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1 Introduction

The univariate coefficient of variation (CV), defined as the ratio of the standard
deviation to the mean, is a well-known measure of relative dispersion. Its use is
advocated in many practical applications when interest is on the comparison
of dispersion of a feature in populations having really different means. For
example in finance, the inverse CV, known as the Sharpe ratio, is a measure
of a portfolio performance relative to its risk. The CV is also recommended
for controlling the performance of clinical laboratories, as well as comparing
measurement techniques in External Quality Assessment (EQA) schemes that
are organized worldwide by government health agencies or private companies.

Given the widespread use of the CV for comparison purposes, many authors
have proposed some parametric tests for the equality of CV’s, or equivalently,
of inverse CV’s in K populations. Both Bennett (1976) and later Forkman
(2009) proposed some tests based on McKay (1932) approximation; Jobson
and Korkie (1981), Miller (1991a), Feltz and Miller (1996), Gupta and Ma
(1996), Nairy and Rao (2003) and Ledoit and Wolf (2008) provided some
Wald-type tests for the homogeneity of CV’s or inverse CV’s in two or more
populations, using the asymptotic distribution of either the MLE or the sample
estimator; Pardo and Pardo (2000) proposed a family of tests based on Renyi’s
divergence. Likelihood ratio tests and signed likelihood ratio tests were studied
by Nairy and Rao (2003), Verrill and Johnson (2007) and Krishnamoorthy and
Lee (2014) while score tests and modified versions of them were proposed by
Gupta and Ma (1996), Nairy and Rao (2003) and Tsou (2009). Forkman (2009)
proposed a test for the equality of two or more CVs based on F-statistics.

All these tests are based either on the MLE or the sample estimator of
the CV which are however known to be potentially extremely sensitive to
extreme values, outliers or blunders. However, such perturbation in the data
is very common in real applications, for instance in EQA schemes (Healy,
1979). Therefore, robust estimators of the CV should be used instead. An easy
non-parametric approach, which has been used in the Belgian EQA program
for nearly thirty years, consists in taking the ratio of either the interquartile
range (IQR) or the median absolute deviation (MAD) to the median as a
robust alternative to the classical CV. To our knowledge though, no testing
procedure adapted to these robust versions is developed in the literature.

In the multivariate setting, i.e. when the comparison of relative variabil-
ity is based on several characteristics, comparing the marginal CVs may lead
to contradictions. Therefore, the use of a multivariate coefficient of variation
summarizing the relative dispersion in one single index has already been ad-
vocated in several applications, for instance in the EQA context (Zhang et al.,
2010) where it is used to compare protein electrophoretic techniques. Among
the four MCVs proposed in the literature and reviewed by Albert and Zhang
(2010), we chose to focus on Voinov and Nikulin’s one (Voinov and Nikulin,
1996) because of its nice invariance properties. For a p-variate random variable
X, it is defined as
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where p is the (non-null) mean vector and X is the covariance matrix, assumed
to be positive-definite. This coefficient reduces to the univariate CV when
p = 1, provided that p > 0. In practice, using the plug-in principle, g and ¥
can be replaced by any pair of location and covariance estimators. As in the
univariate case, the use of robust estimators is preferable in the presence of
outliers, as already mentioned in Zhang et al. (2010) and Aerts et al. (2015).
The properties of these coefficients have so far been little studied and no
testing procedure for comparing K p-variate MCVs, either based on classical
estimators or on robust ones, has been proposed in the literature. The goal
of this paper is to suggest a general Wald-type test for the homogeneity of
MCVs in K elliptically symmetric populations and to study its robustness
and efficiency. In the particular case of a dimension p = 1, our proposal yields
a natural robustification of the classical Wald-type test and allows to robustly
compare the CVs of K populations, unlike the already existing procedures.

The paper is organized as follows. In Section 2, the test statistics are de-
fined and their asymptotic distributions under the null, a fixed alternative or
a sequence of contiguous alternatives are stated in Section 3. In Section 4, the
relative efficiencies of these tests are compared. Robustness of the testing pro-
cedures is analyzed in Section 5 through partial and joint influence functions
of the test statistics, as well as power and level influence functions. The results
of a Monte Carlo study examining the performance of those tests in terms of
both level and power are summarized in Section 6. The difference between
these tests and the well-known tests of homogeneity of covariance matrices is
also illustrated. Finally, the method is illustrated on a real data example in
Section 7, and some concluding remarks are outlined in Section 8.

2 Framework and test statistics

In this section, four statistics are provided for testing the homogeneity of
MCVsin K p-variate populations. The data consist of K mutually independent
random samples of varying sizes nq, ..., ng, i.e. foreach kin 1, ..., K, the k-th
random sample (Xy1, ..., Xgp, ) is formed by ny independent p-variate random
vectors each distributed according to a distribution Fj := F,, v, with density

Fro = funs () = o p 1Sl 7% gr (0 — ) S (k= r)) (1)

where p € RP and py # 0, ¥ is assumed to be symmetric and positive-
definite, i.e. Xy € SZ‘,“ , gk is a known real-valued function having a strictly
negative derivative g, and ¢, s is a normalizing factor. This means that each
distribution F,, 5, belongs to a parametric class of absolutely continuous and
unimodal elliptically symmetric distributions generated by the radial density
gk In order to properly identify X and g, gi is defined such that X is the
covariance matrix of the k-th population. Let us note that the K populations
do not necessarily share the same radial density. In the sequel, F stands for
the K-fold product F = Fy X -+ X F}.
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Distribution Additional parameter  Radial density Notation
Normal \ g(t) = exp(—t/2) D(p, X)
Student v>0 g () = (14 ay t/v)~@+T¥)/2 ty(p, X)
Power exponential >0 gp(t) = exp(=b, g t29) PEg(p,X)

Table 1 Radial densities of well-known elliptical distributions. The positive constants a,
and b, g are such that ¥ is the covariance matrix.

Radial densities of well-known elliptical distributions used herein are given
in Table 1. The suggested notations do not explicitly mention the dimension
p, as it is implicitly included in the mean vector and covariance matrix.

Let us denote by i the theoretical MCV of the k-th population. Here, the
null hypothesis of interest is Hy : v, =« for 1 < k < K, where 7 is unspecified,
against the alternative Hy : 34,7 : v; # y; with ¢ # j

Let V,,, be a plug-in estimator of the MCV ~;, obtained from a pair of loca-
tion and covariance estimators (T, , C,, ). It is assumed here that the estima-
tors V,,, are all related to the same functional V' whatever the population, i.e.
Vor = V(Fr;n, ) where Fy,p,, corresponds to the empirical distribution function
associated with the k-th sample (Xj1,...,Xkn, ). Under elliptical symmetry
with finite fourth-order moments, some standard assumptions on T,,, and C,,,
allow to obtain a simple expression for the asymptotic variance (ASV) of the
related plug-in estimator V,,, . Throughout this paper, it is assumed that:

1) T,, and C,, are affine-equivariant
T,, and C,, are asymptotically independent

)
A3) /ni(Th, — pi) N N,(0, 7,Xy), for a constant 7y
L e —

A4) /N VeC(an — ):k) — sz(o,:) with = = 01;;@(|p2 + sz)(Zk ® Zk) +
o2 (vecE ) (vecX)! for some constants oy,x, 02k, where vec and ® stand
for the usual vectorization operator and Kronecker product respectively, |2
is the p?-dimensional identity matrix and Kp2 is the commutation matrix
of dimension p* x p* defined by K2 := 37 . (e;e}) @ (e;e]) with e; the
i)th vector in the canonical basis of RP.

Under these conditions, the corresponding estimator V,,, is consistent and
asymptotically normally distributed (details can be found in Aerts et al., 2016).
Moreover, its ASV only depends on the choice of location and scatter estima-
tors, on the dimension p, on the radial density g and on 7, but not on the
true parameters pg and Xy, i.e.,

2
ASVv (Fi; i) = T + (201 + Uz;k)% (2)

These conditions are satisfied by many location and covariance estimators
under elliptical symmetry with finite fourth-order moments, in particular by
the sample estimators, for which we have 7, =1, o1,x = 1 4 K% and o9, = kg
where Ky, is the kurtosis coefficient in the k-th population defined by

Ky = p EFk [D4]
p+2EpR, [D2]2

—1 where D = /(X — ) ;' (X — i) (3)
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As already mentioned, when there are outliers in the data, the use of robust
estimators is highly advisable. It is well-known that the median, the MAD and
the IQR (multiplied by a consistency factor), as well as, in the multivariate set-
ting, the robust S and MCD estimators, among others, or reweighted versions
of them, satisfy (A1) to (A4). The corresponding constants 7, o1, and oo
can be found in Falk (1997) for the median, IQR and MAD, in Lopuh&a (1997)
and Cator and Lopuhéa (2010) for the S and MCD estimators respectively, or
derived from Lopuh&a (1999) for their reweighted version.

2.1 Wald test

The null hypothesis Hy is equivalent to testing Hé : HT' = 0 against H% : HT #
0 where T' = (71,...,7k)" and H is the matrix which constructs the K — 1
contrasts, i.e. HI' = (71 — 72, ...,71 — vk )’ The first proposed statistic to test
Hy or equivalently H(IJ is a Wald-type test statistic defined by

Wx = W'H" ASVuy(F;T)" ' Hx for Vn = (Viys -+ Vg )

where ASVHV(]:; F) =H diag (ASVV(Fl; "Yl)/)\ly cee ,ASVV(FK; 'YK)/)\K) Ht
with Ay = ni/N and N is the total sample size, i.e. N = Zszl ny. In non-
matrix form, the statistic can be expressed as a weighted sum of the squared
differences between the estimators V;,, and the estimator of a pooled coefficient

o SE wen
of variation 4 = SR, e
K K 2
D et Wk Vi py?
Wn = wy | Vo, — ———— where wp, = —«F+————.
; ( " Sy Wk ASVv (Fi; k)

In practice, the asymptotic variances ASVy (Fy;~x) need to be estimated.
For any pair of location and covariance estimators and under an assumed
underlying distribution F}, the appropriate constants 73, 01,1 and 2.3, may be
plugged in (2) while the unknown 4 is replaced by V,,, . This plug-in technique
leads to a statistic that will be denoted by /VVN from now on.

When the sample estimator is used, a unique semi-parametric statistic, that
is asymptotically valid under any K-fold product of elliptical distributions with
finite fourth-order moments, can be defined. Indeed, as the ASV only depends
on the kurtosis parameter kg, it suffices to replace it by a consistent estimator,
e.g. kr = (p(p+2))~1 n—lk S D};—1 where Dy, stands for the sample version
of D, as defined in (3), estimating pr and X by their sample versions and
evaluating the distance at Xy;.

When the assumed distributions Fi, ..., Fx share the same radial density,
an alternative test statistic may be constructed extending the proposal of Feltz
and Miller (1996). Under this particular setting, under Hy, all the asymptotic
variances ASVy (Fy; ;) reduce to the same quantity, denoted as ASVy (F1;7)
to stress its dependence on the model and the unknown common MCV, ~ say.
An alternative test statistic consists in replacing the matrix ASVyy(F;T)
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by ASVy (Fi;y)Hdiag(A\;", ..., A\x')H!. The common coefficient v can be es-
timated by Vo = Zszl Ak Vo, - All the theoretical results in the sequel can

easily be adapted to this statistic, which is asymptotically equivalent to WN.
This alternative test is not further considered here as it does not outperform
the tests proposed in the next subsection. It is however worthwhile mentioning
that it is more powerful than Wy when the ~; values are big.

2.2 Wald tests for inverse MCVs

The null hypothesis is equivalent to the equality of inverse MCVs. In the
univariate setting, several authors constructed tests for comparing inverse CVs
and this idea can also be followed in the multivariate context. When V;,, is the
plug-in estimator based on some location and scatter estimators T, and C,,
satisfying (A1) to (A4), its inverse is also consistent and asymptotically normal
with asymptotic variance ASVy (Fi; k) /7,;1. The second proposed statistic to
test Hp, which is a straightforward adaptation of the statistic Wy is

Wiy = (W™ )'HP ASV -1 (F;T) 7 HO )

where V! = (V.21 ..., V-1t and

ny ng

ASVyyy (F5T) = Hdiag (A5t ASVy (o) ) e

’ MKk

The version computed with estimated ASVs is denoted by /V[7N7inv.

3 Asymptotic distributions of the test statistics

In this section, the asymptotic distributions of the first test statistic W\N based
on estimated asymptotic variances will be derived under the null hypothesis, a
fixed alternative or a sequence of contiguous alternatives. This allows to study
the asymptotic level and power of the proposed tests. The results for Wy iny,
which are straightforward, are not detailed here.

Proposition 1 In the context described in Section 2, the null asymptotic dis-
tribution of the statistic N Wy is a chi-square with K — 1 degrees of freedom.

Proof The result follows readily from the asymptotic normality of V,,, for
each k, the plug-in estimator of the asymptotic variance ASVy(F;T") being
consistent when the V,,, are consistent.

Let us now consider a fixed alternative hypothesis I'* = (77, ..., 7)) with
I'* ¢ Oy where ©g C Rf is the set of parameters satisfying the null hypothesis,
ie. ©g = {T' € RE : HT' = 0}. Theorem 5 in Basu et al. (2015) states that,
under the true parameter value I'* and for w the operator defined by

w(Ty,T) = T4 HE ASVpy(F;T2) ! HIy, (4)
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—~ |t
we have v N (WN —w(T*, I‘*)) —£5 N(0, 02 (T*)) for 02 (T*) = % .
diag (ASVy (F1;95) /A1, -« o, ASVy (Fis vie) Ak ) 2emI0) .- Using this re-

sult, the power function of the statistic WN under I' = IT'* may be approxi-
mated, for a given nominal level a €]0, 1], as

2
Pr. [N /WN > X%{—l,a} ~1—-¢9 < \/N (XKNl,a _ u)(]:‘*,l"*))) (5)

0w (IT¥)

where Pr-[.] denotes the probability computed under F, assuming that T' =
¥, and X%{—l,a is the 1 — a quantile of the chi-square distribution with K —1
degrees of freedom. It is therefore clear that the proposed tests are consistent
since the limit of (5) when N goes to infinity is 1.

In the previous section, for any choice of location and scatter estimators,
two test statistics have been suggested. In order to compare their performance
for a given estimator or the performance of different estimators plugged into
the same statistic, the Pitman efficiency might be useful. This measure re-
quires to know the asymptotic distribution of the statistics under a sequence
of contiguous alternatives converging to the null as N goes to infinity as

H n:Tny =T+ A/VN. (6)

Let Ty be an element of @y = {I' € RY : HT' = 0} and A € R¥\ 6,
be any vector with at least two distinct components. Proposition 2 gives the
asymptotic distribution of the proposed test statistics under (6).

Proposition 2 Under the sequence Hy n , the asymptotic distribution of the

statistics N WN and N /WN;inv is a non-central chi-square with K — 1 degrees
of freedom and noncentrality parameter § = A'H' ASVyy(F;To) THA.

4 Pitman efficiencies

For consistent tests, an appropriate way to compare their asymptotic powers
is to consider a sequence of contiguous alternatives H; y under which the
limiting power is bounded away from 1 and to compute their relative Pitman
efficiency (ARE) defined by

ARE1,2(H17N) = N1—1>r-11-1<>o NTEN;

where N3(V) is the number of observations required by test 2 to achieve the
same power as test 1 when based on a sample size N1 (N) under Hy n. As shown
in Puri and Sen (1971), when two test statistics both have an asymptotic non-
central chi-square distribution with the same degree of freedom under the same
sequence of contiguous alternatives, their Pitman efficiency coincides with the
ratio of the noncentrality parameters. For a given choice of MCV estimator,
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the statistics based either on the MCVs or on their inverses are asymptoti-
cally equivalent. Therefore, only finite-sample performance differences might
be observed, as discussed at the end of Section 6.

Now, for a given test statistic, a choice has to be made for the MCV
estimator. To guide this choice, the Pitman efficiency or identically, the ratio
of the corresponding non-centrality parameters, can be computed. In the equi-
radial density case, this ratio reduces to the asymptotic relative efficiency of
the corresponding MCV estimators at the common coeflicient of variation ~
under Hy. In other words, the ARE of one of the two proposed tests based on
the functional V7 to the same test based on the functional V5 is given by

ASVy, (F,
ARE: 5(Hy n) = WM

Thus, it does not depend on the arbitrary vector A, nor on the number of
populations K or sample proportions A.

When p = 1, the most frequent pairs of consistent location and standard-
deviation estimators used to compute the CV are the sample estimators, the
pair median-IQR (IQRmed) or the pair median-MAD (MADmed), the two lat-
ter ones being asymptotically equivalent. The AREs of the tests based on these
two robust CV estimators with respect to the same tests based on the sample
CV are given in Table 2. In addition to the normal distribution, both heavier-
tailed and lighter-tailed elliptical distributions are considered: the Student
distribution with 5 degrees of freedom (¢5) and the power exponential distri-
butions with parameter 5 = 0.5 (PEg5) or § = 2 (PE3). The distributions are
displayed in the table in the increasing order of the kurtosis. As expected, the
robust tests are less efficient than the classical one under normality, especially
for small values of 7. Under the heavier-tailed Student, the robust test is more
efficient than the classical one, as long as I is not too big, while the contrary
is true at both PEs; and PEg 5.

As noted by a referee, when p = 1, the order observed in Table 2 when
considering the normal and exponential distributions coincides with the tail
ordering <; defined by Loh (1984). For many location estimators, the AREs
are order-preserving with respect to <;. Determining whether this order-
preserving is also verified for CV estimators is left for future-research.

In the multivariate setting, the robust and consistent estimators under con-
sideration are the one-step reweighted MCD estimators' and the S estimators
(with Tukey’s biweight function) with 25% BDP. The AREs of the tests based
on these robust estimators with respect to the classical one are listed in Table
3 for several values of p and v and under the multivariate normal (®), Student
(t5) and power exponential (PEq 5 and PEy) distributions. Under normal and
Student distributions, the results are in line with those obtained by Croux
and Haesbroeck (1999) when studying the asymptotic efficiencies of the one-
step reweighted MCD and S scatter matrices. Under normality or under the

1

at distribution F, the weight function was set to I with § = 0.025 and ¢5 =

G~1(1 — §) where G(t) = Pp[X!X < {]

0,q5]
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p=1
0 0.01 0.1 0.5 1 2
PE2 0.277 0.280 0.326 0.370 0.398
] 0.368 0.371 0.428 0.512 0.589
PEos 0.601 0.604 0.680 0.872 1.286
ts 1.333 1.331 1.278 1.181 1.059

Table 2 Pitman’s ARE of robust tests w.r.t classical tests - p = 1.

p=3 p=>5 p=10
¥ 0.1 0.5 2 0.1 0.5 2 0.1 0.5 2
RMCD
PE»> 0.522  0.583 0.697 0.645 0.696 0.787 0.776  0.808 0.864
4 0.674 0.732 0.864 0.752  0.799 0.896 0.838 0.870 0.932
PEps 0.873 0905 1.011 0.892 0.920 0.996 0.930 0.950 0.995
ts 2.100 1.931 1.359 2.128  1.947  1.347 2.060 1.894 1.334
S
PE, 0.888 0.873 0.864 0.927 0.923 0.917 0.960 0.959 0.957
] 0.941 0944 0.950 0.971 0973 0.975 0.989 0.989  0.990
PEgs 1.095 1.114 1.172 1.092 1.099 1.118 1.060 1.061 1.064
ts 2.444  2.233 1.539 2.487 2.270 1.560 2.508 2.288  1.568

Table 3 Pitman’s ARE of robust tests w.r.t classical tests - Multivariate setting.

lighter-tailed power exponential distribution, the tests based on robust esti-
mators are less efficient than the classical one, especially for small v values.
The tests based on the one-step reweighted MCD estimators only achieve a
better power than the classical one under the Student distribution, while the
use of S estimators leads to an outperformance of all the other tests at all con-
sidered heavier-tailed than normal distributions. As expected, tests based on
estimators with breakdown point 0.5 (not shown here) are less efficient than
those based on the 0.25 breakdown point estimators in all cases.

5 Robustness of testing procedures

As stated above, any pair of location and covariance estimators T,,, and C,,
yields a MCV estimator in the k-th population, and consequently, a test statis-
tic. Since the classical estimators are extremely sensitive to outliers, testing
procedures based on them may inherit their lack of robustness to atypical
observations. In the current section, we formalize the local sensitivity of the
proposed tests using the approach based on influence functions (Hampel et
al., 1986), adapted to tests by Rousseeuw and Ronchetti (1981) and extended
to the multidimensional parameter case by Heritier and Ronchetti (1994). In
another context, Ghosh et al. (2016) already investigated the robustness of
some Wald-type tests by means of influence functions and their analysis will
be further adapted and transposed to the MCV multi-comparison problem.
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5.1 Influence functions of the test statistics

Influence functions (IF) are local measures of robustness which describe the
effect of an infinitesimal contamination on an estimator (Hampel et al., 1986).
When considering several populations, the use of partial influence functions
is advocated to measure resistance towards pointwise contamination in each
population. Partial influence functions, although first introduced by Hampel
et al. (1986), have been formalized by Pires and Branco (2002) in order to en-
sure that the usual properties of the influence function for the one-population
case are still valid under the multi-populations case. Let S be a sample space
contained in RP and D be the set of all finite-signed measures on S. Let W
be a statistical functional whose domain is the K-fold product D x --- x D.
Partial influence functions of W at the model F = F; x --- X Fg are defined,
when the limit exists, by

W(FE)-W(F) 8

IFk(X7 Wu ]:) = ;g% 87XE = gW(]:];,x)

e=0

where FE = Fy X+ X Fex X -+ X Fi, and Fjex = (1 — ) Fy + &8,
being the Dirac distribution having all its mass at the point x € RP. More
generally, we define the m-th order partial influence function as

m

Py, (o, W F) = oW (FL )

e=0

In this subsection, we will focus on the statistic /V[7N. The straightforward
adaptation for the test based on inverse MCVs is left to the reader. The sta-
tistical functional related to the statistic Wy, computed with estimated ASV
is given by

W(F) = V(F)'H' ASVyy (F;V(F) "' HV(F) (7)

where V(F) = (V(F1),...,V(Fk))!, V being the MCV functional based on
the location and covariance functionals T and C. When T and C are partially
Fréchet differentiable and Fisher-consistent at the model F, the influence func-
tion of this functional is identically null under Hy. This comes form the fact
that HI" = 0 and implies that an influence analysis based on the first deriva-
tive is not adequate to quantify the robustness of the testing procedure. As in
Hampel et al. (1986), the behaviour of the statistic under small amounts of
contamination needs to be characterized by the second order partial influence
function IF2y(x, W, F), as given in Proposition 3 below. The computation of
this influence function is straightforward (due to the simple form of the Wald
statistic) and is therefore not detailed here.

Proposition 3 Let the functional V' be based on Fisher-consistent location
and covariance functionals T and C at Fy, Vk, whose first and second partial
order influence functions exist. Under the null hypothesis, the k-th second order
partial influence function of W in x € RP is given by

IF2:(x, W, F) = 2 (IF(x, V, Fy))?> (eblH' ASVyy(F;T) 'Hey)  (8)
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Expression (8) shows that, under the null, the test statistic will be resistant
to a small amount of partial contamination in the k-th population as soon as
the MCV estimator in the k-th population has a bounded influence function.
The IFs of several MCV estimators can be found in Aerts et al. (2015) but
the main message is the following: if the influence functions of the correspond-
ing location and covariance functionals T and C are bounded, the influence
function of the MCV will also be bounded. Usually, robust estimators have
bounded influence functions.

Note also that, in the equi-radial density case, (8) reduces to 2(IF(x, V, F}))?
Ae(1 — Ag)/ASVy (F1;7y). The effect of an infinitesimal contamination in the
k-th group is thus smaller when the sample size of the group is very small or
on the contrary, very big compared to the remaining ones. The influence is
maximized when A; = 0.5. Under this most unfavorable setting, the second
order partial influence functions of the Wald-type test statistic are plotted in
Figure 5.1 for K = 4, p = 2, under (a) the PEy, (b) the normal and (c) the
Student distributions with parameters pp = 1, and X = I,, ie. v = 1/,/p.
The estimators under consideration are those introduced in Section 4. As ex-
pected, the IF computed with the classical estimators is not bounded while
the other IFs are clearly bounded. The influence functions of the Wald-type
test statistics based on the two robust estimators are quite similar, even if it
is smoother when based on the S-estimator. They also look like the classical
IF in the center of the domain. Let us note that the gain of efficiency of S esti-
mators induces a loss in robustness since the downweighting of outliers occurs
further away from the center than with the RMCD estimators.

As for the comparison between distributions, the local sensitivity of the
test based on the classical and the S estimators is very similar under all the
considered distributions. For the test statistics based on the RMCD estima-
tors, under the leptokurtic Student and power exponential distributions, the
downweighting happens for points somewhat further away from the center.

The effect of simultaneous contamination in all the populations may be
investigated, following an idea introduced by Garcia-Perez (2012) or Ghosh
and Basu (2013) in another context, by computing the second order joint
influence function (in contrast with the partial IF) defined by

82
JIF2(X1, e XK, W, ]:) = @W(Fl,a,xl X - X FK,a,xK)
e=0
for x3,...,xK being some p-dimensional contamination points in each group.

Under the null hypothesis, this reduces to

2 JIF(x1, ..., xk, V, F) H' ASVyy(F;T) " H JIF(x1, ..., %k, V,F)
K

% 2
IF(x;, V, F
=2 E W <IF(Xk7V7Fk) - 2tz Wl Ve D)

K
k=1 D=1 Wi

with JIF (x1,...,xk,V, F) = (IF(x1,V, F1), ..., IF(xk,V, FK))t, all the other
quantities being defined previously. The joint influence function is therefore
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Fig. 1 Second order partial influence function of the test based on the classical (left panel),
the reweighted MCD (middle) or the S estimators (right panel) with 25% breakdown point.

Fig. 2 Second order joint influence function of test based on the classical (left panel), the
reweighted MCD (middle) or the S estimators (right panel) with 25% breakdown point.
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a weighted sum of the squared differences between the IFs of V' in each pop-
ulation and a pooled IF. The graphical representation of this JIF is more
complex since it depends on the location of K p-variate points. Using the
same settings as for Figure 1, the second order JIF has been plotted under
normality for contamination points located in opposite directions around g,
ie.x; = (1 4+ 2,14+ 22),x2 = (1 — 21,1 —22),x3 = (1 + 21,1 —22) and
x4 = (1 —2x1,14x9), for 21 and x2 varying along the axis. This joint influence
approach may also be applied in the next section for level and power influence
functions. Since trends remain similar, i.e. the RMCD and S estimators down-
weight severe outliers, whether in one population or in all the populations, the
corresponding expressions, which are straightforward, will not be presented.

5.2 Level and power influence functions

According to Heritier and Ronchetti (1994), robust tests should keep a stable
level under small arbitrary departures from the null (robustness of validity)
and a good power under small arbitrary departures from specified alternatives
(robustness of efficiency). Their idea is to compute the asymptotic level and
power of the test under contamination and compare them to the nominal ones.

In order to study the performance of the test at alternatives that are close
to Hp, it is adequate to compute power functions at contiguous alternatives
Hi n, as defined in (6). The contamination must now be chosen in such a way
that it converges to zero at the same rate as the sequence H; y converges
to the null in order to avoid any overlapping between the null neighborhoods
and the alternative neighborhoods. We thus consider the sequences of partial
contamination, respectively for the level and power: ]:f;&NJC =Fj1 XX
FikenNx XX Fy g for i = 0,1 where Fp j stands for the model in the k-th
population under Hp, Fj j stands for the model under the alternative H; n

while F e v = (1= /VN) Fig + (/VN) @ with x € R?, i =0, 1.

For a(F) and B(F) being the level and power at the model F, the k-th
partial level and power IFs are defined, following Hampel et al. (1986), by

LIFL (W, 7o) = o7 ( Jim ol ) ) )

N—~+oc0

e=0

PIF.(x, W, Fy) = Q( lim ﬂ(f’;syNyx)) (10)

O \ N—+o0

e=0

Let Sy be the asymptotic power under the sequence H; y of the test based
on W and aqg be the nominal level. Provided that

(B1) VN (VN = V(Fhena)) 5 Nic-1(0, ASVy(Foi To)),
(B2) ASVhv(Vw) — ASViy(Fo; To),

for ¢ = 0, 1, uniformly over the ¢ contamination of F;, a straightforward adap-
tation of Proposition 4 in Heritier and Ronchetti (1994) to the multi-sample
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design scheme and for statistics with estimated ASVs yields,

Nhr—Ii-l ﬁ(]‘—lfs Nx) = 60 + € 2d1 IF(X, V, FO,k) {e};Ht ASVHv(.Fo;FQ)_lHA}
— 400 TR

+ e [IF(x,I/,F07k)]2{d2/2 (el H! ASV iy (Fo; T) *HA)?
+dy (efH' ASVyy(Fo;To) 'Hey)}

where, for G5 being the cdf of the non-central chi-square distribution x%-_; ()
and ¢o, the 1 — ap quantile of the central chi-square distribution x%_;, d =
—(0/06)G5(qa)|s_s- and do = — (82/852)G5(qa)‘5:5* , with

§* = A'H' ASVyy(Fo; To) "'HA. The result for the asymptotic level can be
obtained by replacing A by 0.

Plugging this expression in definitions (10), it can be seen that the partial
level influence function is identically null, meaning that the asymptotic level of
the test will not be affected by a contiguous contamination. As for the partial
power influence function, which is proportional to the influence function of
the MCV functional in population k, the use of a B-robust MCV estimator
suffices to yield efficiently robust tests.

6 Monte Carlo Study

In this section, a simulation study is performed in order to assess the perfor-
mance of the proposed tests. The goal is three-fold. First, the finite-sample
performance of the tests, both in terms of level and power, is examined. Then,
as the classical location and covariance estimators are known to be extremely
sensitive to the presence of outliers, the stability of the tests based on them
or on some robust counterparts is examined under contamination. For these
first two objectives, the equi-radial density scheme will be assumed. Finally,
the conceptual distinction between comparing MCVs and testing the homo-
geneity of covariance matrices is highlighted. Simulated data will be used to
compare the results of the MCV tests with those obtained with the optimal
tests of covariance homogeneity proposed by Hallin and Paindaveine (2009).

6.1 Uncontaminated scheme - Level

In order to study the convergence speed to the null asymptotic x% _, distri-
bution, we performed M = 1000 replications of K = 2 independent samples of
equal size n = N/K from K p-variate populations Fj, k = 1,..., K, with mean
vector pr, = (1/v)e1 and covariance matrix ¥ = l,x, where v is the common
MCYV. This simple setting is not restrictive since, under elliptical symmetry,
the finite-sample distribution of the MCV estimators under consideration can
be shown to only depend on pj and X through ~.

In addition to the normal, the Student (¢5) and the power exponential
distributions (PEg 5, PE2) defined in Section 4 were considered. Several sam-
ple sizes, dimensions, and values of the common MCV were studied: n =
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50,200,300, p = 1,5 and v = 0.1,0.5,2. The size of the tests was set to 5%.
For each test statistic, together with the classical version, the same robust
estimators as those discussed in Section 4 were examined, i.e. the IQRmed
and MADmed estimators when p = 1, the one-step reweighted MCD and the
S estimators with 25% BDP in the multivariate setting. The performance of
the semi-parametric tests was also investigated.

For the sake of conciseness, the detailed simulation results are given in
Online Resource 1 but the main conclusions are the following. Whatever the
dimension, when the common MCV (or CV) takes small values (< 1), the
classical tests have rejection percentages close to the nominal level except at
the Student, under which they are too conservative especially in small samples.
This extremely bad behavior of may be explained as follows: under the Student,
the classical MCV estimator has a positive skewed finite-sample distribution.
Given the low asymptotic efficiency of the sample covariance matrix at this
distribution (the two constants Yq.; and Yo, introduced in condition (A4),
are large), the asymptotic variances are largely over-estimated compared to the
theoretical value. Therefore, the test statistics WN takes lower than expected
values, leading to fewer rejections than wanted.

Under the normal or the power exponential distributions, the classical tests
outperform the robust versions even though the univariate MADmed estima-
tor turns out to be quite competitive, while the S-estimator clearly consists of
an interesting challenger in the multivariate setting. However, the multivariate
robust tests based on the RMCD estimator require a ratio n/p not too small
to perform reasonably well but they also become much too liberal under the
PE; distribution. It is not such a surprise as the limiting case (when £ tends to
infinity) of the power exponential distribution is a uniform distribution on an
ellipsoid, configuration under which the MCD estimator is bond to becoming
very unstable. It suffers already of this lack of efficiency under the PEy distri-
bution and this, coupled with a negatively skewed finite-sample distribution
for the MCV estimator, yields estimated ASVs which are very small compared
to the theoretical value. This implies large values for the test statistics.

While performing quite similarly as their non-inverted counterpart for ~y
values strictly smaller than 1, only the tests based on the inverse MCVs per-
form decently for greater values of 7, especially in small dimension. The other
tests completely fail to get close to the nominal level of 5% except under the
PEg. 5 distribution. Indeed, for large v values, especially in small dimension,
the ASV of the non-inverted MCV is overestimated and the distribution of
the ASV estimator is much more skewed than for the inverse-MCD ASV esti-
mator. This skewness is worse as 7 increases, in small dimension or under the
Student distribution.

6.2 Power curves

The plots on the first row of Figures 3 and 4 allow to study the power per-
formance of the tests. It is assumed that K = 2, n = 200 and two different
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dimensions are considered, i.e. p =1 (in Figure 3) or p = 5 (in Figure 4). The
null hypothesis is Hy : 71 = y2 with common MCV ~; = 1, while the alter-
native is given by Hy : v = 71 + A, for specific values of A. More precisely,
in these plots, the observed frequencies of rejection have been plotted with
respect to A for A ranging from —0.9 to 0.9. Only the results for the tests
WN,inv, which showed better results in the previous subsection, are presented
considering several estimators. The power curves of the other statistic are not
drawn as they were really similar. A comparison between the two statistics in
terms of power is however outlined at the end of this subsection.

One first notices that these observed power curves are not symmetric about
0 (i.e. not symmetric about the discrepancy A between the MCVs). As ob-
served previously, the higher the MCV values, the more conservative the tests.
Then, as expected, in the univariate setting, the robust tests are less powerful
than the classical ones under normality or lighter-tailed distributions, while
they perform similarly under heavier-tailed distributions. In higher dimension,
the robust and the classical tests show similar performance under normality
or the slightly heavier-tailed PEg 5 distribution. As already mentioned before,
under the PEy distribution, the test based on the RMCD estimators is a bit
too liberal under Hy. Its power curve shows that it is also too conservative
under the alternative. Under the heavier-tailed ¢5 distribution, the robust tests
are more powerful than the classical one.

The disastrous effect of contamination on the performance of the classical
test can be observed from the plots on the second row of Figures 3 and 4. The
same simulation settings were used but this time, the data were contaminated
with 5% outliers in one group. Under F),, 5, , the outliers were drawn from
the same family of distributions with the same mean vector p; but with the
inflated covariance matrix ¥ = 100X .

The case A = 0 allows to examine the finite-sample stability of the level
under contaminated scenarios. We observe that the classical and the semipara-
metric tests break in level since the rejection frequencies are close to 1. As for
the power, the outliers succeed in shifting the power curves of the classical
tests (the semi-parametric version as well) in such a way that these become
almost useless. On the other hand, in dimension p = 1, the robust tests show
similar rejection frequencies than those achieved in absence of contamination.
As for the robust estimators in the multivariate setting, although much more
robust than the classical ones, the tests based on S estimators seem to be more
influenced by severe contamination than the one using the RMCD estimators.

For a fixed choice of estimators, it is also interesting to compare the per-
formance of the two proposed statistics Wy and Wy iny under increasingly
heterogeneous alternatives (increasing values of |A|). In a few words (simula-
tion results not shown here), for negative values of A, i.e. for values of v; and
o smaller than 1, the two statistics yields very similar rejection frequencies.
Only the comparison in presence of larger v, and -5 values allows to pinpoint
a statistic over another. In this case, whatever the MCV estimator and dimen-
sion, the tests based on the statistic Wy are too conservative. Working with
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Fig. 3 Observed rejection frequencies under alternatives (K = 2,p = 1,n = 200) for the
semi-parametric (*), classical (o), IQRmed (A) and MADmed (e) tests in uncontaminated
(top) and contaminated (5%) samples (bottom).

inverse MCVs yields more powerful tests and the discrepancy is larger under
normality or under the Student distribution.

6.3 Comparison with covariance homogeneity tests

In the multivariate setting, many tests of covariance homogeneity are avail-
able in the literature, e.g. the well-known Bartlett (Bartlett , 1937) and Schott
(Schott , 2001) tests under normality, or the optimal tests proposed by Hallin
and Paindaveine (2009) which are valid under any K-tuple of elliptical distri-
butions. In this subsection, we focus on the latter to briefly stress the differ-
ences and complementarities between these tests and the MCV ones.

First, simulations were conducted under settings similar to those illustrated
in Hallin and Paindaveine, i.e. we generate M = 500 data sets consisting
of K = 2 independent samples of respective sizes n; = 200 and ny = 50.
These samples were simulated from two bivariate populations F; and F» (both
Gaussian in the first case and both ¢5 in the second case) with mean vectors
@1 = po = 1, and covariance matrices ¥1 = I, and Y3 = (1 + 1s?)(X1 +IB)
with [ = 1,...,30 where B is a symmetric matrix such that tr B = 0. Varying
the parameter [ allows to produce increasingly heterogeneous alternatives (in
terms of covariance), either when [ increases or decreases depending on B.
As far as relative dispersion is concerned, the MCV of the first population is
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Fig. 4 Observed rejection frequencies under alternatives (K = 2,p = 5,n = 200) for the
semi-parametric (*), classical (o), RMCD (A) and S (e) tests in uncontaminated (top) and
contaminated (5%) samples (bottom)

simply equal to 1/4/2 while it is easier to derive the coefficient of the second
population when its covariance structure is further specified.

Three types of alternatives were investigated by Hallin and Paindaveine :
(a) pure scale alternatives, for which s? = 0.05 and s = 0.08 under Gaussian-
Gaussian and t5 — t5 densities respectively, and B is null ; (b) pure shape
alternatives, for which s = 0 and B is diagonal with elements —0.03 and 0.03;
and (c) mixed alternatives, for which s> = 0.04 and s* = 0.06 for Gaussian-
Gaussian and t5 — t5 densities respectively, and B is diagonal with elements
—0.02 and 0.02. These schemes yield

(a) Y2 =V 1+ 182/\/§a
(b) v2 =1//1/(1 = 0.031) + 1/(1 + 0.31)
(¢) v2=+V1+1s2/\/1/(1 —0.02]) + 1+ (1 +0.02])

In the Gaussian-Gaussian case, the tests under consideration are the classical
Wald test based on MCV and its inversed version as well as the Gaussian test
from Hallin and Paindaveine (2009). In the Student-Student case, the semi-
parametric Wald test (and its inverse-MCV version) is compared to Hallin
and Paindaveine’s semi-parametric homokurtic test. In Figure 5, the rejection
frequencies of all the tests are plotted as a function of [. The corresponding
MCYV values in the second population are displayed on the top axis.
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In all cases, the MCV tests and the covariance homogeneity test have a
Type I risk close to the nominal level under the null (I = 0). Under all schemes,
the covariance homogeneity tests are more powerful than the MCV ones, espe-
cially under mixed alternatives. This is mainly due to the dimension reduction
resulting from the computation of MCVs: such a type of differences between
covariance structures yield close MCV values that are hardly distinguishable
on the basis of such a small sample size in one of the populations (ny = 50).
Moreover, as observed in the previous subsection, the bigger the MCV values,
the less performant the test to detect small departures from the null. Note
that under pure scale alternatives (72 close to 1 or larger), it is preferable to
work with inverse MCVs, as noticed in the previous subsections. Under pure
shape alternatives, which correspond to larger MCV deviations the proposed
tests have Type I risks closer to those of the covariance homogeneity tests.

In view of the above results, when the aim is to detect differences in the
(absolute) dispersion of several populations, we advocate the use of covariance
homogeneity tests, which are more powerful, rather than MCV tests. However,
when interest is in the comparison of relative dispersion, resorting to a MCV
test is unavoidable since populations with distinct means and absolute disper-
sions may have similar MCVs. As illustration, under the Gaussian-Gaussian
assumption, consider now a mean vector ps = (1/ \/Z)lh and covariance ma-
trix X5 = (¥ for the second population, while keeping the same parameters as
before for the first population. Therefore, in terms of relative dispersion, the
two populations share the same MCV v, = v2 = 1/,/p. In Figure 6, the rejec-
tion frequencies are plotted again wrt to [ with [ ranging from 1 to 2. While the
Gaussian covariance homogeneity test and the usual heteroscedastic Hotelling
test of equality of p; and po (Krishnamoorthy and Yu, 2004) suggest some
significant differences between the covariance or mean of the two populations
(the rejection rates going up as | goes from 1 to 2), the MCV tests correctly
detect homogeneity of the two populations in terms of relative dispersion.

7 Real-life application

Multivariate coeflicients of variation have recently been proposed in External
Quality Assessment programs for comparing the performance of assay tech-
niques used by clinical laboratories. For instance, Zhang et al. (2010), noting
that EQA datasets often entail outliers or blunders, advocate the use of ro-
bust MCVs to compare serum protein electrophoresis techniques. A measure
of electrophoretic profile consists in 5 fractions, summing up to 100%, corre-
sponding to the proportion of albumin and a1, ag, 8 and gamma-globulins in
the blood. Due to the compositional nature of the data, an isometric log-ratio
(ILR) transformation is first applied to transform these five variables into four
non-linearly dependent ones before computing the MCV of each technique.
The MCV, as an overall measure of inter-laboratory repeatability, enables to
rank the techniques. However, until now, no statistical test was available in the
literature in order to highlight significant differences between the techniques.
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The data set used herein, obtained from Zhang et al. (2010), focuses on
four techniques using distinct support medium, staining color or analytical
principle. These techniques will be denoted simply as CH, EH, JW and GB
(the full names are reported in Table 6). Computing the robust Mahalanobis
distances of the observations reveals some clear outliers. Table 4 reports the
MCYV estimates computed using the classical, RMCD and S estimators as well
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Electrophoretic technique n Nn_out. class. class._oyy RMCD S

HT Cellulose acetate (CH) 141 133 .0780 .0688 .0624 .0745
HT Agarose gel (Acid blue) (EH) 121 112 .0676 .0558 .0525 .0641
HT Agarose gel (Amido black) (JH) 88 74 .0824 .0616 .0595 .0760
BCP Capillary zone (GB) 65 62 .0250 .0238 .0224  .0259

Table 4 MCV estimates - EQA application (p = 4)

Test class. Semiparam. class._oyt. Semiparam._,,;;. RMCD S
Ho .000 .000 .000 .000 .000  .000
CHvs EH .104 224 .021 .026 .051  .091
CHvs JH .579 739 .278 318 253 .842
CH vs GB 0 0 0 0 0 0
EH vs JH .053 .240 .355 .386 515 .098
EH vs GB 0 0 0 0 0 0
JH vs GB 0 0 0 0 0 0

Table 5 p-values for the multiple and pairwise comparisons tests - EQA application (p = 4)

as by means of the classical estimator applied to the clean data set (data set
without the outliers). Although the ranking remains the same without the
outliers, it can be noticed that the classical estimator is heavily influenced
by their presence. The RMCD estimate and the clean-classical estimate take
similar values, while the S estimate yields higher relative dispersion measures.
Before turning to the comparison of the methods by means of tests, let us
note that all estimated values are quite small and therefore, applying the test
based on Wy is an appropriate option that was taken here. In Table 5, the
p-values of the related statistics Wy and of the semi-parametric test, which
is also based on the classical estimator, are reported for the test Hy : yog =
YEH = Yyw = YoB versus Hi: at least one of these significantly differ from
another one. The p-values for the pairwise comparison tests are also given.
Although all the tests agree (at level 5%) to reject the fact that all techniques
are similarly performant, the choice of the estimator may change the decision of
some pairwise comparison tests. Indeed, while the classical test on the complete
dataset does not reject the fact that methods CH and EH have the same inter-
laboratory repeatability, the decision is much more nuanced when using robust
estimators or when the outliers are eliminated. Also, for the comparison of the
techniques EH and JH, the outliers have an impact on the confidence with
which the decision of non-rejection of the classical test is taken.

In order to assess the effect of contamination on the decision, one obser-
vation was added (before the ILR transformation) to the measurements of
the best-performing technique, i.e. BCP Capillary zone (GB), at a position
0.25(100 — s,4s,100 — 5,100 — 5,100 — s) consistent with the compositional
nature of the EQA measurements. The parameter s was varied from 5 to 95
by steps of five. In Figure 7, the symbol o corresponds to the classical MCV
estimate, while symbols A and e correspond to the RMCD and S estimates.
The MCV estimates and the p-values corresponding to the robust tests remain
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stable whatever the position of the added observation. Instead, the classical es-
timate is highly influenced by the position of the single outlier. Consequently,
the p-values of the parametric or semi-parametric tests based on this esti-
mator fluctuate strongly with the position of the added datapoint, and the
decision changes from rejection to non rejection in the three cases. Therefore,
the classical test fails to detect the GB technique as the one with the highest
repeatability because of the presence of only one misplaced outlier or blunder.
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8 Conclusion

Univariate and multivariate coefficients of variation are often used to compare
the relative dispersion in several populations on the basis of one or several
attributes. However, in the multivariate setting, as far as we know, no test
for the equality of K multivariate coefficients of variation may be found in
the literature. In this paper, some classical and robust Wald-type tests have
been introduced and compared, as well as a semi-parametric test valid under
any K-tuple of elliptical distributions. As a by-product, in the univariate case,
these tests offer a robust alternative to the already existing tests which are
mostly unreliable in presence of contamination.

The asymptotic distribution of the proposed test statistics was investigated
under the null as well as under fixed or contiguous alternatives, which allowed
to study the asymptotic relative efficiencies of the robust tests compared to
the classical ones. Robustness of the testing procedures was investigated by
deriving the partial and joint influence functions of the test statistic and the
partial power and level influence functions.

The simulation section confirmed the expected unreliable behaviour of the
classical tests under contamination while the robust tests were shown to remain
stable in both level and power. In the multivariate setting, the S estimator has
some interesting advantages over the RMCD estimator, i.e. it yields smooth
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influence functions, it is more efficient as shown in Section 5 and it better
handles situations where n/p is small under normality and under the PEy dis-
tribution. However, the drawback is that the corresponding test can be more
affected by some severe contamination than the one based on the RMCD esti-
mator. Knowing that, the choice of the S estimator over the RMCD should be
based on the practical situation and the desired trade-off between robustness
and efficiency. Future research may highlight an estimator yielding tests that
are both highly robust and efficient. Then, after one finalizes the choice of an
estimator, as regards the choice of the test statistic to be used among the two
proposed, although similarly performant for small MCVs in all the popula-
tions, we advocate the use of tests based on inverse MCVs, which have been
shown empirically more powerful in finite-samples for large v values (> 1).

The distinction between those tests and the usual tests of covariance homo-
geneity has been highlighted. When the aim is to detect subtle differences in
the covariance structure, it is preferable to use tests intended for this purpose,
such as those proposed by Bartlett (1937), Schott (2001) or Hallin and Pain-
daveine (2009) as they are more powerful. However, when relative dispersion
is the goal, the proposed tests were shown to be more appropriate.

Finally, through a real dataset, we illustrate how this paper meets a real
practical need, raised by Zhang et al. (2010) in the context of EQA schemes,
for non-arbitrary statistical testing procedures to compare several multivariate
coeflicients of variation.
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