Abstract E6999 – ECCOMAS 2016:

Cohesive band model: a triaxiality-dependent cohesive model for damage to crack transition in a non-local implicit discontinuous Galerkin framework

Thank you for your attention

Julien Leclerc, Ling Wu, Van-Dung Nguyen, Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> B52 - Quartier Polytech 1 Allée de la découverte 9, B4000 Liège Julien.Leclerc@ulg.ac.be

