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Simulation-based design. Virtual testing.

Parametric uncertainties.

Modeling errors.
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Multidisciplinary design.

Multiple components.
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Sensitivity analysis of parametric uncertainties, modeling errors, and multiple components

in the context of generalized probabilistic modeling.
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■ Motivation.

■ Outline.

■ Sensitivity analysis.

■ Generalized probabilistic modeling.

■ First illustration: parametric uncertainties and modeling errors.

■ Second illustration: multiple components.
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Sensitivity analysis.
Design optimization.

Model validation.
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Mechanical modeling.
Statistics.

GF ED@A BCPropagation
of uncertainty
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Optimization methods.
Monte Carlo sampling.

Stochastic expansion (polynomial chaos).
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• Intervals.

• Gaussian.

• Γ distribution.

. . .
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The computational cost of stochastic methods can be lowered

via the use of a surrogate model as a substitute for a numerical model or real tests.
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■ There exist many types of sensitivity analysis.

■ Local sensitivity analysis:

◆ elementary effect analysis.

◆ differentiation-based sensitivity analysis.

◆ . . .

■ Global sensitivity analysis:

◆ regression analysis.

◆ variance-based sensitivity analysis,

◆ correlation analysis,

◆ methods involving scatter plots,

◆ . . .

■ Here, we focus here on global sensitivity analysis methods, which can help ascertain which

sources of uncertainty are most significant in inducing uncertainty in predictions.

■ References: [A. Saltelli et al. Wiley, 2008]. [J. Oakley and A. O’Hagan. J. R. Statist. Soc. B, 2004].
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■ Characterization of uncertainty:

◆ Two statistically independent sources of uncertainty modeled as two statistically independent

random variables X and Y with probability distributions PX and PY :

(X,Y ) ∼ PX × PY .
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■ Characterization of uncertainty:

◆ Two statistically independent sources of uncertainty modeled as two statistically independent

random variables X and Y with probability distributions PX and PY :

(X,Y ) ∼ PX × PY .

■ Propagation of uncertainty:

◆ We assume that the relationship between the sources of uncertainty and the predictions is

represented by a nonlinear function g:

Sources of uncertainty

(X,Y )
→

Problem

Z = g(X,Y )
→

Prediction

Z
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■ Characterization of uncertainty:

◆ Two statistically independent sources of uncertainty modeled as two statistically independent

random variables X and Y with probability distributions PX and PY :

(X,Y ) ∼ PX × PY .

■ Propagation of uncertainty:

◆ We assume that the relationship between the sources of uncertainty and the predictions is

represented by a nonlinear function g:

Sources of uncertainty

(X,Y )
→

Problem

Z = g(X,Y )
→

Prediction

Z

◆ The probability distribution PZ of the prediction is obtained as the image of the probability

distribution PX × PY of the sources of uncertainty under the function g:

Z ∼ PZ = (PX × PY ) ◦ g
−1.

■ Sensitivity analysis:

◆ Is either X or Y most significant in inducing uncertainty in Z?
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■ Least-squares-best approximation of function g with function of only one input:

◆ Assessment of the significance of the source of uncertainty X :

g∗X = argmin
f∗

X

∫∫
∣
∣g(x, y)− f∗X(x)

∣
∣
2
PX(dx)PY (dy).

◆ By means of the calculus of variations, it can be readily shown that the solution is given by

g∗X =

∫

g(·, y)PY (dy).

◆ In the geometry of the space of PX× PY -square-integrable functions, g∗X is the orthogonal

projection of function g of x and y onto the subspace of functions of only x:

• E{Z|X}

Z

X
L2
X
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■ Expansion of function g in terms of main effects and interaction effects:

◆ Extension to assessment of significance of both sources of uncertainty X and Y :

g(x, y) = g0 + gX(x)
︸ ︷︷ ︸

main effect of X

+ gY (y)
︸ ︷︷ ︸

main effect of Y

+ g(X,Y )(x, y)
︸ ︷︷ ︸

interaction effect of X and Y

,

where

g0 =

∫∫

g(x, y)PX(dx)PY (dy),

gX(x) = g∗X(x)− g0 =

∫

g(x, y)PY (dy)− g0,

gY (y) = g∗Y (y)− g0 =

∫

g(x, y)PX(dx)− g0.

◆ Because they are obtained via orthogonal projection, the functions g0, gX , gY , and g(X,Y ) are

orthogonal functions.

◆ The property that g0, gX , gY , and g(X,Y ) are orthogonal provides a link with other expansions,

such as the polynomial chaos expansion.
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■ Sensitivity indices = mean-square values of main effects and interaction effects:

◆ Quantitative insight into the significance of X and Y in inducing uncertainty in Z :
∫∫

∣
∣g(x, y)− g0|

2PX(dx)PY (dy)

︸ ︷︷ ︸

=σ2
Z

=

∫
∣
∣gX(x)

∣
∣
2
PX(dx)

︸ ︷︷ ︸

=sX

+

∫
∣
∣gY (y)

∣
∣
2
PY (dy)

︸ ︷︷ ︸

=sY

+

∫∫
∣
∣g(X,Y )(x, y)

∣
∣
2
PX(dx)PY (dy)

︸ ︷︷ ︸

=s(X,Y )

.

◆ Because gX , gY , and g(X,Y ) are orthogonal, there are no double product terms.

◆ Thus, the expansion of g (geometry) reflects a partitioning of the variance of Z into terms

that are the variances of the main and interaction effects of X and Y (statistics), where:

sX = portion of the variance of Z that is explained as stemming from X ,

sY = portion of the variance of Z that is explained as stemming from Y .
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■ By the conditional variance identity, we have

sX = V {E{Z|X}} = V {Z} − E{V {Z|X}},

sY = V {E{Z|Y }} = V {Z} − E{V {Z|Y }},

so that sX and sY may also be interpreted as expected reductions of amount of uncertainty:

sX = expected reduction of variance of Z if there were no longer uncertainty in X ,

sY = expected reduction of variance of Z if there were no longer uncertainty in Y .

In contrast to the expansion of g and the variance partitioning of Z , these expressions and these

interpretations of sX and sY remain valid even if X and Y are statistically dependent.
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■ Let us consider a simple problem wherein X and Y are uniform r.v. with values in [−1, 1],

X ∼ U([−1, 1]),

Y ∼ U([−1, 1]),

and the function g is given by

z = g(x, y) = x+ y2 + xy.
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■ Let us consider a simple problem wherein X and Y are uniform r.v. with values in [−1, 1],

X ∼ U([−1, 1]),

Y ∼ U([−1, 1]),

and the function g is given by

z = g(x, y) = x+ y2 + xy.

■ This problem has the expansion

g(x, y) = g0 + gX(x) + gY (y) + g(X,Y )(x, y),

g(x, y)

=

g0

+

gX(x)

+

gY (y)

+

g(X,Y )(x, y)

■ To this expansion corresponds the variance partitioning

σ2
Z = sX + sY + s(X,Y ),

σ2
Z =

28

45
, sX =

1

3
= 53.57%σ2

Z , sY =
8

45
= 28.57%σ2

Z , s(X,Y ) =
1

9
= 17.86%σ2

Z .
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■ Computation by means of a stochastic expansion method:

sX ≈
∑

α 6=0

c2(α,0),

sY ≈
∑

β 6=0

c2(0,β),
with g(x, y) =

∑

(α,β)

c(α,β)ϕα(x)ψβ(y).

■ Computation by means of deterministic numerical integration:

sX ≈ QX

(
|QY g −QXQY g|

2
)
,

sY ≈ QY

(
|QXg −QXQY g|

2
)
.

■ Computation by means of Monte Carlo integration:

sX ≈
1

ν

ν∑

ℓ=1

(

g(xℓ, yℓ)−
1

ν

ν∑

k=1

g(xk, yk)

)(

g(xℓ, ỹℓ)−
1

ν

ν∑

k=1

g(xk, ỹk)

)

,

sY ≈
1

ν

ν∑

ℓ=1

(

g(xℓ, yℓ)−
1

ν

ν∑

k=1

g(xk, yk)

)(

g(x̃ℓ, yℓ)−
1

ν

ν∑

k=1

g(x̃k, yk)

)

.

■ References: [B. Sudret. Reliab. Eng. Syst. Safe., 2008], [Crestaux et al. Reliab. Eng. Syst. Safe.,

2009], [I. Sobol. Math. Comput. Simulat., 2001], and [A. Owen. ACM T. Model. Comput. S., 2013].
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Observation:

Most applications in the literature involve scalar-valued sources of uncertainty.

Opportunity:

The concepts and methods of global sensitivity analysis are valid and useful more broadly

for stochastic process, random fields, random matrices, and other sources of uncertainty.
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Parametric uncertainties and modeling errors can present themselves.
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■ Types of probabilistic approach:

◆ Parametric approaches capture parametric uncertainties by characterizing geometrical

characteristics, boundary conditions, loadings, and physical or mechanical properties as

random variables or stochastic processes.

◆ Nonparametric approaches capture modeling errors (and possibly the impact of parametric

uncertainties) by directly characterizing the model as a random model without recourse to a

characterization of its parameters as random variables or stochastic processes.

In structural dynamics, Soize constructed a class of nonparametric models by characterizing

the reduced matrices of (a sequence of) reduced-order models as random matrices.

◆ Output-prediction-error approaches capture modeling errors (and possibly the impact of

parametric uncertainties) by adding random noise terms to quantities of interest.

◆ Generalized approaches are couplings of parametric and nonparametric approaches.

■ References: [C. Soize. Probab. Eng. Mech., 2000]. [C. Soize. Int. J. Num. Methods Eng., 2010].
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Structural vibration.

[Cottereau et al. Earthquake Engng. Struct. Dyn., 2008].

Acoustics.

[Soize et al. Comput. Methods Appl. Mech. Engrg., 2008].

Nonlinear elasticity.

[Capiez-Lernout et al. Comput. Methods Appl. Mech. Engrg., 2014].

Viscoelasticity.

[Capillon et al. Comput. Methods Appl. Mech. Engrg., 2016].
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■ FE model of linear dynamical behavior of dissipative structure:

[M(x)]ü(t) + [D(x)]u̇(t) + [K(x)]u(t) = f(t,x),

where

x collects the parameters of the FE model, which may consist of material properties, loadings,

geometrical characteristics, and so forth.

u = (u1, . . . , um) is the (generalized) displacement vector,

f the (generalized) external forces vector,

and [M(x)], [D(x)], and [K(x)] the mass, damping, and stiffness matrices.
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■ Parametric probabilistic approach = probabilistic representation of uncertain parameters:

[M(X)]Ü(t) + [D(X)]U̇(t) + [K(X)]U(t) = f(t,X),

where

X is the probabilistic representation of the uncertain parameters, which may consist of

random variables, stochastic processes, and so forth.

In order to obtain the probabilistic representation of the uncertain parameters, a suitable probability

distribution must be assigned to the random variables or stochastic processes.

In stochastic mechanics, methods are available for deducing a suitable probability distribution from

available information, such as methods dedicated to tensor-valued fields of material properties,

methods dedicated to tensors in rigid-body mechanics, and methods dedicated to random loadings.
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■ Generalized probabilistic approach = enhancement of parametric probabilistic model by

introducing in it a probabilistic representation of modeling errors.

■ Step 1: Associate with the parametric probabilistic model a reduced-order probabilistic model:

[Mn(X)]Q̈(t) + [Dn(X)]Q̇(t) + [Kn(X)]Q(t) = fn(t,X),

Un(t) = [Φ(X)]Q(t),

where

[Mn(X)], [Dn(X)], and [Kn(X)] are the reduced mass, damping, and stiffness matrices,

and [Φ(X)] the matrix collecting in its columns the reduction basis ϕ1(X), ϕ2(X), . . ., ϕn(X).

Such a reduced-order probabilistic model can be obtained, for instance, by solving the eigenvalue

problem associated with the mass and stiffness matrices of the parametric probabilistic model,

[K(X)]ϕj(X) = λj(X)[M(X)]ϕj(X);

in which case the reduced matrices of the reduced-order probabilistic are given by

[Mn(X)]ij = δij , [Dn(X)]ij = ϕi(X) · [D(X)]ϕj(X), [Kn(X)]ij = λiδij .
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■ Step 2: represent the reduced matrices by using random matrices:

[Mn(X)]Q̈(t) + [Dn(X)]Q̇(t) + [Kn(X)]Q(t) = fn(t,X),

Un(t) = [Φ(X)]Q(t),

To accommodate in the reduced matrices a probabilistic representation of the modeling errors, the

generalized probabilistic approach entails representing these reduced matrices as follows:

[Mn(X)] = [LM (X)][YM ][LM (X)]T,

[Dn(X)] = [LD(X)][YD][LD(X)]T,

[Kn(X)] = [LK(X)][YK ][LK(X)]T,

with [LM (X)], [LD(X)], and [LK(X)] the Cholesky factors of [Mn(X)], [Dn(X)], and [Kn(X)].
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■ To assign a suitable probability distribution to the random matrices [YM ], [YD], and [YK ], the

generalized probabilistic approach uses the maximum entropy principle.

The probability distribution thus obtained is such that the mean values of [YM ], [YD], and [YK ] are

all equal to the identity matrix, that is,

E{[YM ]} = [In],

E{[YD]} = [In],

E{[YK ]} = [In],

and the amount of uncertainty expressed in [YM ], [YD], and [YK ] is tunable by free dispersion

parameters δM , δD , and δK , respectively, defined by

δM =
√

E{‖[YM ]− [In]‖2F}/‖[In]‖
2
F ,

δD =
√

E{‖[YD]− [In]‖2F}/‖[In]‖
2
F ,

δK =
√

E{‖[YK ]− [In]‖2F}/‖[In]‖
2
F .

■ The dispersion parameters must be calibrated such that the amount of uncertainty

expressed in [YM ], [YD], and [YK ] reflects the significance of the modeling errors.
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[H(ω;x)] = [−ω2M(x) + iωD(ω;x) +K(x)]−1.
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[H(ω;X)] = [−ω2M(X) + iωD(ω;X) +K(X)]−1,

where X = random field representation of shear and bulk moduli.
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[H(ω;X,Y )] = [Φ(X)][−ω2Mn(X) + iωDn(ω;X) +Kn(X)]−1[Φ(X)]T,

where Y = ([YM ], [YD], [YK ]) with







[Mn(X)] = [LM (X)][YM ][LM (X)]T,

[Dn(ω;X)] = [LD(ω;X)][YD][LD(ω;X)]T,

[Kn(X)] = [LK(X)][YK ][LK(X)]T.
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[H(ω;X,Y )] = [Φ(X)][−ω2Mn(X) + iωDn(ω;X) +Kn(X)]−1[Φ(X)]T,
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[H(ω;X,Y )] = [Φ(X)][−ω2Mn(X) + iωDn(ω;X) +Kn(X)]−1[Φ(X)]T,

where Y = ([YM ], [YD], [YK ]) with







[Mn(X)] = [LM (X)][YM ][LM (X)]T,

[Dn(ω;X)] = [LD(ω;X)][YD][LD(ω;X)]T,

[Kn(X)] = [LK(X)][YK ][LK(X)]T.
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The dispersion parameters must be calibrated such that the amount of uncertainty

expressed in [YM ], [YD], and [YK ] reflects the significance of the modeling errors.
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Simulated data (3D parametric probabilistic model, blue)

Generalized probabilistic model with δ̂M = δ̂D = δ̂K = 0.20 (gray).
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Because the problem is of high dimension, we compute the sensitivity indices by using Monte Carlo

integration, whereby we assess the convergence as a function of the number of samples.
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·104
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ν 7→ sν
Y
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ν

∑ν
ℓ=1(log |Hjj′ (ω;xℓ,yℓ)| −

1
ν

∑ν
k=1log |Hjj′ (ω;xk,yk)|)

(log |Hjj′ (ω; x̃ℓ,yℓ)| −
1
ν

∑ν
k=1log |Hjj′ (ω; x̃k,yk)|) at ω = 1000Hz.
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V{log |Hjj′(ω;X,Y )|} = sX(ω) + sY (ω) + s(X,Y )(ω),

sX(ω) = VarX
{

EY {log |Hjj′(ω;X,Y )|}
}
,

sY (ω) = VarY
{

EX{log |Hjj′(ω;X,Y )|}
}
.
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Parametric uncertainties.
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Stiffened panel with a hole.

δM = δD = δK = 0.05
δM = δD = δK = 0.05



Deterministic model
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First few dynamical eigenmodes.

Mode 1 at 124.88 Hz.
Mode 2 at 302.82 Hz.

δM = δD = δK = 0.05
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After a component mode synthesis, we used the nonparametric probabilistic approach to introduce

uncertainties in the submodels of the main panel and the stiffeners.
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■ Global sensitivity analysis methods can help ascertain which sources of uncertainty are most

significant in inducing uncertainty in predictions.

■ Although most applications in the literature involve scalar-valued sources of uncertainty, the

concepts and methods of global sensitivity analysis are valid and useful more broadly for stochastic

process, random fields, random matrices, and other sources of uncertainty.

■ Generalized probabilistic modeling approaches are hybrid couplings of parametric modeling

approaches (to capture parametric uncertainties) and nonparametric probabilistic modeling

approaches (to capture modeling errors).

■ We discussed global sensitivity analysis of generalized probabilistic models and demonstrated its

application in two illustrations from structural dynamics.
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■ This presentation can be downloaded from our institutional repository:

http://orbi.ulg.ac.be.

■ Other references:

◆ M. Arnst and J.-P. Ponthot. An overview of nonintrusive characterization, propagation, and

sensitivity analysis of uncertainties in computational mechanics. International Journal for

Uncertainty Quantification, 4:387–421, 2014.

◆ M. Arnst, B. Abello Alvarez, J.-P. Ponthot, and R. Boman. Itô-SDE-based MCMC method for

Bayesian characterization and propagation of errors associated with data limitations.

SIAM/ASA Journal on Uncertainty Quantification, Submitted, 2016.

◆ M. Arnst and K. Goyal. Sensitivity analysis of parametric uncertainties and modeling errors in

generalized probabilistic modeling. Probabilistic Engineering Mechanics, Submitted, 2016.

■ Support of the University of Liège through a starting grant is gratefully acknowledged.
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