

Ground-based FTIR measurements: application to the atmospheric ethane upturn from the oil and gas boom

10 June 2016 | Bruno Franco

Jungfraujoch FTIR station (Swiss Alps, 3580m a.s.l.)

FZ Jülich, IEK-8

1. Ground-based FTIR observations

... under <u>clear-sky</u> conditions

1. Ground-based FTIR observations

... under <u>clear-sky</u> conditions

→ Optical filters to enhance the signal-to-noise ratio within specific wavelengths of the IR solar spectrum **JLICH**

FORSCHUNGSZENTRUM

Member of the Helmholtz Association

transmittance

 \rightarrow determining the atmospheric composition thanks to:

- vibrational transitions of a molecule emitting infrared radiation;
- vibrational transitions of a molecule occurring at a specific energy, frequency and wavenumber;
- the amount of energy absorbed being directly proportional to the number of molecules absorbing (P- and T-dependent).

1. Ground-based FTIR observations

Example: CO₂ absorption feature

JÜLICH FORSCHUNGSZENTRUM

=> the retrieval is an (ill-posed) inverse non-linear problem

Adjustement by Newtonian iteration, using <u>regularization</u> term for constraining the solution

- Semi-empirical optimal estimation
- Mathematical regularization (e.g., Tikhonov)

JÜLICH FORSCHUNGSZENTRUM

=> the retrieval is an (ill-posed) inverse non-linear problem

Member of the Helmholtz Association

Averaging kernel (square matrix) describes:

- how the retrieved profile is related to the a priori distribution and the true state of the target absorber
- the altitude range to which the measurement is actually sensitive
- the objective information content of the retrieval

Degree of freedom for signal

Member of the Helmholtz Association

O₃ at Jungfraujoch

Around 30 species regularly retrieved from FTIR observations

Major greenhouse gases	H_2O , CO_2 , CH_4 , N_2O
Ozone (tropo and strato)	O ₃
Halogenated compounds	CFC-11, CFC-12, HCFC-22, HCFC-142b, CCI_4 , CF_4 , SF_6 , HCI, $CIONO_2$, HF, COF_2
Nitrogen compounds	N ₂ , N ₂ O, NO, NO ₂ , HNO ₃ , CIONO ₂ , NH ₃
Organic compounds	CO, C ₂ H ₂ , C ₂ H ₆ , CH ₃ OH, HCN, HCHO, HCOOH, OCS
Many isotopologues of	H ₂ O, CH ₄ , CO, O ₃ ,

=> under development: C_2H_4 , C_3H_8 , PAN, CH_3CI

Member of the Helmholtz Association

Member of the Helmholtz Association

...with the archiving of the FTIR spectra offering the possibility to:

- improve the existing retrievals
- develop retrievals for new species

Thanks to new spectroscopic parameters...

\rightarrow improvement of the ethane retrieval

 \rightarrow improvement of the ethane retrieval

\rightarrow reanalysis of the ethane time series

nes / Redux / eyevine

22

Member of the Helmholtz Association

- Atmospheric ethane abundance has been declining in the -1 to -2.7 %/yr range since the mid-1980s
- Global emissions dropped from 14.3 to 11.3 Tg/yr over 1984-2010 (Simpson et al., 2012)
- => primarily due to reduced oil and gas fugitive

48.6-90° N average

2,000

1.600

1,200

800

0 p.p.t.v.

400 p.p.t.v. 800 p.p.t.v.

1.200 p.p.t.v.

1,600 p.p.t.v.

2,000 p.p.t.v.

- But a reversal in the long-term decline of ethane has been detected around 2009
- ... as well as a sharp increase (<u>5 %/yr</u>) of the atmospheric ethane burden from 2009 onwards

 \rightarrow "Monitoring is not boring"

Jungfraujoch (46° N)

UTLS partial columns

- → Jungfraujoch characterizes the free atmosphere over central EU
- → Reflecting continental background and long-range transport
- → Could be indicative of an hemispheric ethane increase

Mid-trop. partial columns

Based on Helmig et al. (2016), Nat. Geosc.

Mid-trop. partial columns

Based on Helmig et al. (2016), Nat. Geosc.

Member of the Helmholtz Association

due to enhanced emissions => associated with intense hydraulic fracturing and shale gas operations in North America?

 $=> C_2 H_6$ lifetime = 2 months

Sources: LCI Energy Insight gross withdrawal estimates as of January 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play.

- 2. Reversal of long-term ethane trends
 - → Enhanced fugitive emissions from shale gas operations?

Hydraulic fracturing (« fracking »)

Gas flaring and venting

Distribution leakage

U.S. shale plays

Data: EIA, based on data from various published studies

+ abandoned and orphaned wells

« They're making of our ground a Swiss cheese! » (E. Fischer, CSU)

FZ Jülich, IEK-8

- Slow decline of the C₂H₆ total columns between -1 and -1.5 %/yr prior to 2009, with consistent rates within the different latitudes
- Reversal around 2009 and growth rates of ~5 %/yr at mid-latitudes and of ~3%/yr at remote sites

FZ Jülich, IEK-8

3. Ethane emissions from bottom-up inventories

- CHAM-chem simulation of ethane over 2003-2014, implementing the bottom-up anthropogenic inventory HTAP2
- C_2H_6 emissions from the oil and gas sector represent up to 80% of the total anthropogenic C_2H_6 emissions over North America
- The model underestimates the observed C₂H₆ abundances and does not reproduce the recent increase
- => Doubling global emissions is required to reconcile simulations and observations prior to 2009

Doubled HTAP2 emissions

Original HTAP2 emissions

Aember of the Helmholtz Asso

3. Ethane emissions from bottom-up inventories

- An <u>additional</u> increase of the North American anthropogenic emissions (beyond the previous doubling emissions) is required to simulate the recent C₂H₆ rise
- ... assuming that the missing emissions during this period resulted from the recent increase in oil and gas extraction in North America

⇒ Increase of the North American anthropogenic C_2H_6 emissions by 75% (from 1.6 Tg/yr in 2008 to 2.8 Tg/yr in 2014)

4. Top-down emissions from GOSAT methane

Top-down emissions of ethane

- Based on CH₄ fluxes inferred from 50 x 50 km GOSAT measurements (Turner et al., ACP, 2015) and subsequently evaluated by surface and aircraft data
- By applying C₂H₆/CH₄ emission ratios to satellite-derived CH₄ emissions for the oil and natural gas, biofuel consumption and biomass burning categories

December 2010, derived from GOSAT CH_4

Comparison between FTIR and GEOS-Chem implementing new top-down emissions

Member of the Helmholtz Association

- Good agreement between the inventory-based (1.9 Tg/yr) and GOSAT-derived (1.8 Tg/yr) ethane emissions
- ... and the top-down approach allows to allocate the ethane emissions on the basis of measurements

Region_sector	CAM- C_2H_6 (revised CAM- C_2H_6 (original HTAP2) HTAP2x2) GEOS			GEOS-Chem		
Region Sector	2008–2014	2008	2010	2014	2010	
Globe—all sectors	9.7-10.2	17.3	17.9	18.7	13.2	
Globe—anthropogenic	7.5	15.0	15.3	16.2	10.5	
Globe—biomass burning	1.8–2.3	1.9	2.2	2.2	2.7	
Globe—biogenic	0.4	0.4	0.4	0.4	Not included	
North America—anthropogenic	0.8	1.6	1.9	2.8	1.8	
Franco et al., ERL, 2016					/	
	Updated bottom-up emissions		Infe	Inferred top-down emissions		

Annual ethane emissions from North America

... and about methane?

→ Realistic C₂H₆ emissions can be used as proxies to decipher the anthropogenic emission changes of CH₄ from the growth of oil and natural gas development

→ Realistic C₂H₆ emissions can be used as proxies to decipher the anthropogenic emission changes of CH₄ from the growth of oil and natural gas development

→ Realistic C₂H₆ emissions can be used as proxies to decipher the anthropogenic emission changes of CH₄ from the growth of oil and natural gas development

→ Realistic C₂H₆ emissions can be used as proxies to decipher the anthropogenic emission changes of CH₄ from the growth of oil and natural gas development

There is a need to:

- Characterize the recent C₂H₆ (and other NMHC) evolution at the global scale
 - ✓ Development of C_3H_8 retrieval from FTIR
- To refine the source attribution and identification of missing C₂H₆ emissions
 - Unidentified increasing sources for NMHC emissions independent of CH₄?
 - Potential emission increases outside North America?

There is a need to:

- Characterize the recent C₂H₆ (and other NMHC) evolution at the global scale
 - ✓ Development of C_3H_8 retrieval from FTIR
- To refine the source attribution and identification of missing C₂H₆ emissions
 - ✓ Unidentified increasing sources for NMHC emissions independent of CH₄?
 - Potential emission increases outside North America?
- $\Rightarrow \text{ Application to the recently developed} \\ \hline \text{ECHAM6-HAMMOZ atmospheric} \\ \text{chemistry-climate model: sensitivity runs} \\ \text{with updated } C_2H_6 \text{ emissions} \\ \hline \hline \end{tabular}$

Thank you for your attention

nes / Redux / eyevine

Knowing that...

- ✓ The gobal OH levels have not exhibited large interannual variability since the end of the 20th century (Montzka et al., Science, 2011)
- Neither CO nor other species that have oxidation by OH as their major removal pathway, present such reversal

Member of the Helmholtz Association

\rightarrow From satellite (ACE-FTS) over the North American continent

Preliminary results... (thanks to C. Boone, U. of Waterloo)