First principles study of heavily doped full Heusler Fe₂YZ for high thermoelectric power factor

Sébastien Lemal¹, Daniel I. Bilc², Philippe Ghosez¹

¹Physique Théorique des matériaux, Université de Liège, Liège, Belgium ²Molecular and Biomolecular Physics Department, National Institue for Research and Development of Isotopic and Molecular Technologies, RO-400293, Cluj-Napoca, Romania

Introduction

► The performance of thermoelectric materials is characterized by the Figure of Merit ZT, related to the Carnot efficiency:

$$\mathsf{ZT} = \frac{\mathsf{S}^2 \sigma}{\kappa_\mathsf{I} + \kappa_\mathsf{e}} \mathsf{T} \qquad \qquad \eta = \eta_\mathsf{Carnot} \frac{\sqrt{\mathsf{ZT} + 1} - 1}{\sqrt{\mathsf{ZT} + 1} + 1}$$

- The Power Factor $S^2 \sigma$ is the key quantity to optimize for practical applications, such as heat waste recovery.
- \triangleright S requires **low** effective mass carriers, σ requires **high** effective mass carriers.

 $\mathbf{m}_{\alpha\beta}^{*} = \left[\frac{1}{\hbar^{2}}\frac{\partial^{2}\epsilon(\mathbf{i},\mathbf{k})}{\partial\mathbf{k}}\right]$

Electronic properties

- Both characters can be met in a single band from orbitals with highly directional characters \rightarrow **HIGH** Power Factor !
- ► Where can we find such a band ? In **Fe₂YZ** semiconductors, bottom of the conduction band ! Extensive work from Ref. $[1] \rightarrow$ Promising **bulk** TE !

 \blacktriangleright Fe₂YZ compounds presents Fe – e_g orbitals, main contribution to the bottom of the conduction band with the aformentionned features.

- Depending the matrix, half-metallic and metallic phases appear, previously associated with disorder [5].
- Electron density of the excess charge (x = 0.0313):

	Fe	e ₂ TiSr	n _{1-x} Sb	x		Fe ₂ VA	Al _{1-x} Si	X	F	e ₂ Nb(Ga _{1-x} G	Ge _x
								~	*	*	*	*
					-				~	~	*	×
5 5 5					-0-				~	*	*	÷
5 5 5		1	1			÷			*	*	*	*
	÷	*	*	*			~		*	*	*	*
	*	*	*	*					*	*	*	*
000	*	*	*	*				~~	*	*	*	*
		*	*	÷	- 2			~	*	*	*	*

 \blacktriangleright In the rigid band approx., *n*-type doping from 0.2×10^{21} cm⁻³ to 1.0×10^{21} cm⁻³ shift the Fermi level to the flat part of the Fe – e_g band, ensuring maximum $S^2\sigma$.

Technical details

- \blacktriangleright Doping simulated by the 2 \times 2 \times 2 cubic supercell method: 128 atoms, 1 or 2 Y atoms replaced by A $\longrightarrow \sim 0.6 \times 10^{21}$ cm⁻³ and $\sim 1.2 \times 10^{21}$ cm⁻³ *n*-type doping values. The following compounds are studied :
- \triangleright Fe₂TiSn_{1-x}Sb_x;
- \triangleright Fe₂TiSi_{1-x}P_x;
- \triangleright Fe₂VAI_{1-x}Si_x;
- \triangleright Fe₂TaGa_{1-x}Ge_x;
- $ightarrow Fe_2NbGa_{1-x}Ge_x$; each with x = 0.0000; 0.0313; 0.0625.

Results consistent with a Stoner instability studied through a Jellium model (fixed geometry + 1 e⁻ + charged background): $\Delta E_{ex} \times g^{NM}(E_F) > 1$

X_2YZ	ΔE_{ex} [eV]	$g^{NM}(E_F)$ [St./eV]	$\Delta E_{ex} \times g^{NM}(E_F)$
Fe ₂ TiSn	0.200	35.31	7.1
Fe_2TiSi	0.154	37.84	5.8
Fe_2VAI	0.000	8.07	0.0
Fe_2TaGa	0.097	25.14	2.4
Fe_2NbGa	0.060	13.76	0.8

Thermoelectric properties

- Crystal14 package for the DFT calculations [2, 3], with B1 Wu-Cohen hybrid functional for E_{xc} .
- Thermoelectric properties computed with BoltzTraP [4]
- \triangleright 9 \times 9 \times 9 Monkhorst-Pack k-mesh for structural relaxation of conv. cell. (lattice para. + atomic positions).
- $> 5 \times 5 \times 5$ Monkhorst-Pack k-mesh for structural relaxation of SC (lattice para. + atomic positions).
- \blacktriangleright 10 \times 10 \times 10 Monkhorst-Pack k-mesh for electronic properties.
- > 32 \times 32 \times 32 Monkhorst-Pack k-mesh for transport and TE properties.
- \blacktriangleright Energy convergence criterium fixed at 10^{-9} Ha.
- ▶ Relaxation time $\tau = 3.4 \times 10^{-14}$ s, from ref. [1].
- ▶ Basis sets, same as Ref. [1].

Despite spin-splitting a wide array of good **PF** can be achieved.

Conclusions

- \blacktriangleright *n*-type doping shifts the Fermi level toward the Fe e_g band. ► Spin-splitting of the Fe – e_g band occurs in $Fe_2TiSn_{1-x}Sb_x$, $Fe_2TiSi_{1-x}P_x$, and $Fe_2TaGa_{1-x}Ge_x$.
- > A wide array of good power factors can be achieved at higher temperatures, ranging from 5 to 20 $\times 10^{-3}$ W/K²m. \triangleright *n*-type doped Fe₂NbGa is the most promising candidate !

References

[1] D. I. B. et. al. Phys. Rev. Letters, vol. 114, p. 136601, Mar 2015. [2] R. D. et. al. Int. J. Quantum Chem., vol. 114, p. 1284, 2014. [3] R. D. et. al., CRYSTAL14 User's Manual. 2014. [4] G. K. Madsen and D. J. Singh Computer Physics Communica-

tions, vol. 175, p. 67, 2006. [5] A. Jezierski and A. Ślebarski, "Atomic disorder and magnetism in Fe₂TiSn alloys," Journal of Magnetism and Magnetic Materials, vol. 223, p. 33, 2001.

Template : http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php