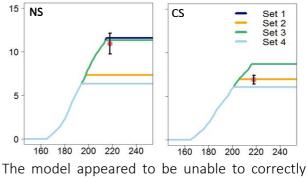


Do crop models efficiently simulate crop under shade ?

Perspective for agroforestry system modeling

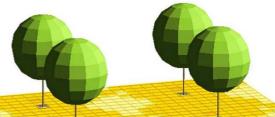


Daily total above ground biomasse (t/ha/julian days) 20 NS CS Same for all sets 15 10 5 0 100 100 150 200 250 50 150 200 250 50

Whatever the parameter set used, the total aboveground biomasse dynamic were correctly reproduced under both treatment.

		Obs.	Set 1	Set 2	Set 3	Set 4
NS	Nber of grain /m ²	26375	26183	26183	22692	22692
	Grain weight (g)	0.042	0.045	0.028	0.05	0.028
cs	Nber of grain /m ²	21519	24872	24872	21556	21556
	Grain weight (g)	0.028	0.036	0.028	0.041	0.028

Grain yield dynamic (t/ha/julian days)



The model appeared to be unable to correctly simulate crop yield under both treatments using a common set of parameters.

Final grain yield was correctly reproduced under CS treatment when reducing the PGRAINMAX parameter. Decreasing also NBGRMAX allowed to simulate correctly both yield components : nbers of grain/m² and grain weight.

Perspectives for agroforestry modeling

These preliminary results give us a first hint towards an improvement of the coupling between tree and crop models for agroforestry. We showed that a relation between the cumulated global radiation, the nber of grain/m² and the grain weight needs to be established in order to adjust the parameters values NBGMAX and PGRAIMAX under shaded conditions.

