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ABSTRACT 
 

This work evaluates the radiological health risk from NORM exposure in bauxite deposition sites of 
West Region in Cameroon. In-situ and laboratory measurements were performed using dose rate 
survey meter and Broad Energy Germanium (BEGe) detector. Radiometric analysis of 226Ra, 
232Th and 40K in the soil samples from Fongo-Tongo and Mini-Matap were done with average 
activity concentration of 108.91 Bq/kg, 117.79 Bq/kg and 143.07 Bq/kg and, 113.15Bq/kg, 196.14 
Bq/kg and zero were determined respectively. In-situ measurement of dose rate at 1 m above the 
ground and the annual effective dose values due to 226Ra, 232Th and 40K in 5 cm soil layer were 
determined using conversion factors by UNSCEAR. The average external hazard indexes in 
samples from Fongo-Tongo were 0.78 and 1.06 while the internal hazard indexes in samples from 
Mini-Matap were 1.07 and 1.37. Comparing these values with the worldwide values set by 
UNSCEAR we realized that avoidance of high exposure from gamma radiation due to NORM to the 
populace should be of concern.   
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1. INTRODUCTION  
 
Bauxites are lateritic or karsts rocks with more 
than 40% of Al2O3 and less than 8% of SiO2 from 
which aluminium is obtained Bardossy et al. [1]. 
World bauxite resources are estimated around 
75 billion tons Lee Bray [2], mainly in Africa 
(33%), Oceania (24%), South America and the 
Caribbean (22%) and Asia (15%). In West and 
Central Africa, lateritic bauxites are widespread 
especially in Guinea, Mali, Burkina-Faso, Ivory-
Cost, Ghana, Nigeria and Cameroon with an 
estimation of more than 60 ores deposits 
Kobilseck [3]. Most of the bauxite deposits in 
Europe belong to the karsts type and located in 
Southern Europe along the Mediterranean Sea 
and in the Ural Mountain. The lateritic bauxite 
deposits in Europe occur on the Russia platform, 
in Poland, Northern Ireland and in Turkey. The 
amount of bauxite found in Russia account about 
2% of worldwide resources. 
 
In Cameroon, works on lateritic bauxites started 
in the early 20

th
 century Edlinger et al. [4]; 

Passarge et al. [5,6,7,8,9,10]. Cameroon has the 
6

th
 world bauxite reserves with approximately 1.5 

billion tons and many non explored bauxitic 
indices published by Weeksteen [6]. The recent 
geological map shows that the two zones; 
Fongo-Tongo and Mini-Martap in Dshang Region 
of Cameroon contain large bauxitic indices which 
are yet to be exploited.  
 
These bauxites mineral deposition zones may 
contain high level of NORM that may cause 
significant health effects to people living around 
and the workers of the mines. Thus, 
determination of NORM in the bauxites mineral 
deposits zones are of importance since long term 
exposure to high background of NORM might 
lead to serious health hazards Ndontchueng et 
al. [11,12]. The population in these areas make 
use of sundry bricks for building and 
constructions by using the soil. This work seeks 
to determine the background level of NORM in 
aforementioned zones in Dschang Region of 
Cameroon for the population living around and 
decision makers to be aware of the radiation 
background level. It is also aimed at providing a 
global and national picture of NORM distributions 
in the areas for urgent control of high radiation 
risks to the population that may result from 
NORM.  
 
 
 

 

1.1 Geological Setting 
 
The study areas are deeply dissected by a dense 
hydrographic network which belongs to the 
Ménoua watershed. The zones are under sub-
equatorial climate of high altitude characterized 
by long rainy season from March to October and 
short dry season from November to February. 
The mean annual rainfall is 1755 mm and the 
average annual temperature is 20ºC Momo et al. 
[13].  
 
The study sites is located on the southern flank 
of the Bambouto Mountains, a volcanic cone 
which belongs to the major North-East trending 
tectonic lineament known as the Cameroon 
Volcanic Line (CVL). The region consists 
essentially of thick sequence of trachytic flows, 
phonolitic plugs/sills, ash-flow tuffs and basaltic 
flows of Tertiary age which overlie the 
precambrian crystalline basement. The collapse 
of the caldera crest resulted in the tilting towards 
the northwest of this volcanic sequence.  
 
Two discrete bauxitization stages are found in 
the region. The first is the saprolite cap which 
was largely eroded during the collapse of the 
Bambouto caldera. A fraction of the resulting 
detrital material accumulated down slope on the 
trachytic flows which forms tiny deposits. This 
saprolite has a relic trachytic texture with 
cryptocrystalline gibbsite aggregates 
pseudomorphous after euhedral sanidine 
crystals. The second bauxitization stage 
developed residual lateritic bauxite which forms 
the Fongo-Tongo deposit. This bauxite overlies 
the soft mottled clay horizon which shows 
gradual increase with depth of kaolinite and 
corresponding decrease of gibbsite. The basal d-
spacing of kaolinite also increases with depth 
and successively replaced by hydrated kaolinite, 
metahalloysite, and hydrated halloysite. The two 
types of bauxites are dominantly composed of 
gibbsite, minor to trace goethite, koalinite, 
anatase, maghemite, and quartz Momo et al. 
[13]. 
 

2. MATERIALS AND METHODS 
 
Thirteen soil samples were randomly chosen in 
the study zones. Ten of the samples were 
obtained from Fongo-Tongo zone and three from 
Mini-Matap zone. Each of the composite soil 
samples (mixed thoroughly) were collected from 
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five subsamples in an area of approximately 1 m
2
 

and a typical depth of about 15 cm from the top 
surface layer. Each of the composite samples 
was packed in a secure polyethylene bag to 
prevent contamination. In order to cover each 
study zone and to observe a significant local 
spatial variation in terrestrial radioactivity, the 
sampling points at each site of the study area 
were selected at a minimum distance of 400 m 
from one another. Each sampling point was 
marked using a global positioning system (GPS) 
as shown in Table 1. The samples were 
transferred into the laboratory after they were 
labelled accordingly. 
  
At the laboratory, the samples were air dried in 
an oven for 24 h at a temperature of 105°C. The 
dried samples were grinded into powder and 
sieved through a 2 mm wire mesh to obtain a 
homogenous particles size. In order to achieve 
radioactive equilibrium between parents and its 
daughters, the soil samples were then packed in 
a 120 ml air tight polyethylene cylindrical 
container, dry-weighed and stored for 32 days to 
attained secular equilibrium between the long-
lived parent and daughter nuclides. 
 

2.1 Samples Measurement  
 
Each sample was subjected to a coaxial gamma-
ray spectrometer consisting of Broad Energy 
Germanium (BEGe-6530) Detector manufactured 
by Canberra Industries in Vienna. The resolution 
of this detector is 0.5 keV at 5.9 keV for 

55
Fe, 

0.75 keV at 122 keV for 
57

Co and 2.2 keV at 
1332 keV for 

60
Co. The detector is placed in a 

low-level Canberra Model 747 lead shield with 
thickness of 10 cm. Each sample was counted 
for 86400 sec for effective peak area statistics of 
above 0.1%. Following the sample analysis 
process, the specific activity concentration for 
each radionuclide were calculated automatically 
by Genie-2000 software based on the equation 
published by Ndontchueng et al. [12].  

 
2.2 Coincidence Summing Correction 

Factor 
 
Coincidence summing is due to the simultaneous 
detection of two or more gamma-rays occurring 
in cascade from the decay of an excited nucleus 
in which the lifetimes of intermediate levels are 
short relative to the integration time of the 
amplifier. The coincidence summing correction 
factor applied using this study depends on the 
nuclide decay scheme, the sample geometry and 

composition, and the detector features. This 
becomes relevant for close source-to-detector 
configuration of the counting geometry, like in the 
case of MCA_BEGe-6530 system used and need 
to be considered when working on NORM (U and 
Th-series) due to the appearance of the cascade 
summing in their decay chain. In order to correct 
for summing during the study, the total efficiency 
was obtained by calculating the peak-to-total 
ratio (P/T) defined as the net count in the main 
peak of the nuclide to the total counts obtained in 
the spectrum (with background subtraction 
applied).  
 

2.3 Geometry Composer and Efficiency 
Calibration 

 
Before generating the efficiency curve, the 
calibration file was defined. This was generated 
by the Canberra designed Laboratory Sourceless 
Object Counting System (LabSOCS) which is a 
mathematical calibration software that 
incorporates the characterization information of 
the BEGe-6530 detector in collaboration with 
Canberra laboratory in Austria. When generating 
the efficiency calibration file, the LabSOCS 
calibration software takes into account all 
parameters related to these measurements 
including dimensions of the counting geometries, 
physical and chemical compositions as well as 
the distance source-to-detector end-cap. To 
validate the accuracy of the LabSOCS 
mathematical efficiency calibration,  some test 
were conducted comparing the LabSOCS 
generated efficiency results with the empirical 
peak efficiency for a 

60
Co point source positioned 

at a distance of 25 cm from the detector end-cap 
and the results agreed perfectly.  
 

2.4 Spectra Analysis 
 
Genie 2000, Gamma Acquisition Version 3.2.1 
and Gamma Analysis Software Version 3.2.3 
were used for data acquisition and analysis 
automatically check and perform the interference 
correction and calculate the weighted mean of 
the radionuclide emitting more than one gamma 
ray. The specific activity concentrations of each 
radionuclide were identified as follows;  
 

a) 
226

Ra concentration was calculated as a 
weighted mean of the activity 
concentrations of the gamma-rays of 

214
Pb 

(351.9 keV), 
214

Bi (609.3 keV) and its 
specific gamma-ray at 186.2 keV. 
Interference correction due to the presence 
of 185.7 keV energy peak of 

235
U was
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taken into account and subtracted          
accordingly. 

b) The gamma-ray photo-peaks used for the 
determination of the 

232
Th contents were 

338.4 keV, 911.2 keV and 969.11 keV of 
228

Ac and 238.6 keV of 
212

Pb. 
c) 

40
K was directly determined by using 

1460.8 keV gamma-ray. 
 

2.5 Health Hazard Parameters  
 

In order to assess radiation dose received by 
population living around the investigated areas, 
some health hazard parameters were evaluated 
and displayed as follow:  
 

2.5.1 Absorbed dose rate in air (D) 
 

2.5.1.1 In-situ measurement of absorbed dose 
rate in air 

 

The In-situ measurement of the absorbed dose 
rate in air at 1 m above the ground were 
recorded using a dose rate survey meter 
Radiagem 2000 manufacturer by CANBERRA 
which was calibrated before usage. It has the 
ability to measure gamma radiation range of 3 
µSv/h to 100 mSv/h and the energy range of 40 
keV to 125 MeV. 
 

2.5.1.2 Experimental absorbed dose rate in air 
 

The radioactivity concentrations of natural 
radionuclides and their exposure in air at 1 m 
above the ground surface are known as the 
absorbed dose rate. The mean activity 
concentrations of 

226
Ra (of the 

238
U series), 

232
Th, 

and 
40

K (Bq kg
-1

) in the soil samples were used 
to calculate the absorbed dose rate using the 
following formula provided by European 
Commission [14].  
 

D (nGy.h
-1

) = 0.92ARa + 1.1ATh + 0.08AK          (1) 
 

where D is the absorbed dose rate in nGy.h
-1

, 
ARa, ATh and AK are the activity concentration of 
226

Ra (
238

U), 
232

Th and 
40

K, respectively. The 
dose coefficients in units of nGy.h

-1
 per Bq.kg

-1
 

were taken from European Commission (EC) 
[14,15]. 
  
2.5.2 Annual effective dose equivalent (AEDE) 
 

The absorbed dose rate in air at 1 m above the 
ground surface does not directly provide the 
radiological risk to which an individual is exposed 
Beretka et al. [16]. The absorbed dose can be 
considered in terms of the annual effective dose 
equivalent from outdoor and indoor terrestrial 

gamma radiation which is converted from the 
absorbed dose by taking into account two factors 
namely, the conversion coefficient from absorbed 
dose in air to effective dose, the outdoor and 
indoor occupancy factor. The total annual 
effective dose equivalent can be estimated using 
the following formula Damla et al. [17] and 
Ndontchueng et al. [11,12]: 
 

AEDE (mSv.y-1) = AEDEoutdoor +AEDEindoor    (2) 
 

2.5.3 Radium equivalent activity 
 

As a result of the non uniformity in the 
distribution of natural radionuclides in the soil 
samples, the actual activity level of 

226
Ra, 

232
Th 

and 
40

K in the samples were evaluated by means 
of a common radiological index called radium 
equivalent activity (Raeq). This was done using 
the Equation obtained from Beretka and Mathew 
[16]; Al-Hamarneh and Awadallah [18].  
 

Raeq (Bq.kg
-1

) = ARa + 1.43ATh + 0.077AK       (3) 
 

where ARa, ATh and AK are the activity 
concentration of 

226
Ra, 

232
Th and 

40
K in Bq.kg

-1
, 

respectively.  
 

2.5.4 External and internal hazard indices 
 

Many natural radionuclides in terrestrial soils and 
rocks upon decay produce an external radiation 
field to which all human beings are exposed. In 
terms of dose, the principal primordial 
radionuclides are 

232
Th, 

238
U and 

40
K. The decay 

of these radionuclides in soil produces a gamma-
beta radiation field in soil that crosses the soil-air 
interface to produce exposures to humans. The 
main factors which determine the exposure rate 
to a particular individual due to the 
concentrations of radionuclides in the soil 
depends on the time spent outdoors. To limit the 
radiation exposure in the samples to the 
permissible dose equivalent limit of 1.00 mSv.y

-1
, 

the external hazard index based on a criterion 
have been introduced using a model proposed 
by Krieger [19] which is given by UNSCEAR [20]. 
 

1
4810259370

≤++=
KThRa

ex

AAA
H                (4) 

 

In order to keep the radiation hazard 
insignificant, the value of external hazard index 
must not exceed the limit of unity. The maximum 
value of Hex equal to unity corresponds to the 
upper limit of radium equivalent activity of 370.00 
Bq.kg

-1
 Turhan et al. [21]. 
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In addition to the external hazard, radon and its 
short-lived products are also hazardous to the 
repository organs. To account for this threat the 
maximum permissible concentration for 

226
Ra 

must be reduced to half of the normal limit 
(185.00 Bq.kg

-1
). The internal exposure to 

carcinogenic radon and its short-lived progeny is 
quantified by the internal hazard index (Hin) given 
by the expression published by Murty et al. [22]. 
 

1
4810259185

≤++=
KThRa

in

AAA
H                   (5) 

 

3. RESULTS AND DISCUSSION 
 

The specific activity concentrations of 
226

Ra, 
232

Th, 
40

K and radium equivalent in soil samples 
from Fongo-Tongo amd Min-Matap zone are in 
Table 1. The radiological hazard parameters 
obtained from the In-Situ measurements and the 
calculated radiation hazard parameters from the 
specific activity concentration of 

226
Ra, 

232
Th and 

40
K in samples from Fongo-Tongo and Mini-

Matap areas are presented in Table 2.  

 
As shown in Table 1, the specific activity in soil 
samples from Fongo-Tongo varied from 56.56 to 
176.14 Bq/kg with a mean of 108.91 Bq/kg for 
226

Ra, from 82.54 to 177.78 Bq/kg with an 
average of 117.79 Bq/kg for 

232
Th respectively. 

Similar variation of 
226

Ra and 
232

Th in soil 
samples from Mini-Matap were observed. These 
were varied from 102.69 to 124.42 Bq/kg with 
average of 113.15 Bq/kg and from 163.22 to 
239.96 Bq/kg with an average of 196.14 Bq/kg 
respectively. 
 

The specific activity of 
40

K in soil ranged from 
51.10 to 1379.62 Bq/kg with an average of 
143.07 Bq/kg for samples from Fongo-Tongo 
zone. Most of the specify activity of 

40
K were 

found be below the detection limit (BDL) in all 
samples from Mini-matap area. It is known that 
potassium is present in almost all geological and 
raw material. However, it was not detected in 
almost all samples from Fongo-Tongo and Mini-
matap except two soil samples referred as FT1 
and FT9. This was very obvious because BEGe-
detector exhibits high background than typical 
coaxial detectors and is more transparent to high 
energy cosmogenic background radiation which 
permeates above background levels in 
laboratories including high energy gamma from 
naturally occurring radioisotopes such as 

40
K. 

The evaluated values of Raeq are summarized in 
Table 1. The calculated radium equivalent 

ranged between 186.18 and 430.37 Bq/kg with a 
mean of 288.35 Bq/kg for soil samples from 
Fongo-Tongo and from 336.09 to 467.55 Bq/kg 
with average of 393.63 Bq/kg for samples from 
Mini-matap, respectively. 
 

Comparing the variation of specific activity 
concentrations of 

226
Ra, 

232
Th, 

40
K and the 

radium equivalent activity with the worldwide 
range values, the observed values of 

226
Ra and 

232
Th in soil samples from both areas were 

higher than the reported values of 
226

Ra and 
232

Th by UNSCEAR [20]. A similar comparison of 
the obtained average values of 

226
Ra and 

232
Th in 

soil samples from Fongo-Tongo and Mini-matap 
areas with the world population weighted safe 
limits of UNSCEAR [20] are shown in Table 1. 
The obtained average value of radium equivalent 
in samples from Fongo-Tongo were lower than 
the recommended values of UNSCEAR [20] 
while the obtained average values in samples 
from Mini-matap were higher than the safe 
values of UNSCEAR [20]. 
 

The observed activity concentrations of 
226

Ra, 
232

Th and 
40

K in the present work were compared 
with other published values obtained from the 
literature of radioactivity in soil by many authors 
as dispatched in Table 3. The obtained average 
activity concentrations of 

226
Ra and 

232
Th

 
in both 

studied sites were comparably higher than the 
values published by other authors with the 
exception of the recorded average value of 

226
Ra 

in China (Xiaz-hung area) published by Yang et 
al. [23] which was relatively high than the value 
obtained in Fongo-Tongo. Similar observations 
were done for 

40
K recorded activity concentration 

in the present study. It can be seen that the 
average values of 

40
K recorded in the present 

study were slightly lower that the published 
values recorded in the selected published data 
except the average values published by 
Ndontchueng et al. [12]. When comparing with 
the published data in soil at different depth from 
mining regions of East Rhodopes in Bulgary by 
Hristov et al. [24] using a gamma-spectrometer 
with HPGe detector, it can be seen that the 
obtained results of 

226
Ra (

238
U), 

232
Th were 

higher while those of 
40

K were lower with the 
exception of the value obtained in samples 
referred The present values were compared 
favourably with the recorded average values 
published by other countries selected from the 
worldwide investigation of natural radioactivity in 
soil. 
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Table 1. Specific activity concentration of 
226

Ra, 
232

Th, 
40

K and radium equivalent in soil samples from Fongo-Tongo and Min-Matap 
 

Study site Sample ID (Bq/kg) Latitude Longitude 

Ra-226 Th-232 K-40 Raeq 

Fongo-Tongo FT1 65.71±3.11 128.36±7.46 51.10±9.54 253.20 05°31’53.2’’N 09°58’37.0’’W 
FT2 162.53±17.88 107.13±4.08 BDL 315.73 05°31’51.6’’N 09°58’35.2’’W 
FT3 68.15±4.44 82.54±3.49 BDL 186.18 05°31’49.3’’N 09°58’35.4’’W 
FT4 95.94±3.89 161.29±11.39 BDL 326.58 05°31’46.8’’N 09°58’33.1’’W 
FT5 160.51±18.77 134.43±5.00 BDL 352.74 05°31’46.4’’N 09°58’35.4’’W 
FT6 103.76±5.22 88.74±4.56 BDL 230.66 05°31’47.6’’N 09°58’29.0’’W 
FT7 111.82±5.74 102.28±5.27 BDL 258.08 05°31’49.2’’N 09°38’29.9’’W 
FT8 87.93±3.54 86.57±3.97 BDL 211.73 05°31’49.9’’N 09°58’31.4’’W 
FT9 56.56±2.47 108.73±4.25 1379.62±37.22 318.27 05°31’50.7’’N 09°58’35.7’’W 
FT10 176.14±14.90 177.78±12.58 BDL 430.37 05°31’53.2’’N 09°58’36.9’’W 
Average 108.91 117.79 143.07 288.35   
St.Dev. 43.42 32.28 434.78 73.95   
Median 99.85 107.93 0.00 286.90   

Mini-Matap MM01 112.35±7.85 185.24±7.06 BDL 377.24 05°32’40.4’’N 09°59’45.3’’W 
MM02 124.41±5.34 239.96±9.01 BDL 467.55 05°32’38.6’’N 09°59’24.2’’W 
MM03 102.69±5.41 163.22±7.01 BDL 336.09 05°32’33.5’’N 09°51’07.1’’W 
Average 113.15 196.14  393.63   
St.Dev. 10.88 39.51 0.00 67.24   
Median 112.35 185.24 0.00 377.24   

Worldwide Range 17.00-60.00 11.00-68.00 140 -850 -   
average 35.00 30.00 400.00 370.00   
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Table 2. In-situ and laboratory measurements of hazard parameters in soil samples from 
Fongo-Tongo and Mini-Matap areas 

 

Sample ID In situ measurement Derived radiological indices 
AD 
(nGy.h

-1
) 

AED 
(mSv/year) 

AD 
(nGy.h

-1
) 

AED 
(mSv/year) 

Hex Hin 

FT1 50.00 0.31 110.02 0.68 0.68 0.86 
FT2 80.00 0.49 139.80 0.86 0.85 1.29 
FT3 50.00 0.31 81.34 0.50 0.50 0.69 
FT4 70.00 0.43 141.74 0.87 0.88 1.14 
FT5 90.00 0.55 155.35 0.95 0.95 1.39 
FT6 80.00 0.49 101.54 0.62 0.62 0.90 
FT7 70.00 0.43 113.44 0.70 0.70 1.00 
FT8 80.00 0.49 92.91 0.57 0.57 0.81 
FT9 80.00 0.49 149.33 0.92 0.86 1.01 
FT10 80.00 0.49 188.76 1.16 1.16 1.64 
Average 73.00 0.45 127.42 0.78 0.78 1.07 
St.Dev. 13.37 0.08 33.10 0.20 0.20 0.29 
Median 80.00 0.49 126.62 0.78 0.78 1.01 
MM1 110.00 0.67 163.79 1.01 1.02 1.32 
MM2 120.00 0.74 202.41 1.24 1.26 1.60 
MM3 160.00 0.98 146.03 0.90 0.91 1.19 
Average 130.00 0.80 170.74 1.05 1.06 1.37 
St.Dev. 26.46 0.16 28.83 0.18 0.18 0.21 
Median 120.00 0.74 163.79 1.01 1.02 1.32 
Worldwide 60.00 1.00 60.00 1.00 < 1.00 < 1.00 
               

The In Situ obtained values of the absorbed dose 
rate in air at 1 m above the ground surface 
measured at different sampling points varied 
from 50.00 to 90.00 nGy/h with a mean value of 
73.00 nGy/h in Fongo-Tongo and from 110.00 to 
160.00 nGy/h with an average 130.00 nGy/h in 
Mini-matap while the calculated value of 
absorbed dose rate in air at 1 m above the 
ground level obtained from the different sampling 
points based on the specific activity 
concentrations of 

226
Ra, 

232
Th and 

40
K measured 

in samples from Fongo-Tongo and Mini-matap 
ranged from 92.91 to 188.76 nGy/h with an 
average of 127.42 nGy/h and from 146.03 to 
202.47 nGy/h with a mean of 170.74 nGy/h, 
respectively as shown in Table 2. The obtained 
average values in Fongo-Tongo and Mini-matap 
by In-situ and calculation based on Equation (3) 
are higher than the worldwide average value of 
60.00 nGy/h UNSCEAR [20]. 
 

The In Situ annual effective dose to which 
population are exposed to in Fongo-Tongo and 
Mini-matap ranged from 0.31 to 0.55 mSv/year 
with a mean of 0.45 mSv/year and from 0.67 to 
0.98 mSv/year with average of 0.80 mSv/year, 
respectively. The estimated annual effective 
dose to which population are likely be exposed in 
the study sites ranged from 0.50 to 1.26 
mSv/year with a mean value of 0.76 mSv/year in 
Fongo-Tongo and from 0.90 to 1.24 mSv/year 

with a mean of 1.05 mSv/year in Mini-matap. The 
obtained average values in Fongo-Tongo and 
Mini-matap in In-situ and calculation were lower 
than the safe limit of 1.00 mSv/year 
recommended by UNSCEAR [20] except that of 
Mini-matap where the average values were 
slightly higher than the safe values. 

 
Comparing the In Situ and the calculation value 
of the absorbed dose rate in air at 1 m above the 
ground level and the annual effective dose to 
which population may likely be exposed at 
different sampling points in both study sites are 
shown in Figs. 1 and 2. The recorded values for 
the In situ are lower than the calculated values at 
different sampling points except that of sample 
“MT3” with In-Situ values for both hazards 
parameters higher than the calculated values. 

 
The hazard indices parameters calculated to 
assess the level of risk to which the population 
may be exposed to the terrestrial radiation from 
soil are shown in Table 2. The obtained values of 
external index ranged from 0.50 to 1.16 with an 
average of 0.78 in Fongo-Tongo and from 0.90 to 
1.24 with a mean of 1.07 in Mini-matap. The 
internal hazard index values in Fongo-Tongo and 
Mini-matap varied from 0.69 to 1.64 with a mean 
of 1.06 and from 1.19 to 1.60 with an average of 
1.37, respectively. 
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Table 3. Comparison of specific gamma activities (Bq/kg) in soil with that of other countries 
 

Country Activity concentration (Bq/kg) References 

Ra-226 Th-232 K-40 

China (Xiaz-hung area) 40.2-442(112) 32.6-88.1(71.5) 440-913(672) Yang et al. [23] 
Botswana 6.1-97.4(34.8) 7.4-110.0(41.8) 33.5-1085.7(432.7) Murty, Karanick [22] 
Ghana (Great Accra) 2.4-62.7 3.2-145.7 91.1-1395.9 Yeboah et al. [25] 
India (Himwchal Pradesh) 42.09-79.63(57.34) 52.83-135.75(82.22) 95.33-160.30(135.75) Asha Rani, Surinder Singh [26] 
East Rhodopes 8-67 20-109 539-859 Hristov  et al [24] 
Italy (Southern) 57-71 73-87 580-760 Bellia et al. [27] 
Namibia 4.5-48(31) 3-38(32) 42-1100(480) Steinhauster and lettener [28] 
Nigeria Delta 11-40 (18±3.4) 12-40(22±4.4) 69-530(210±49) Agbalagba , Onga [29] 
Cameroon 
(CampusI/CampusII) 

21.98-29.16(25.475)/ 
21.99-27.68 
(24.50) 

59.13-65.87(65.95)/ 
52.59-78.99(66.717) 

13.927-70.886(39.147)/ 
11.885-80.763(28.185) 

Ndontchueng et al.[12] 

Cameroon 
(Fongo-Tongo/Mini-Matap) 

56.56-176.14(108.91)/  
102.69-124.41(113.15) 

82.54-177.78 (117.79)/  
163.22-239.96 (196.14) 

BDL-1379.62±37.22 
(143.07)/ BDL 

Present work 
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Fig. 1. Comparison of In-situ and experimental values of absorbed dose at 1 m above the 
ground in soil samples from Fongo-Tongo and Mini-matap 

 

 
 

Fig. 2. Comparison of In-situ and experimental values of the annual effective dose equivalent 
in soil samples from Fongo-Tongo and Mini-matap 

 
Comparing the obtained average values of both 
external and internal hazard indices in both 
areas, it can be seen that the obtained average 
values of both hazard parameters in Fongo-
Tongo were lower than the safe limits values 
except for the internal hazard index value which 
were slightly higher than the recommended 
average values by UNSCEAR [20]. 
 

4. CONCLUSION 
 
The investigation of NORMs and some related 
health hazard parameters in soil samples from 
Fongo-Tongo and Mini-matap (bauxites 
deposition areas) has been carried out using 
gamma spectrometry and dose rate survey 
manufacturer by CANBERRA.  
 
The average values of 

226
Ra, 

232
Th and 

40
K in the 

soil samples from Fongo-Tongo and Mini-Matap 

were 108.91 Bq/kg, 117.79 Bq/kg and 143.07 
Bq/kg and, 113.15Bq/kg, 196.14 Bq/kg and zero, 
respectively. These values were higher than the 
safe limits recommended values by UNSCEAR 
[20] except that of 

40
K. The absorbed dose rate 

at 1 m above the ground and the annual effective 
dose equivalent obtained for the In-situ were 
lower than the obtained values from the specific 
activity of 

226
Ra, 

232
Th and 

40
K. The average 

external and internal hazard indices in samples 
were 0.78 and 1.06 in Fongo-Tongo and, 1.07 
and 1.37 in Mini-matap. The internal and external 
hazard indices are comparably higher than the 
worldwide safe values except the average 
external hazard index obtained in Fongo-Tongo.  
 
The results in this study present higher 
radioactivity of NORM than the global safe limits 
recommended by UNSCEAR [20]. Stakeholders 
could use the findings of this study as a data 
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bank in formulating regulations for NORM in soil 
to ensure adequate safety of population. Since 
study covers only a specific bauxite site in West 
Region of Cameroon, it is recommended that 
further investigations should be done in other 
mining sites.  
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