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Abstract

Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dis-
persed in the human genome and encode DNA-binding proteins. Among these, we identi-
fied DUX4, a potent transcription factor that causes facioscapulohumeral muscular
dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein
co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein part-
ners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal
domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identi-
fied and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence
and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type IlI
intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin
filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and
interact with mitochondria. These intermediate filament also contact the nuclear lamina and
contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM
domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interac-
tions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/
DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipi-
tation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners
several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that
are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, how-
ever their cytoplasmic translocation was reported in neuronal cells where they associated
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with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c part-
ners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-
positive spots is in keeping with such an association. Large muscle RNPs were recently
shown to exit the nucleus via a novel mechanism of nuclear envelope budding. Following
DUX4 or DUX4c overexpression in muscle cell cultures, we observed their association with
similar nuclear buds. In conclusion, our study demonstrated unexpected interactions of
DUX4/4c with cytoplasmic proteins playing major roles during muscle differentiation. Fur-
ther investigations are on-going to evaluate whether these interactions play roles during
muscle regeneration as previously suggested for DUX4c.

Introduction

Repeated DNA elements constitute a large portion of the human genome and were long con-
sidered to be “junk DNA”. However, recent high-throughput sequence analyses have shown
that RNAs expressed from these repeated regions had been excluded by the previous tools for
transcriptomic study [1]. The Double Homeobox genes map to 3.3-kb repeated elements and
constitute a family containing hundreds of members dispersed throughout the human genome;
they are located on the short arms of all the acrocentric chromosomes, on the centromeric
region of chromosome 1 and in the telomeric regions of chromosomes 4 and 10 [2-5]. The
DUX genes have a highly conserved ORF encompassing one or two homeoboxes (reviewed in
[6]). The most studied gene in this family is DUX4, which maps to a 3.3-kb element repeated at
the D474 locus in 4q35 [4, 7, 8]. This locus is genetically linked to facioscapulohumeral muscu-
lar dystrophy (FSHD), and after over a decade of controversy, activation of the DUX4 gene is
now generally recognized as required to develop FSHD [9-12], reviewed in [13, 14]. In addi-
tion, the evolutionary conservation of the DUX gene indicates that it has a key functional role
[15, 16].

Because the DUX genes lie within repeated elements, they were mostly excluded from the
Human Genome Project. However, in silico analyses identified different loci in the human
genome containing DUX sequences [17, 18]. The evolution of this gene family is complex
because the homeobox sequence (or sequences) of an ancient Dux gene has become incorpo-
rated into repetitive DNA elements found in both heterochromatin and euchromatin regions.
Most of the DUX4-like sequences lack introns and are arranged in polymorphic arrays. Other
Dux genes (Duxc and Duxbl) are present in some mammals but not in humans [15, 18].

In a previous study, our group first identified the DUXI gene, and a related cDNA was
detected in the human rhabdomyosarcoma TE671 cell line. As expected based on its homeodo-
mains, the encoded DUX1 protein can bind to a specific DNA sequence and activate the tran-
scription of a linked reporter gene in transient co-expression experiments [4]. Using sequence
alignments, we subsequently identified a homologous DUX4 gene within each repeat unit of
the D474 array in 4q35 and a second one, DUX4c, in a single truncated repeat unit located
42 kb from this locus toward the centromere [8, 19]. The DUX4c gene, which has the greatest
sequence similarity to DUX4, was found to be upregulated in FSHD, and its overexpression
induced proliferation and impaired differentiation in human muscle cells in vitro. Moreover,
DUZX4c is induced in Duchenne Muscular Dystrophy (DMD) muscle biopsies, suggesting a
role in muscle regeneration [19].

Mouse Duxbl is critical for double negative thymocyte development and regulates myogen-
esis and reproductive development [20-22]. The human ortholog DUXO is a regulator of the
gastrula organizer in human embryonic stem cells [23] and points to a role for DUX4 and
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repetitive elements in mammalian germline evolution [24]. The expression of DUX4 induces
neurogenesis during differentiation of murine embryonic stem cells [25]. DUX4 overexpres-
sion is toxic in a majority of proliferating cells and in differentiating myotubes presenting
densely packed nuclei [9, 26], however DUX4 expression appears much less toxic in terminally
differentiated myotubes [27]. To date, the functional studies of human DUX proteins have
focused on DUX1/4 nuclear mobility [28], DUX4 nuclear localization [29], DUX1 and DUX4
DNA-binding sites and DUX4 transcriptional target genes in mouse and human cells [4, 10,
27,30, 31]. DUX4 was recently reported to strongly inhibit nonsense-mediated mRNA decay
(NMD) [32]. Finally, DUX4 overexpression has been found to inhibit protein turnover and
cause the aggregation of TDP-43 [33]. To address the functions of DUX proteins in skeletal
muscle, we aimed to identify the protein partners of DUX1, DUX4 and DUX4c. Using 4 com-
plementary methods (two yeast two-hybrid assays and GST pull-down and co-purification in
mammalian cells), we unexpectedly identified cytoplasmic protein partners. In addition, we
detected DUX4 and DUX4c in the cytoplasm of muscle cells following their differentiation and
validated several protein partners playing major role during muscle differentiation.

Materials and Methods
Ethics Statement

Primary human myoblasts were derived from muscle biopsies performed according to the cur-
rent ethical and legislative rules of France, and written informed consent was obtained from
all subjects, as directed by the ethical committee of CHU de Villeneuve (Montpellier, France)
[34] or as described previously [35-37]. In addition, the uses of primary human myoblasts
and muscle biopsies have been approved by the ethics committee of the University of Mons
(ref # A901) and by the ethics committee of ULB-Erasme (Brussels ref #82011/003).

Plasmid constructions

The cDNAs encoding individual DUX proteins or domains (homeodomains or the carboxyl-
terminal “tail”) to be used as “baits” in the yeast two-hybrid system were amplified by PCR (see
S1 Table for primers with appropriate restriction sites) from pCIneo-DUX1 ([4], pCIneo-DUX4
or pGEMdKpn42 (DUX4, [8, 9]) or pCIneo-DUX4c [19] and inserted in pCR4-TOPO (Invitro-
gen, Carlsbad, CA). The individual bait-encoding fragments were then excised by restriction
and cloned in frame with the Gal4 DNA-binding domain in the pGBT9 (Trp1™) or pGBKT?7
(TrpI™) expression vector.

The DUX4 ORF was subcloned from pCR4-DUX4 into pENTRIA (Invitrogen) using Sall-
Notl endonucleases and transferred into pDEST15 by homologous recombination (Gateway,
Invitrogen) to express an amino-terminal protein fused to GST. The DUX4c ORF was ampli-
tied by PCR from pENTRIA-DUX4c [19] and cloned into pENTR/D/TOPO (Invitrogen) before
being transferred into pDEST1I5.

We received the human desmin and karyopherin 13/IPO13 complete cDNAs from Dr. D.
Paulin (Institute of Myology, Paris) and Dr. J. E. Ploski (The Mount Sinai School of Medicine,
New York), respectively. The desmin ORF was subcloned into pDEST15 and pGAD424 (Clon-
tech, Mountain View, CA) to express a GST-desmin or a GAL4 AD-desmin fusion protein,
respectively. The IPO13 ORF was sub-cloned into pGEM7Z (Promega, Madison, WI) down-
stream from the SP6 promoter for transcription in vitro.

The full eGFP (GenBank Accession #U57608), DUX4c (GenBank Accession #AY500824)
and DUX4 (GenBank Accession #AF117653) ORFs and the last 228 nucleotides of the DUX4
OREF were inserted into the pFN21A or the pFC14K vectors according to the manufacturer’s
instructions (Promega) to express amino- or carboxyl-terminal HaloTag fusion proteins,
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respectively, and referred to as HaloTag-eGFP, HaloTag-DUX4c and HaloTag-DUX4 and
HaloTag-DUX4term. All fusion proteins contain a TEV cleavage site at the HaloTag carboxyl
or amino terminus, respectively.

C-terminal V5-epitope-tagged DUX4 was cloned into a mammalian expression vector, as
previously described (ref PMCID: PMC4098764).

The constructs were verified by DNA sequencing (Beckman Coulter, Fullerton, CA).

Yeast two-hybrid screen

The yeast host strain used for the screening and the reconstruction steps was the pJ69-4 A
strain (MAT a, ade 2 trp 1-A901 leu 2-3, 112 ura 3-52 his 3-200 Gal4A Gal80A LYS2::Gall-
HIS3 ADE2::Gal2-ADE2) or AH109 (a derivative of pJ69 4A with the addition of a lacZ
reporter gene under the control of MEL1, an endogenous GAL4 responsive element). For the
screen, pJ69-4 A or AH109 cells harboring pGBT9-DUX1, pGBT9-DUX4c or pGBKT7-DUX4
were co-transformed with an adult human skeletal muscle or a mouse embryonic day 8 Match-
maker library in pACT2 (“prey” cDNAs fused to GAL4 AD, Leu2", Clontech). The transfor-
mants were first selected on oTrp-aLeu-aHis medium with 2 mM 3-aminotriazol (AT) and
then on oTrp-aLeu-aAde medium [38]. pACT2 vectors were isolated from each positive yeast
colony to determine the interacting protein encoded by the sequence fused with GAL4 AD.

Reconstructions were performed in yeast using identical media by transforming pACT2 or a
PpGAD424 recombinant vector in combination with the pGBT9 constructs. No yeast colonies
were obtained using pGBT9 vectors expressing GAL4-DBD alone or fused to an unrelated pro-
tein (i.e., a phosphatase subunit).

Mammalian cell cultures and transfections

Mouse C2C12 and human immortalized [35-37] muscle cells were grown as previously
described [9, 19] with 10 or 20% FBS. HEK293 cells were grown at 37°C, 5% CO,, and 82%
humidity in high glucose DMEM, 10% FBS, 1% pen/strep and 1% L-glutamine. For differentia-
tion, cells were seeded on dishes coated with matrigel (BD Biosciences, San Jose, CA), and, the
growth and medium was replaced with DMEM high glucose-L-glutamine supplemented with
2% FBS or with 0.5% insulin and 1% apo-transferrin (Sigma, Gillingham, UK).

Human TE671 (Rhabdomyosarcoma) cells or LHCN-M2 immortalized myoblasts [35]
were transfected with the indicated vectors using Fugene6 (Roche Diagnostics, Mannheim,
Germany) or Lipofectamine 2000 (Invitrogen), respectively, according to the manufacturer’s
instructions.

Co-immunoprecipitation

C2C12 cells (plated at 3 x10° per 75-cm? flask two days before the transfection) were trans-
fected with 20 ug of the pClneo, pClneo-DUX1I or pCIneo-DUX4 [8] plasmids. Whole cell
extracts were prepared 24 h later using sonication in 1.5 ml lysis buffer (Tris 10 mM pH 7.4,
NaCl 150 mM, Triton X-100 0.1%) followed by centrifugation for 10 min at 13,000 rpm to
remove the cell debris. Immunoprecipitation was performed with 800 ug total extract with rab-
bit polyclonal SB152, TAR13 or 314 (1:100) directed against DUX proteins [4, 9, 39] in 1 ml
immunoprecipitation buffer (1x; Amersham Biosciences) at 4°C O/N (overnight) followed by
the addition of 10% v:v protein A-Sepharose (80 mg/ml) for 1.5 h at 4°C. After centrifugation,
the immunoprecipitate was heated for 5 min at 95°C in Laemmli buffer without reducing agent
and centrifuged for 5 min at 16,000 x g. The supernatant and total extracts (without IP) were
separated by 12% SDS-PAGE and electrotransferred to a PVDF membrane. The membrane
was blocked in PBS-0.2% Tween, 5% BSA, incubated with a monoclonal anti-desmin antibody
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(1:1,000, clone D33, Dako, Glostrup, Denmark) followed by incubation with a secondary anti-
body coupled to HRP, and then visualized using the ECL plus Western Blotting Detection Sys-
tem (Amersham Biosciences, Buckinghamshire, UK).

HEK293 cells were transfected (Life Technologies Lipofectamine 2000 transfection reagent)
with Myc-DDK-tagged-human serine/arginine-rich splicing factor 9 (pCMV6.SRSF9, Ori-
Gene), Myc-DDK-tagged-human RNA-binding motif protein 3 (pCMV6.RBM3, OriGene),
Myc-DKK-tagged-human LIM and cysteine-rich domains 1 (pCMV6.LMCD1, Origene) or
AAV6.DUX4.V5 expression plasmids and harvested 24 h post-transfection. The cells were
lysed in buffer containing 137 mM NaCl, 10 mM TRIS-HCI, pH 7.4, 1% NP40, and protease
inhibitor (Life Technologies, 87785). Prior to immunoprecipitation, 250 pg cell lysate was incu-
bated with Protein G Plus Agarose (Calbiochem, IP04) suspension for 1 h at 4°C to remove
nonspecific binding partners. To immunoprecipitate tagged protein products, the lysate was
incubated with V5 antibody agarose-immobilized conjugate (Bethyl Laboratories, S190-119) or
Myc antibody agarose immobilized conjugate (Millipore, 16-219) for 16-20 h at 4°C. Immu-
noprecipitated protein products and subsequent binding partners were analyzed by western
blot using anti-V5 (Invitrogen, R961-25), anti-Myc (Invitrogen, R951-25), and anti-C1QBP
(Abcam, ab24733).

In vitro Transcription and translation

Radiolabeled DUX1, DUX4, DUX4-t, IPO13 and luciferase (positive control) proteins were
produced by transcription/translation (T/T) in vitro (TNT Coupled Reticulocyte Lysate system,
Promega) according to the manufacturer’s instructions using pCIneo-DUX1, pCIneo-DUX4,
PCRT7/NT-DUX4-t, pGEM7Z-IPO13 or a luciferase vector in the presence of T7 or Sp6 RNA
polymerase and 20 pCi L-**S-cysteine (Amersham Biosciences, Roosendaal, The Netherlands).
To check the T/T efficiency, the products were boiled for 5 min at 95°C in XT sample buffer
(Bio-Rad, Hercules, CA) or SDS loading buffer in the presence of a reducing agent (Fermentas,
St. Leon-Rot Germany) and analyzed by SDS-PAGE. The gel was incubated for 30 min in the
Amplify solution (Amersham Biosciences), air dried and subjected to autoradiography.

Purification of GST-fusion proteins and GST pull-down assays with T/T
products

E. coli BL21-Al bacteria (Invitrogen) were transformed with the pDEST15 vectors, and the
expression of the GST-fusion proteins was induced one day later (D.O. 0.4) or not (negative
control) by L-arabinose 0.2% for 4 h at 25°C (to avoid the formation of inclusion bodies). The
bacteria were centrifuged, and the pellet was resuspended in lysis buffer (Cell lysis buffer, Pro-
mega) for 1 min in the presence of protease inhibitors and 5 mM DTE. After 3 freeze-thaw
cycles, DNase RQI (1:100, Promega) was added, and the reactions were incubated for 30 min
at room temperature (RT) on a rotator and then centrifuged at 13,000 rpm for 10 min at 4°C.
To verify the GST fusion protein production, the supernatant was mixed 1:1 v:v with lysis
buffer and then analyzed by SDS-PAGE and Coomassie blue staining (Simply Blue Safe stain,
Invitrogen).

GST-fusion proteins were affinity purified with glutathione (GSH)-Sepharose 4B (Amer-
sham Biosciences) or GSH-linked magnetic beads (MagneGST pull-down system, Promega)
according to the manufacturer’s instructions. After gentle shaking at RT for 1.5 h, the mixture
of GSH-Sepharose 4B and GST-fusion proteins was centrifuged for 2 min at 13,000 rpm, and
the pellets were washed 5 times with 1 ml PBS before resuspension in 0.8 ml of PBS. For the
GST pull-down assays, the GST-fusion proteins linked to GSH beads were centrifuged at
13,200 rpm for 2 min, and the pellet was suspended in binding buffer in the presence of 40 pul
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labeled T/T products, 3 pl L->>S-cysteine, or nothing (negative control) and incubated with gentle
shaking O/N at 4°C. The beads were harvested by centrifugation for 2 min at 13,000 rpm and
washed 4 times with binding buffer. The final pellet was boiled in SDS sample buffer containing
reducing agents and analyzed by resolution on two parallel SDS-PAGE gels followed by either
Coomassie blue staining or autoradiography.

For the assay using GSH-linked magnetic beads, the incubation with bacterial lysates con-
taining GST-fusion proteins was carried out on a rotator O/N at 4°C, and the beads were har-
vested with a magnet. For the GST pull-down assay, 5 pl of the beads linked to the GST-fusion
proteins was incubated with 20 ul of labeled T/T products for 1 h at RT on a rotator. After 5
successive wash steps, the GST proteins were analyzed as above.

Purification of GST-DUX4 and GST pull-down with cell lysates

Glutathione-S-transferase (GST)-tagged DUX4 (pGEX-6p-1) was purified from BL21 (DE3)
competent E. coli (Life Technologies). Protein production was induced at an ODg of 0.6-0.8
by IPTG. All purification steps were performed on ice or at 4°C unless otherwise specified. Sol-
uble lysate was batch purified using Glutathione Sepharose 4B (GE Healthcare) in 50 mM
HEPES, pH 7.5, 1 M NaCl, 1 mM DTT, supplemented with protease inhibitor (Pierce). Bound
protein was eluted by incubating with binding buffer containing 10 mM reduced glutathione
for 30 min at 25°C. Additional purification was performed using a HiTrap Heparin HP column
(GE Healthcare). Protein was eluted using a linear gradient from 250 mM to 1000 mM NaCl in
50 mM HEPES, pH 7.5, 1 mM DTT. Peak fractions containing GST-DUX4 were pooled and
concentrated using a 30 MWCO centrifugal spin column at 4°C. Concentrated DUX4 was sup-
plemented with 10% glycerol, flash frozen and stored at -80°C.

Total protein lysate was isolated from HEK293 and human myoblasts (clone WS236: 15
unaffected bicep from Wellstone Program). Following DNase treatment, 500 pg of total protein
lysate was incubated with GST-DUX4 and Glutathione Sepharose 4B (GE Healthcare) equili-
brated in binding buffer containing 150 mM NaCl, 5 mM MgCI2, 1 mM DTT, 25 mM Hepes,
pH 7.5, 50 ug/ul BSA and protease inhibitor (Pierce) O/N at 4°C. The resin was washed three
times with binding buffer. Bound proteins were eluted by incubating at 95°C for 10 min in
binding buffer supplemented with NuPAGE LDS sample buffer, then analyzed by SDS-PAGE.
Whole lanes were excised from the gel and submitted for tandem mass spectrometry analysis
to identify bound proteins. Non-specific binding partners were omitted based on binding part-
ners of purified GST incubated with total protein lysate, and a threshold of 2 detected peptides
was applied.

HaloTag vectors and purification by affinity chromatography

Twenty-four hours after transfection with a HaloTag expression vector, the cells were har-
vested in PBS and lysed for 15 min in hypertonic buffer (50 mM HEPES pH 7.5, 500 mM
NaCl, 0.5 mM EDTA, 0.005% Igepal and protease inhibitors). Cellular extracts were incubated
with the HaloLink resin (Promega) in binding buffer (50 mM HEPES pH 7.5, 150 mM NaCl,
0.5 mM EDTA, 0.005% Igepal and protease inhibitor) for 96 h under rotation at 4°C. The bind-
ing buffer and incubation time were optimized following Manufacturer’s instructions and vari-
ous tests. Following 4- or 24-h incubation, the quantity of HaloTag-proteins was very low on
the resin with the majority found in the flow-through. The use of 50 mM DTT in the buffer
allowed detection of GFP but not of DUX partners. Several cysteine residues occur in DUX
sequences and their involvement in disulfide bridges could be essential for protein folding and
interaction with some partner. Protease inhibitors and low temperature were used to avoid
protein degradation. EDTA was also added to inhibit metalloproteases and to assist TEV
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cleavage. IGEPAL, a non-ionic detergent, was used in low concentration to prevent the resin
from sticking to plasticware, reduce non-specific binding and increase protein recovery. We
eliminated this detergent in the cleavage buffer to be compatible with later mass spectrometry
analysis. The resin beads with the bound HaloTag proteins and partners were pelleted and
washed five times with wash buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM EDTA and
protease inhibitors). Finally, the proteins and their partners were released from the HaloTag by
cleavage with the TEV enzyme itself fused to a HaloTag for easy removal. To evaluate the com-
plexity of the pulled-down proteins, we performed an electrophoresis and silver stain of puri-
fied complexes (e.g. in S1 Fig) The purified protein extracts containing DUX4, DUX4q,
DUX4c or GFP were reduced with 25 mM DTT for 30 min at 60°C and alkylated with iodoace-
tamide (100 mM) for 30 min at 25°C in the dark. The proteins were digested with 0.1 pg of
trypsin O/N at 37°C. The resulting peptides were submitted to LC-MS/MS on an HCT Ultra
(Briiker Daltonics, Brussels, Belgium) as previously described [40], and the corresponding pro-
teins were identified using the MASCOT search engine and UNIPROT restricted to human
entries.

Proteins interacting with the GFP controls were removed from our analyses, and a threshold
of 2 detected peptides was applied. For classification into functional categories, the putative
partners were analyzed using bioinformatic tools, including the Database for Annotation, Visu-
alization and Integration (DAVID) and UniProtKB.

Immunofluorescence

Immunodetection was performed using standard procedures [19]. Briefly, the cells were fixed
in 4% paraformaldehyde in PBS (PAF), permeabilized with 0.5% Triton X-100 in PBS, and the
nonspecific sites were blocked with 20% FBS in PBS. The cells were subsequently incubated
with the appropriate primary antibodies (or the preimmune serum or a non-immunogenic
serum as a negative control) for 2 h at RT or O/N at 4°C. The cells were washed with PBS, incu-
bated with the appropriate Alexa-fluor secondary antibodies (Invitrogen), washed again, and
mounted with Vectashield mounting medium containing DAPI (Vector Laboratories, Burlin-
game, Biosciences). The antibodies were diluted in PBS containing 0.5% BSA. The primary
antibodies used in this study were rabbit anti-DUX4c serum affinity-purified against an immu-
nogenic peptide (1:50, [19]), mouse [DE-U-10] monoclonal anti-desmin (1:50; Abcam, Cam-
bridge, UK), DUX4 antibodies (rabbit 314 or mAb 9A12, [10]), anti-FUS-TLS (4H11 Santa
Cruz; 1:500) or anti-SFPQ (6D7 Sigma; 1:500).

The muscle biopsies were frozen in isopentane and stored at -80°C. Six- to ten-micron sec-
tions were fixed in 4% PAF, washed 2 times in 0.5% PBS-BSA, and incubated for 5 min with
PBS with 0.5% BSA and 0.5% Triton X-100. The sections were incubated O/N at 4°C with pri-
mary antibodies against DUX4c (1:20) or desmin (1:50), the preimmune DUX4c serum (1:20)
or a non-immunogenic mouse serum (1:50) (negative controls). The sections were washed in
PBS containing 0.5% BSA and then incubated for 1 h at RT with Alexa fluor-conjugated sec-
ondary antibodies (1:1,000, goat anti-mouse 555 or goat anti-rabbit 488). The sections were
mounted with Mowiol 4.88 (Calbiochem, San Diego, CA) and DAPI (1/1,000, D8417, Sigma).

The images were obtained with a Nikon Eclipse 80i microscope (with fluorescence filters of
small range allowing detection of very low abundance proteins) or a confocal Nikon micro-
scope (system C1).

In situ proximity ligation assay (in situ PLA)

A total of 1.2 x10* LHCN-M2 cells were seeded in chamber slides (Thermo Fisher Scientific,
Villebon sur Yvette, France). Twenty-four hours later, the myoblasts were transfected with the
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indicated DUX-expression vector using Nanojuice (Novagen, WI, USA) as described in [41].
After 48 h, the cells were fixed in 4% PAF, permeabilized with PBS with 0.5% Triton X-100 and
blocked in PBS with 20% FCS (Fetal Calf Serum). The myoblasts were then incubated with pri-
mary antibodies against DUX4 (rabbit 314 or mAb 9A12, [10]), DUX4c (1:50), desmin (1:50)
or FUS-TLS (4H11 Santa Cruz; 1:500) or SFPQ (6D7 Sigma; 1:500) at 4°C O/N. PLA (Duolink,
Olink Biosciences, Uppsala, Sweden) was performed according to the manufacturer’s instruc-
tions. Species-specific secondary antibodies (mouse and rabbit) conjugated to oligonucleotides
(PLA probes) were used for hybridization followed by the ligation and amplification steps. The
cells were then incubated in the dark with detection medium for 2 min at different concentra-
tions (2x, 1x and 0.2x) and rinsed with 70% ethanol. Finally, the cells were mounted with Gold
Antifade reagent with DAPI (Invitrogen). Negative controls were generated by omitting the
primary antibodies or by using a single antibody.

Results

A genetic screen to identify putative DUX1, DUX4 and DUX4c protein-
binding partners in skeletal muscle

To better understand the function of the DUX proteins, we searched for their protein partners
in a human skeletal muscle cDNA library using the yeast-two-hybrid method [42]. We investi-
gated DUX1, which is limited to the double homeodomain, and the very similar DUX4 and
DUX4c proteins, which contain an additional carboxyl terminal domain. The carboxyl termi-
nal domain of DUX4c is 50 residues shorter than that of DUX4 and differs from DUX4 in its
last 32 residues (Fig 1). The DUX proteins were expressed as fusions to the GAL4 DNA-bind-
ing domain. DUX4 had a very strong transcriptional activity, precluding its use as a bait in
yeast strain pJ69-4 A. In contrast, neither the DUX4c nor DUXI1 have such an activity ([6] and
data not shown). However, using the AH109 yeast strain containing a weaker GAL4 responsive
element allowed the use of DUX4 as a bait.

PJ69-4A yeast cells were co-transformed with a GAL4DBD-DUX expression vector and a
second vector expressing the GAL4 activation domain fused to a protein encoded by a human
skeletal muscle cDNA library.

A total of 10° clones from the cDNA library were screened using DUX1 as a bait, yielding
68 positive clones. The nucleotide sequence of the cDNAs present in 42 positive clones could
be determined, and 35 of these sequences corresponded to portions of the desmin cDNA.
Reconstruction experiments showed that the shortest desmin protein fragment expressed from
our positive cDNA clones (amino acids 260-470, corresponding to the COIL2 o-helical seg-
ment and tail domains) could interact with a single DUX1 homeodomain 1 (S2 Table). Other
confirmed clones corresponded to alpha-actinin-2 and to a subunit of casein kinase II
(Table 1).

The screening of this library (2.8 x 10°) using DUXA4c as a bait yielded 187 positive clones.
Out of the 150 positives clones analyzed, we identified 105 as containing a desmin cDNA
fragment.

Different putative DUX4c partners were further identified in the following categories: (i)
cytoskeletal proteins (as alpha-actinin-3, actin, myosin), (ii) transcription factors with a zinc
finger domain of either the LIM or MYND type, (iii) RNA-binding proteins, including splicing
factors. Another positive clone encoded importin/karyopherin 13 (IPO13) (Table 2).

The screening of a mouse embryonic cDNA library using DUX4 as bait also identified des-
min as a putative partner. Other putative DUX4 partners included: (i) cytoskeletal proteins
(such as myofibril- and microtubule-associated proteins, a LIM-containing protein), (ii) RNA-
binding proteins such as C1QBP (also found as a putative DUX4c partner), serine/arginine-
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1 Homeo 1 70
DUX1 MALLTALDDTLPEERQGRGRRMILLSTPSQSDALRACFERNLYPGIATKEELAQGIDIPEPRVQIWFONE
DUX4 MATLPTPSDSTLPAEARGRGRRRRLVWTPSQSEALRACFERNPYPGIATRERLAQAIGIPEPRVQIWFONE
DUX4c MATLPTPSDSTLPAEARGHGRRRRLVHTPSQSEATLRACFERNPYPGIATRERLAQAIGIPEPRVQIWFQONE,

71 Homeo 2 140
DUX1 RSCQOLROHRROSRPWPGRRDPORGRRRRTAITGSQTALLLRAFERDRFPGIAAREELARETGLPESRIQI
DUX4 RSROLROHRRESRPWPGRRGPPHGRRERTAVTGSQTALLLRAFERDRFPGIAAREELARETGLPESRIQI]
DUX4c RSROLROHRRESRPWPGRRGPPHGRRERRTAVTGSQTALLLRAFERDRFPGIAAREELARETGLPESRIQI]

141 210
DUX1 WFONRRARHRGOSGRAPTOASTIRCNARPIGY 170
DUX4 WFONRRARHPGOGGRAPAQAGGLCSARPGGGHPAPSWVAFAHTGANGTGLPAPHVPCAPGALPQGAFVSQ

DUX4c VWFQNRRARHPGCGERAPAQAGGLCSARPGGGHPAPSWVAFAHTGAWGTGLPAPHVPCAPGALPQGAFVSQ

211 280

DUX4 ZARAAPATOPSQRAAPARGISQPAPARGDFAYARAPAPPDGALSHPQAPRIWPPHPGRSREDRDPQRDGLPGP

DUX4c ZAARAAPATLOPSQAAPAEGISQPAPARGDFAYARPAPPDGALSHPOQAPRWPPHPGRSREDRDPQRDGLPGP
v A

281 350

DUX4 CAVAQPGPRAQAGPQGQGVLAPPTSQGS PWWGWGRGPQVAGAAWEPQAGARPPPOPAPPDASZSARQGOMO

DUX4c CAVAQPGPAQOAGPQGOGVLAPPTSQGS PWWGWGRGPQVAGAAWEPQAGARPPPOPAPPDASARSTDASH-

351 420
DUX4 GIPAPSOAT.QEPAPWSALPCGLLLDELLASPEFLOOAQPLLETEAPGELEASEEAASLEAPLSEEEYRAT
DUX4c ——PGASQPL.OQEPGRSSTVTSSLLY-ELLY 374

421
DUX4 LEELY* 424

Fig 1. Alignment of the DUX1, DUX4 and DUX4c protein sequences. DUX4c and DUX4 are identical from
the NH, terminus to residue 342. The two homeodomains highlighted in boxes and are targets of rabbit
TAR13 serum [4]. Residues that differ are highlighted in grey. The positions of putative CKIl phosphorylation
sites (brown) and putative binding regions for tubulin (red) and of a subset of MYND (blue) proteins (putative
DUX partners) are indicated. The region recognized by MAb 9A12 (residues 230-303), which cross-reacts
with DUX4 and DUX4c, and the peptides used to generate the specific DUX1, DUX4c or DUX4 rabbit
antisera are underlined: the SB152 rabbit serum was directed against DUX1 residues 4 to 21, the 314 rabbit
serum was directed against DUX4 residues 342 to 356, and the anti-DUX4c rabbit serum was directed
against DUX4c residues 351 to 366. The DUX4tail (DUX4-t) and DUX4term (green residues) domains map to
residues 172—-424 and 349 (alternative initiator methionine)-424, respectively. Two DUX4c polymorphisms
are indicated [19].

doi:10.1371/journal.pone.0146893.g001

rich splicing factor 9 (SRSF9; a known C1QBP interactor) [44] and RNA-binding motif protein
3 (RBM3). RBM3 contains a RRM (RNA recognition motif) domain, similar to that found in
RBM24. We found RBM24 in the screen with DUXA4c, as well as RPL4, which was previously
shown to be a RBM3 interactor [45]. Some of the DUX4 partners are involved in transcription,
protein folding or oxidative stress. Others are principally known as extracellular or membrane
proteins or involved in vesicle trafficking (Table 3).

Several clones were confirmed by reconstruction experiments in yeast (Tables 2 and 3).
These experiments did not reveal interactions between desmin fragments and any of the two

Table 1. Putative DUX1 protein partners based on Y2H analysis.

Number of hits
35

—_ A A a4

Genes/encoded proteins In frame? Reconstruction/note
Desmin Yes

Actinin, alpha 2, ACTN2 Yes

Actinin, alpha 3, ACTN3 Yes -

Casein kinase 2, beta polypeptide, CSNK2B Yes +

Homo Sapiens centromere protein E, CENP-E Yes -Tubulin-associated protein
HADHB No RNA-binding protein

nd: out-of-frame sequence that may be a result of difficult sequence products or to a translational frameshift of the GAL4AD-fused protein as previously

reported in a Y2H screen [43].

doi:10.1371/journal.pone.0146893.1001
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Table 2. Putative DUX4c protein partners based on Y2H analysis.

Number of
hits

Genes/encoded proteins

1. Myofibril/cytoskeleton-associated proteins
105 Desmin

w

Four and half LIM-3, FHL3
LIM-like protein, LIMS2/PINCH2
Actinin, alpha 3, ACTN3

Actin, Alpha-1, ACTA1

Troponin C type 2 (fast), TNNC2
Myosin, heavy chain 2, MYH2
Synaptopodin 2, SYNPO2
Glypican 1, GPC1

. RNA-binding proteins and splicing factors
Zing finger (MYND)

domain, ZMYND17

N N = a4 a4 a2 N W =2 —

1 Splicing factor 1, SF1

1

1 DEAD box helicase 5, DDX5

1 Complement component 1, q subcomponent-binding
protein, C1QBP, SF2 P32 subunit

1 RNA-binding motif protein 24, RBM24

1 Ribosomal protein L4, RPL4

3. Others

3 Importin 13, IPO13

3 Voltage-Dependent Anion
Channel 2, VDAC2

3 Creatine kinase, CKM

2 Co-enzyme Q10 homolog B, COQ10B

1 NDUFB10

1 Phosphatase 1, catalytic subunit, beta isozyme, PPP1CB

1 LOC102725482

In
frame?

Yes

Yes
n.d.
Yes
No
No
No
No
No

Only
MYND
Yes
No
Yes
No

n.d.
No

Yes

No

No
No
Yes
No
No

Rec. /note

RNA- & MyoD-
binding *#
+ MyoD-binding

3UTR

MYOD stability §

*

ncRNA

Accession
number

AF521879

BC001351.2
BC065816.1
NM_001258371.1
NM_001100.3
BC005323.1
NM_017534.5
NM_001128933.2
NM_002081.2

BC094693.1

XM_006718685

NMO004396.3
NM_001212.3

NM_001143941.1
NM_000968.3

BC008194.1

NM_001184823.1
BC012883.1
BC007462.1
NM_025147.3
NM_004548.2
NM_206876.1
XR_425709.1

E-value, Base pair
identity

0.0

0.0

3e-119 (406/484)
0.0

2e-72 (213/239)
0.0

0.0

0.0

6e-139 (390/444)

0.0
1e-51 (137/150)
0.0
3e-89 (269/309)
0.0
3-89 (192/197)

1e-62 (192/227)
0.0

0.0

0.0

0.0
0.0
0.0
0.0
8e-43 (121/134)

n.d.: not determined due to poor sequence quality; an out-of-frame sequence may be a result of difficult sequencing products, such as ZMYND17, for

which only the MYND region was found in frame, or a translational frameshift of the GAL4AD-fused protein [43].

* also identified as DUX4 or DUX4c partner by Y2H or GST pull-down/co-immunoprecipitation (see Table 3 or S3 and S4 Tables)
§ Isoform (or similar function) identified in other approaches (see Tables 2 and 3 or S3 and S4 Tables)

# Validated interaction by in situ PLA in human muscle cells

doi:10.1371/journal.pone.0146893.t002

individual DUX4/4c homeodomains (S2 Table). However, desmin was identified as the most
frequent protein partner of full-length DUX4 and DUX4c (see above), which harbor identical
double homeodomains, suggesting that both homeodomains are necessary for this interaction.

DUX4 interacts with desmin and karyopherin/importin 13

Because we did not expect to identify cytoplasmic partners for this family of nuclear proteins,
we wanted to validate the putative interaction between desmin and the DUX proteins using dif-
ferent approaches. We first performed a co-immunoprecipitation assay. Mouse C2C12

PLOS ONE | DOI:10.1371/journal.pone.0146893 January 27, 2016
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Table 3. Putative DUX4 protein partners based on Y2H analysis.

Nb of
Hits

Genes/encoded proteins

1. Cytoskeletal proteins

46

_ . a4

1
1
1

Myofibril-associated

Desmin, Des

Thyroid hormone receptor interactor 6, Trip6

adenylate cyclase-associated protein 1, Cap1
phosphatidylinositol 4-kinase type 2 alpha, Pi4k2a

LIM and cysteine-rich domains 1, Lmcd1
Microtubule-associated

tumor protein, translationally-controlled 1, Tpt1
centromere protein A, Cenpa

Tubulin, gamma complex associated protein 6, Tubgcp6

2. RNA-binding proteins and splicing factors

10
6

2
1
1

RNA-binding motif protein 3, Rom3

Complement component 1, q subcomponent binding protein, C1gbp

Splicing factor, arginine/serine rich 9, Sfrs9
MIF4G domain containing, Mif4gd
EP300-interacting inhibitor of differentiation, Eid1

3. Transcription-Elongation

5
3
1
1
1

Histone acetyltransferase 1, Hat1

heart and neural crest derivatives-expressed transcript 2, Hand2
polybromo 1, Pbrm1

RNA polymerase || DNA-directed polypeptide G, Polr2g
Topoisomerase |l alpha, Top2A

4. Extracellular and membrane proteins

6

N A~ BN

- 4 = a a N

1

EGF-containing fibulin-like ECM protein 1, Efemp1
Placenta-specific 8, Plac8

fibronectin 1, Fn1

Lymphocyte antigen 6 complex, Ly6a

Fibrillin 1, Fbn1

Prosaposin, Psap

insulin-like growth factor binding-protein 3, Igfbp3

Matrillin 2, Matn2

lysyl oxidase like 1, LoxI1

Latent transforming growth factor beta-binding protein 3, Ltbp3
Fibulin 2, transcript variant 1, Fbin2

5. Protein folding

1

peptidylprolyl isomerase B, Ppib

6. Oxidative stress

1

Gilutathione peroxidase 3, Gpx3

7. Ribosomal proteins

1

Ribosomal protein, Large P2, Rplp2

8. Others

1

RIKEN cDNA 2610042014 gene (SYS1 Golgi-localized integral
membrane protein homolog (S. cerevisiae) (Sys1),)

In
frame?

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Rec./note

# Z-lineprotein

#
# * and **
#

Repress MYOD1
transact.

Accession
number

NM_010043.2
NM_011639.3
NM_001301067.1
NM_145501.2
NM_144799.2

NM_009429.3
NM_001302132.1
NM_001163319.1

NM_001293658.1
NM_007573.2
NM_025573.3
NM_001243587.1
NM_025613.3

NM_026115.4
NM_010402.4
NM_001081251.1
NM_026329.2
NM_011623.2

NM_146015.2
NM_139198.2
NM_001276410.1
NM_001271446.1

NM_007993.2
NM_001146124.1
NM_008343.2
NM_016762.2
NM_010729.3
NM_008520.2
NM_007992.2

NM_011149.2

NM_008161.3

NM_026020.6

NM_025575.3

E-value (Base
pair identity)

0.0 (928/928)
0.0 (702/704)
0.0 (661/677)
0.0 (909/931)
0.0 (807/820)

0.0 (796/797)
0.0 (957/965)
0.0 (902/913)

0.0 (755/775)
0.0 (902/905)
0.0 (900/907)
0.0 (854/860)
0.0 (900/904)

0.0 (907/924)
0.0 (909/915)
0.0 (955/958)
0.0 (813/815)
0.0 (629/634)

0.0 (941/945)
0.0 (522/522)
0.0 (893/905)

6e-139 (271/
271)

0.0 (917/927)
0.0 (920/935)
0.0 (883/911)
0.0 (725/738)
0.0 (922/931)
0.0 (910/912)
0.0 (945/953)

0.0 (915/923)
0.0 (912/925)

4e-106 (212/
212)

0.0 (779/785)

(Continued)
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Table 3. (Continued)

Nb of Genes/encoded proteins In Rec./note Accession E-value (Base
Hits frame? number pair identity)
1 guanine nucleotide-binding protein (G protein), gamma 12, Gng12 Yes NM_025278.5 0.0 (601/612)
1 expressed in non-metastatic cells 1, protein, Nme1 Yes NM_008704.2 0.0 (675/680)
1 Morf5 family associated protein 1, Mrfap1 Yes NM_026242.3 0.0 (914/929)
1 proteolipid protein 2, Plp2 Yes NM_019755.4 6e-40 (93/93)
1 DNA segment, Chr 14, ERATO Doi 449, expressed, D14Ertd449e Yes NM_001270496.1 0.0 (716/716)
(transmembrane protein 254b (Tmem254b))
1 myeloid leukemia factor 2, MIf2 Yes NM_001170341.1 0.0 (897/906)
1 chromosome 8 genomic contig, strain C57BL/6J (F6) (Mus musculus Yes NR_125722.1 3e-127 (255/
predicted gene 2694 (Gm2694), transcript variant 2, long non-coding 257)
RNA)
1 methylmalonic aciduria (cobalamin deficiency) cblD type, with Yes NM_133839.2 0.0 (929/948)
homocystinuria, Mmadhc
1 LON peptidase N-terminal domain and ring finger 1 (Lonrf1) Yes NM_001081150.1 0.0 (883/886)
1 SHD-domain GRB2-like endophilin B1, Sh3glb1 Yes May promote NM_001282042.1 0.0 (937/945)
membr. fusion
1 Nuclear factor of kappa light chain gene enhancer in B-cell inhibitor, Yes NM_010907.2 0.0 (591/592)
Nfkbia
1 dystrophia myotonica-containing WD repeat motif, Dmwd Yes NM_010058.2 0.0 (462/464)

# Validated interaction by co-immunoprecipitation in HEK293 and C2C12 cells and by GST pull-down
* also identified by GST pull-down and subsequent MS analysis
** also identified by HaloTag-DUX4 co-purification

doi:10.1371/journal.pone.0146893.t003

myoblasts were transfected with a DUX expression vector or the empty parental vector. One
day later, total cell extracts were prepared and incubated with a rabbit serum against the DUX
proteins, and the immunoprecipitated proteins were separated by SDS-PAGE and subjected to
western blotting. A specific desmin antibody allowed the visualization of a 53-kDa protein only
in cells transfected with the DUX expression vector (Fig 2).

We then expressed desmin fused to GST or GST alone in E. coli. Radiolabeled DUX proteins
or luciferase (a negative control) were produced by in vitro transcription/translation (T/T; rab-
bit reticulocyte lysate) in the presence of [*>S]-cysteine and incubated with purified GST-des-
min (or GST as a negative control) bound to GSH-Sepharose. After centrifugation and
washing, the GST pull-down products were analyzed by SDS-PAGE followed by Coomassie
blue staining (S2A Fig) or by autoradiography (S2B Fig). GST and GST-desmin were detected
at 28 and 80 kDa, respectively (S2A Fig). Radioactive DUX1 (20 kDa) and DUX4 (52 kDa)
were detected in the GST pull-down products (S2B Fig), confirming their interaction with des-
min. DUX4-t, corresponding to the last 255 residues of DUX4 (Fig 1), was not detected in the
GST pull-down products, suggesting that the interaction with desmin was mediated by the
DUX homeodomain(s).

By a similar procedure, GST-DUX4 and -DUX4c in parallel with negative controls were
expressed in E. coli, affinity purified using GSH-linked magnetic beads, and incubated with
radiolabeled IPO13 to confirm the interaction between DUX4 or DUX4c and IPO13 (S3A Fig).
Moreover, we detected an IPO13-DUX4/4c interaction at the nuclear periphery of differentiat-
ing myoblasts using the in situ proximal ligation assay (PLA, see Methods) allowing for the
direct observation of co-localized proteins that appear as a single red fluorescent spot [46]

(S3B Fig).
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Fig 2. Co-immunoprecipitation of DUX proteins and desmin. C2C12 cells were transfected with the pCl-neo expression vector for either DUX4 or DUX1
or with the backbone vector. Total cell lysates were prepared 24 h later and incubated with rabbit sera raised against the double homeodomain common to
DUX1 and DUX4 (TAR13) or the amino-terminal domains of DUX1 (SB152) or DUX4 (314). Samples of input (total extracts of cells transfected with the
backbone vector) and the immunoprecipitates were separated by SDS-PAGE and electrotransferred to a PVDF membrane for Western blotting. Desmin was
detected using a specific antiserum (see Methods for details).

doi:10.1371/journal.pone.0146893.9002

DUX4 interacts with RNA-binding proteins involved in splicing, mMRNA
export and translation

To validate a number of interactions of DUX4 with the RNA-binding proteins identified
above, we transfected human HEK293 cells with a vector expressing either full length DUX4 or
DUX4 limited to the homeodomains (residues 1-160, short DUX4) tagged at the carboxyl-ter-
minus with a V5 epitope. The cells were lysed 24 h later and incubated with a V5 antibody. The
immunoprecipitated proteins were separated by SDS-PAGE and subjected to western blotting.
Incubation of the membrane with an anti-V5 antibody showed DUX4 expression only in trans-
fected cells. Using a C1QBP-specific antibody, we then confirmed DUX4 interaction with
endogenous C1QBP present in HEK293 cell extracts. We found that C1QBP was immunopre-
cipitated only in HEK293 cells transfected with DUX4 but not in untransfected controls that
lacked DUX4 expression. Moreover, the DUX4 homeodomains were sufficient to mediate this
interaction (Fig 3A) and DNA was not essential for the interaction because the DUX4 mutant
defective in DNA binding (Homeodomain I; [47]) could still associate with C1QBP (S3C Fig).

Similar experiments were performed using HEK293 cells transfected with a DUX4-V5 expres-
sion vector as above or co-transfected with vectors expressing myc-tagged SFRS9 (official name
SRSF9) or RBM3. The immunoprecipitations with either anti-myc or anti-V5 antibodies con-
firmed a DUX4 interaction with both proteins, validating these interactions (* in Fig 3B).

DUX4 interacts with LIM and cysteine-rich domain 1 protein (LMCD1)
involved in cardiac hypertrophy

We also validated the interaction of DUX4 with LMCD1 using HEK293 cells transfected with a
DUZX4-expression vector or co-transfected with vectors expressing myc-tagged LMCDI, as
described above. Cell extracts were immunoprecipitated with either anti-Myc or anti-V5 anti-
bodies followed by analysis by SDS-PAGE, Western blotting and immunodetection with anti-
bodies against either V5 or Myc tags to validate this interaction (Fig 3C).
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A Input V5 Co-IP

anti-C1QBP

Myc Co-IP

52 %

Fig 3. Co-immunoprecipitation of DUX4 with RNA-binding proteins. (A) HEK293 cells were transfected
or not (untransfected) with plasmids expressing V5 epitope-tagged DUX4 (full length) or DUX4 limited to the
homeodomains (short). Cell protein extracts before (input) or afterimmunoprecipitation with anti-V5
antibodies (V5 Co-IP) were analyzed by SDS-PAGE, transferred to a western blot and immunoblotted with
either anti-V5 (top panel) or anti-C1QBP antibodies (bottom panel). (B) HEK293 cells were transfected with
expression vectors for DUX4-V5 as in A, or for Myc epitope-tagged RBM3 and SFRS9 as indicated. Cell
protein extracts before (input) or afterimmunoprecipitation with antibodies against Myc (Myc Co-IP) were
analyzed as above with antibodies against either V5 (top panel) or Myc (bottom panel). The results indicate
that DUX4 co-immunoprecipitated with SFRS9 and RBM3. (C) HEK293 cells were transfected with
expression vectors for DUX4-V5 as in A or expression vectors for Myc epitope-tagged LMCD1 as indicated.
Cell protein extracts before (input) or afterimmunoprecipitation with antibodies against Myc (Myc Co-IP) were
analyzed as above with antibodies either against V5 (top panel) or Myc (bottom panel). The result indicate
that DUX4 co-immunoprecipitated with LMCD1. The input analysis was on 1/16th of lysate used for the
immunoprecipitation experiments.

doi:10.1371/journal.pone.0146893.g003
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Protein co-purification from muscle cells extends the range of putative
DUX4- and DUX4c-binding partners

To identify DUX protein-binding partners directly in mammalian cells, we used the HaloTag
technology. We constructed expression vectors for fusion proteins of the HaloTag (either
amino- or carboxyl-terminal) with either DUX4, DUX4c or the last 76 DUX4 residues (DUX4-
term). An EGFP-HaloTag fusion protein was used as a negative control. We transfected
human muscle cells with each expression vector. The cells were lysed the next day, and the
HaloTag-fusion proteins were purified by covalent capture on HaloLink resin. The co-purified
protein partners were digested with trypsin, and the resulting peptides were identified by
LC-MS/MS analysis.

This approach again confirmed the interaction between DUX4 and desmin as well as
C1QBP. We found C1QBP in the HaloTag-DUX4c immunoprecipitates. However, surpris-
ingly no interaction between desmin and HaloTag-DUX4c was observed. The major identified
proteins were classified into different functional groups (S3 Table). Some of these had been
previously identified by Y2H using DUX4 or DUX4c as a bait (Table 2), including (i) proteins
involved in myofibrillar and cytoskeletal organization, such as actin- and tubulin-interacting
proteins, actin 2 and most of the subunits of the TCP1 complex, and (ii) transcription factors
and RNA-associated proteins. Among these partners, desmin, o-actinin, actin, myosin, ribo-
somal proteins and splicing factors such as DDX5, and C1QBP, as well as other members of
the RBM, DDX and SRSF splicing factors families, were previously identified by the Y2H
screen (Tables 2 and 3, S3 and S4 Tables).

By co-immunofluorescence, we also observed a partial co-localization of the FUS (also
known as TLS) and SFPQ splicing factors with DUX4 or DUX4c in DUX4- or DUX4c-overex-
pressing myoblasts (Figs 4 and 5). Surprisingly, we found not only nuclear but also cytoplasmic
staining for all these proteins (see below). In situ PLA allowing direct observation of co-local-
ized proteins confirmed an interaction principally in the nuclei for DUX4/FUS, but intrigu-
ingly mostly in the cytoplasm or around the nuclei for DUX4/SFPQ and DUX4c/FUS or
DUX4c¢/SFPQ (54 Fig). Moreover, FUS or SFPQ interaction with DUX4c was more frequently
found in the cytoplasm than the interaction of these partners with DUX4. For DUX4¢/FUS,
the interaction signal was stronger at a tip of few myoblasts (* in S3B). In control/healthy myo-
blasts, SFPQ was mostly detected in the nucleoplasm, excluding the nucleoli, but also in the
nuclei with a major presence at the periphery, in a ring around the nuclei (* in Fig 4) or in the
cytoplasm (circle). A phosphorylated form of SFPQ had previously been reported in the cyto-
plasm [48]. Interestingly, DUX4c also presents such different types of localization (Figs 4 and
5, S5 Fig, see also Fig 6 for endogenous DUX4c). DUX4 exhibited preferentially diffuse nuclear
staining (Figs 4 and 5) but was reported as less diffuse than DUXI1, suggesting that DUX4 had
more interactions sites in the nucleus [28]. In DUX4c-overexpressing myoblasts, SFPQ locali-
zation generally changed and was mostly detected in a few nuclear spots (arrows in Fig 4A).
This localization was also observed following DUX4 overexpression but only in few myoblasts
(arrows in Fig 4A).

Endogenous DUX4c localizes to the cytoplasm during muscle
differentiation

Because these different putative partners play important roles during muscle differentiation,
we analyzed DUX4c localization during this process in healthy muscle cells. Almost all the
nuclei of proliferating cells showed DUX4c immunofluorescence, except for nuclei with intense
DAPI staining (the stars in Fig 6). DUX4c staining was generally localized at the periphery of
the nuclei in distinct areas (6a), with no apparent change one day after the switch to
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Fig 4. Nuclear and cytoplasmic (co-)localization of DUX4 or DUX4c with SFPQ in myoblasts. LHCN-M2 cells were transfected with a DUX4c or DUX4
expression vector (p-DUX4, p-DUX4c) or the backbone vector (pCineo). (A) In the cells transfected with the backbone vector (top panels), SFPQ detected by
immunofluorescence (green) was localized either in the nuclei, excluding the nucleoli, with sometimes a major presence at the periphery (*) or in the entire
cell (circle). In DUX4c-overexpressing cells (red), SFPQ was delocalized inside the nuclei and appeared in approximately 3 large spots (arrows) or seemed
present in the entire cell (arrowhead) (middle panels). DUX4-overexpressing cells (red) are shown in the bottom panels with a similar SFPQ delocalization
inside the nuclei in one DUX4-overexpressing cell. Boxed regions are magnified in B. (B) Arrows highlight cytoplasmic localization of DUX4c, DUX4 or
SFPQ, sometimes observed as emerging from the nuclei.

doi:10.1371/journal.pone.0146893.g004

differentiation medium. However, DUX4c staining decreased at day 3 (except for some nuclei),
and progressive cytoplasmic labeling appeared in elongated myotubes (6b) with occasional
spots of higher intensity (6¢). The higher intensity of nuclear staining was mainly detected in
myotubes harboring a cluster of nuclei (typically observed just after fusion) or in cells that were
about to fuse. At day 6, no DUX4c nuclear staining was detected, and cytoplasmic staining was
evident, with more intense areas either in the proximity of clusters of nuclei (e.g., 6d) or in
non-fused myoblasts (e.g., the circled area). DUX4c staining was often observed close to one or
several nuclei in clusters and on one side of the cell. Myotube tips also occasionally exhibited
stronger DUX4c staining (e.g., the arrowhead), and the DUX4c staining partially co-localized
with desmin in discrete dots (S6 Fig). Poly-A-binding protein 4 (PABPC4, also named
PABP4), which is a perinuclear protein and a putative DUX4 partner, was also found in the
myotube tips (S7A Fig)

During FSHD myoblast differentiation, DUX4c exhibited similar immunofluorescence pat-
terns as in healthy myoblasts except that variable nuclear intensities were observed and some
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Fig 5. Nuclear and cytoplasmic (co-)localization of DUX4 or DUX4c with FUS in myoblasts. LHCN-M2 cells were transfected with a DUX4c or DUX4
expression vector (p-DUX4, p-DUX4c) or the backbone vector (oCineo). (A) In the cells transfected with the backbone vector (upper panels), FUS detected
by immunofluorescence (green) was localized principally in the nuclei but also in the cytoplasm. In DUX4c- (middle panels) and DUX4- (bottom panels)
overexpressing cells (red), nuclear and cytoplasmic FUS was generally observed. (B) Magnified boxed regions in A. Partial co-localization of cytoplasmic
DUX4c or DUX4 with FUS are highlighted by triangles or arrowheads and was sometimes observed as emerging from the nuclei (circles). Arrows point to

cytoplasmic spots of FUS.
doi:10.1371/journal.pone.0146893.9005

myoblasts with small nuclei already exhibited a diffuse cytoplasmic staining pattern (S7B Fig).
During differentiation, DUX4c nuclear staining decreased, and cytoplasmic DUX4c staining
was detected in some myoblasts (circles in S7B Fig) and myotubes. The nuclear and cyto-
plasmic DUX4c staining was stronger in abnormal myotubes with large clusters of nuclei; these
myotubes were described as ‘disorganized’ by [34].

When we overexpressed DUX4 or DUX4c in muscle cells and induced differentiation, we
observed intense nuclear immunofluorescence and a few cytoplasmic dots in elongating myo-
blasts (Fig 7A and 7B and S8 and S9 Figs) or myotubes (Fig 7C, S6 Fig), which also partially co-
localized with intense desmin staining (Fig 7B and 7C). We also observed DUX4c-stained
areas at the nuclear periphery in DUX4c-expressing myoblasts (S8 and S10 Figs) and a large
nuclear bud (DAPI staining) that seemed to emerge from the nuclei and contained DUX4c
labeling (circle in S8 Fig). Other DAPI-stained regions in the cytoplasm were also observed in
this myoblast (circle), but only one co-localized with DUX4c (arrow in S8 Fig). In the same cul-
tures, some nuclei also exhibited DUX4/4c nuclear labeling corresponding to regions that
excluded DAPI staining, which could be nucleoli (S11 Fig and stars in S10 Fig).

DUX4 and DUX4c interact with desmin in situ

Using confocal microscopy, we observed a partial co-localization between DUX4 and desmin
in myoblasts by co-immunofluorescence. To confirm that these proteins were sufficiently close
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Fig 6. Cytoplasmic detection of endogenous DUX4c in differentiating healthy myoblasts. DUX4c was detected by immunofluorescence (red) in
proliferating immortalized myoblasts and during a differentiation time-course. During proliferation and after one day of differentiation, nuclear staining was
observed in almost all myoblasts. However, the few nuclei with intense DAPI staining did not present DUX4c immunofluorescence (asterisks). In myoblasts,
DUX4c was detected in the nucleoplasm or as 1 to 4 spots at the nuclear periphery (a). During differentiation, DUX4c began to be detected in the cytoplasm,
and its nuclear labeling decreased. However, stronger nuclear DUX4c staining was still observed in myotubes containing at least 3 nuclei at day 3 (b) and in
a myoblast presenting a cytoplasmic extension towards a myotube (arrows). In addition, a few muscle cells showed higher cytoplasmic DUX4c staining (the
cross in ¢). At day 6, the nuclear staining was completely lost, and some myotubes (d) or myoblasts (circles) contained strong cytoplasmic staining, mostly on
one side of the cell. Some myotube tips were also stained (arrowheads).

doi:10.1371/journal.pone.0146893.g006

DUX4c

to interact, we used the in situ PLA in muscle cells transfected with DUX4/4c-expressing vec-
tors (S12A-S12F Fig). In some cells, we detected strongly fluorescent red dots, indicating the
proximity of the two proteins in the cytoplasm and particularly around the nucleus, confirming
that DUX4 or DUX4c could interact with desmin. In DUX4c-expressing cells, clusters of nuclei
were observed, and DUX4c-desmin interactions were detected around some of them (S12F
Fig). Moreover, in differentiated healthy or FSHD non-transfected cells, similar dots were
observed using antibodies against DUX4 or DUX4c, showing an interaction between endoge-
nous DUX4/DUX4c proteins and desmin (S12G-S121 Fig).

DUX4c partially co-localizes with desmin in DMD and FSHD
regenerating fibers

We immunodetected DUX4c and desmin in muscle sections from healthy individuals or
patients with DMD or FSHD. As expected, we did not observe any regeneration in healthy
muscle. In contrast, DMD muscle sections presented intense desmin staining in muscle cells
and fibers. This labeling was either localized at the fiber periphery, in a large spot inside the sar-
coplasm or throughout the entire fiber section (Fig 8C and 8G). In the DMD and FSHD sec-
tions only, we detected intense DUX4c staining that always partially co-localized with intense
desmin labeling (Fig 8 A-8H: boxed region, arrows, stars). The reverse was not true; we could
detect strong desmin staining in the absence of DUX4c labeling (arrow heads). In the DMD
sections, DUX4c was mostly detected in the sarcoplasm and in localized areas (8F), as well as
in some nuclei (arrows), as was previously observed in differentiating muscle cell cultures. We
also found this localization in a few FSHD fibers (Fig 81-8L). FSHD muscles are known to have
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Fig 7. Partial co-localization of DUX4c or DUX4 and desmin in elongating transfected myoblasts. Healthy immortalized myoblasts were transfected
with pCineo-DUX4c (A-C) or -DUX4 (D-l) expression vectors and switched to the differentiation medium. DUX4c, DUX4 (green), and desmin (red) were
immunodetected at day 6, and myoblast nuclei were stained with DAPI. In addition to the strong DUX4/4¢ nuclear staining, elongating myoblastmyotubes
had a few cytoplasmic spots (arrows) with similar or lower intensities; some of these spots were grouped in a myotube tip (G-1). The DUX4c nuclear staining
(A) presented a pattern of linear stripes that may reflect interactions with the cytoskeleton and a nuclear bud (circle) (higher magnification is shown in the right

panel and in S9 Fig).
doi:10.1371/journal.pone.0146893.9g007

a weak regeneration ability compared to DMD muscles. In FSHD sections, DUX4c also par-
tially co-localized with intense desmin staining areas, either in the vicinity of dispersed nuclei
(arrows) or around aligned nuclei (circles). Interestingly, we occasionally observed large clus-
ters of nuclei in FSHD muscles harboring intense DUX4c labeling both in discrete areas within
the nuclei and around them (Fig 9). In the same transversal myofiber as well as in an adjacent
one, other large delocalized nuclei (arrowheads) were DUX4c positive and presented intense
staining at some poles. These fibers also exhibited weak sarcoplasmic DUX4c staining. A nega-
tive staining control carried out in parallel using preimmune serum is depicted in S13 Fig.

Discussion
Cytoplasmic detection of DUX4c and DUX4 in differentiating myoblasts

During a time course study of immortalized myoblast differentiation, we surprisingly found
that nuclear DUX4c staining progressively disappeared and was replaced by a cytoplasmic one,
particularly around clusters of nuclei that are normally found for a limited time after fusion
[49]. Myoblast fusion is an event that is rarely observed, which is consistent with the low num-
ber of muscle cells exhibiting high DUX4/4c cytoplasmic staining. We had previously missed
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Fig 8. Endogenous DUX4c expression in FSHD and DMD muscle biopsies. DUX4c immunofluorescence (green) was detected in pathological (A-H, L)
but not in healthy (I-K) muscle sections. In FSHD (A-D, longitudinal section) and DMD (E-H, L, transversal section), the arrows and circles show nuclei
(DAPI, blue) harboring DUX4c staining or proximal to such staining. The circles highlight aligned nuclei in the FSHD fiber. Sarcoplasmic DUX4c staining
(e.g., the boxed region) corresponds to the areas with intense desmin labeling (red) and partial co-localization (boxed region, arrows, circles, asterisks). The
arrow heads indicate areas with intense desmin labeling without DUX4c co-staining. The boxed regenerating region in DMD with strong DUX4c cytoplasmic

labeling is magnified in (L).

doi:10.1371/journal.pone.0146893.g008

the time of myoblast fusion and of DUX4c cytoplasmic labeling in the primary cultures
(Ansseau 2009) that differentiated faster than immortalized ones. Recently, a differentiation
time-course revealed heterogeneity among individual muscle cells within the same culture

[50]. The DUX4c cytoplasmic location might also occur at different times in individual cells. In
contrast, DUX4c was detected in approximately all of the myoblast nuclei, as was reported for
MYFS5 [51], which we had previously found to interact with DUX4c [19]. In differentiating
myoblasts, Myf5 and MyoD can be observed as patches of cytoplasmic staining [51] similar to
those described here for DUX4/4c (Figs 4 and 5 and S5 Fig). Indeed, DUX4 cytoplasmic stain-
ing was principally observed in differentiating myoblasts (Fig 5D-5I). The cytoplasmic labeling
of DUX4 and DUX4c was observed with the use of two different antibodies (mouse MAb 9A12
and anti-DUX4c rabbit serum) and a microscope allowing for the detection of low abundance
proteins (enhanced sensitivity and specificity).

Two different processes might cause DUX4/4c detection in the cytoplasm: either the pro-
teins are retained in the cytoplasm after translation or they are normally transported to the
nucleus followed by translocation to the cytoplasm. Consistent with the latter, we have identi-
fied and validated by GST pull-down and in situ PLA the IPO13 nuclear import protein as a
DUX partner. IPO13 is known to interact with paired-type homeodomain (Pax) transcription
factors that share high homeodomain sequence identity with DUX4/4c [4, 9, 27, 52]. Although
DUZX4 nuclear import was recently shown not to be mediated by importins [29], IPO13 also
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Fig 9. Endogenous DUX4c expression in a cluster of nuclei from pathological FSHD muscle. (A) Nuclear and sarcoplasmic DUX4c
immunofluorescence (green) is observed in two adjacent fibers (boxed). The nuclei are stained with DAPI (blue). Most of the delocalized nuclei (in the cluster
or not) in these two fiber sections show DUX4c staining. In the nuclei cluster (circle), DUX4c immunofluorescence is strong in the nuclei and in the
sarcoplasmic space between them. A few other regions in the section also contain nuclear or cytoplasmic DUX4c staining. (B-C) Higher magnification of the

boxed region.

doi:10.1371/journal.pone.0146893.9g009

exhibits a nucleus-to-cytosol translocation that is involved in developmental and differentia-
tion processes [53, 54]. Moreover, exportin 2 and RAN were also found as putative DUX4 part-
ners. Homeoprotein nucleocytoplasmic shuttling depends on translational modifications, such
as phosphorylation (reviewed in [55]). Several kinases and phosphatases were found among
the putative DUX partners, and their roles in nuclear translocation should be investigated.

We have confirmed the cytoplasmic localization of DUX4c (partially co-localized with des-
min) in a subset of regenerating fibers in DMD and FSHD muscle sections, in contrast to
healthy muscles, which did not exhibit this labeling pattern. In contrast to DUX4, DUX4c was
present at low levels in a majority of healthy myoblasts. Its sarcoplasmic localization in regen-
erating fibers supports a role in muscle regeneration as previously suggested in cell cultures
[19, 56].

DUX4/4c interact with desmin in elongating muscle cells

Using complementary approaches (Y2H screenings, myoblast protein co-purification and
HEK293/myoblast GST pull-down), we have unexpectedly identified cytoplasmic proteins
associated with the three types of cytoskeletal filaments (intermediate filaments/IF, actin fila-
ments and microtubules) and myosin as binding partners of DUX transcription factors. These
cytoskeletal partners were previously suggested to be artifacts because they are intrinsically
“sticky” [57]. However, we validated the interaction with type III IF desmin by co-immunopre-
cipitation, GST pull-down, co-immunofluorescence and in situ PLA.

The functionality of this interaction was underscored by the cytoplasmic DUX4/4c detec-
tion during myoblast fusion, particularly observed at the tips of myotubes as they elongated
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and partially co-localized with desmin. There are many known (and unknown) changes during
muscle differentiation, including increase in desmin abundance and post-translational modifi-
cations (PTM) [58]. Some of these modifications could be necessary to allow for interactions
with DUX4/4c and could explain why only a part of the desmin positive staining was co-immu-
nolabelled with DUX4c. A requirement for specific desmin PTM to allow for its interaction
with DUX4/4c would be in accordance with the fact we could not find vimentin among DUX4/
4c partners. Indeed, vimentin which is expressed in undifferentiated cells might not present
similar PTMs. Alterations in desmin abundance or PTMs in rhabdomyosarcoma TE671 cells
that have decreased its interaction with DUX4/4c have most probably allowed us to detect
other protein partners on these more accessible targets. During myoblast elongation (before
fusion), desmin is mostly present at the cell tips, as well as F-actin-enriched structures involved
in actin remodeling and microtubule (MT) polymerization [59]. The production and remodel-
ing of F-actin-enriched structures and MTs are key events during myoblast fusion [59-61] and
sarcomere formation [59-64]. Several putative DUX4 partners can associate with microtubules
and are also known to interact with actin (S3 Table: actin and tubulin-associated proteins). We
also found different tubulins as putative DUX4/4c partners (GST pull-down and HaloTag co-
purification), some of which were not found with the different negative controls used (S3 and
S4 Tables). Moreover, DUX4/4c harbor a sequence related to the SxIP motif known to interact
with tubulin [65] (Fig 1). We also found the motor protein dynein as a putative DUX4 partner.
Dynein is suggested to mediate capture and tethering of microtubules at the cell cortex (inner
face of the plasma membrane) and to enhance the stability of dynamic plus ends [66] where
tubulin polymerizes in elongating muscle cells. The different subunits of the TCP1 chaperonin
complex, which is involved in actin and tubulin folding [67], also co-purified with DUX4 or
DUX4c (S3 and 54 Tables). Different actins were identified as putative DUX4/4c partners by
each method employed in this study but they could be artifactual because they were also found
with the negative controls (S4 Table). All these putative interactions should be further
investigated.

DUX4, and particularly its carboxyl-terminal domain (Fig 10), interacted with different
myosin proteins, most of which were non muscle-specific (NMM) and involved in premyofi-
bril formation during differentiation [68, 69], including MYH9 (MYH II-A: identified by two
independent co-purifications) and MYH10/NMMH II-B as DUX4 partners (S3 Table).

DUZX4c gain-of-function induces cytoskeletal perturbations in muscle cell cultures with tro-
ponin T and a-tubulin delocalization (Vanderplanck et al, in preparation). Troponin T and o~
tubulin delocalization is also observed in disorganized FSHD myotubes that contain increased
relative abundances of cytoskeletal proteins involved in the regulation of the microtubule net-
work organization and of myofibrillar remodeling [70]. The transcriptional target genes of
DUX4 (the FSHD causal gene) and of DUX4c (also increased in FSHD muscles) identified to
date cannot explain the cytoplasmic alterations observed in FSHD muscle sections, which
show a higher number of splitting and branching myofibril bundles, as well as myofibril loss
and sarcomere dysfunction [71-73] (Lancelot et al. in preparation).

Several putative partners identified in the Y2H screens contain zinc finger domains of the
MYND or LIM type. We validated interaction of DUX4 with the LIM and cysteine-rich
domain 1 protein (LMCD1) that is known to play roles in cardiac muscle hypertrophy by tar-
geting NFAT (Nuclear Factor Of Activated T-Cells) [74, 75]. Similar to desmin, and, several
other putative DUX4/4c partners (see S1 Text), LMCD1 is a Z-disc LIM-associated protein
[75]. The skeletal and cardiac muscle-restricted protein SmyD1 interacts via its MYND domain
with skNAC, a NACA isoform. This interaction is mediated by a PxLxP motif and the proline-
rich skNAC domain [76-78]. Such domains are present in the carboxyl-terminal region of
both DUX4c and DUX4 (but not in other DUX proteins that contain only the double
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Fig 10. Domains involved in the validated and putative interactions with DUX binding partners. The different domains of the DUX proteins are
indicated with their validated protein partners (bold): (i) the double homeodomain can interact with desmin, (ii) the DUX4 double homeodomain (identical to
DUX4c) can interact with IPO13 and RNA-binding proteins C1QBP/Splicing factor 2 P32, and (jii) full-length DUX4 can interact with LMCD1, SRSF9, RBM3,
FUS/TLS and SFPQ. Question marks indicate putative interactions: (i) the double homeodomain could interact with a-actinins, (ii) the PxLxP motif and
proline-rich domain could interact with a subset of MYND proteins (e.g., SMYD?1), (i) the DUX4 terminal (term) region could interact with myosin-related
proteins and calmodulin and (iv) the last 32 residues of DUX4c and the homologous DUX4 residues could interact with peroxiredoxin. The interactions with
LIM proteins, actin- or tubulin-associated proteins and RNA-binding proteins are supported by Y2H or co-purification experiments and validated for the
serine/arginine-rich splicing factor 9, the RNA binding Motif 3 proteins and the LIM and cysteine rich domain 1 protein (LMCD1).

doi:10.1371/journal.pone.0146893.g010

homeodomain, such as DUX1) (Fig 1). Consistent with this finding, we did not identify such
zinc finger proteins as putative DUX1 partners. During differentiation, SmyD1 and skNAC are
translocated from the nucleus to the cytoplasm, where they play key roles by facilitating the
folding and assembly of highly abundant myofibrillar proteins [79, 80]. In this process, actin
polymerization modulates the localization of the NFAT transcription factor to the nucleus
[81]. Both ILF2 and ILF3 subunits forming a NFAT complex [82], were identified as putative
DUZX4 partners in two independent experiments. Moreover, these subunits were associated
with IGF2BP1-dependent mRNP-granules complex containing untranslated mRNAs [83]. We
also found IGF2BP1 as a putative DUX4 partner (HaloTag co-purification and GST pull-
down). Additional putative DUX4 partners included IGFBP3, known to heterodimerize with
IGF2BP1, and 9 other IGF2BP1-interacting proteins including FUS (one of the validated part-
ners, see below and *-indicated partners in S3 and S4 Tables). IGF2BP1 associates with micro-
tubules and polysomes; in the nucleus, it co-transcriptionally associates with actin (ACTB)
mRNA before its export to the cytoplasm and its transport along the cytoskeleton to the cell
membrane. At the cell membrane, IGF2BP1 is phosphorylated and releases the mRNA, allow-
ing for the assembly of ribosomal 40S and 60S subunits and ACTB protein synthesis. Mono-
meric ACTB then assembles into the actin cytoskeleton [84].
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Accumulating data have demonstrated that many proteins are multifunctional (e.g., [85]).
Cytosolic DUX partners have additional functions in the nucleus. For example, desmin was
reported to interact with lamins and single-stranded DNA/RNA and has been suggested to
form a heterodimeric gene regulation complex with MyoD (reviewed by [86]). Additionally,
FHL3, an actin-binding protein (see S1 Text), interacts with and inhibits the activity of MyoD
bound to the CKM and MYOG promoters [87], while skNAC activates the Myog promoter
[88]. In keeping with these observations, the partners we have identified and validated suggest
that besides transcription DUX4/4c might have other roles in the cytoplasm that should be fur-
ther investigated.

DUX4/4c interacts with RNA-binding proteins

We identified and validated several RNA-binding proteins as DUX4 partners (see Tables 2 and
S3), including splicing-associated factors such as C1QBP (also known as Splicing factor 2 P32),
serine and arginine-rich splicing factor SRSF9 (also known as SRp30c), RNA-Binding Motif
(RBM) 3, FUS/TLS and proline and glutamine rich splicing factor (SFPQ) also known as PSF
(PTB-associated splicing factor). PTB (polypyrimidine track protein) regulates specific exon
splicing in mRNAs during myogenesis [89]. C1QBP was found in each independent experi-
ments to identify DUX4/4c partners (total: 10, see Tables 2 and 3, S3 and S4 Tables). C1QBP
was also found as a DUX4c partner and interacted with DUX4/4c double homeodomains (Figs
3A and 10). In accordance we do not found C1QBP peptides in HaloTag-DUX4term co-IP (S3
Table). Another RBM protein (RBM24) is a putative DUX4c partner (Y2H). Little is known
about the functions of the majority of RBM proteins; however, important developmental roles
are suggested [90], such as a role for RBM3 in craniofacial development [91]. RBM3 (found in
mES cells) is also involved in cell proliferation by regulating translation and has a reduced
expression in terminally differentiated cells [92]. RBM24 (found in mature skeletal muscle) is
known to regulate myogenic differentiation [93] and MYOG [94] and p21 mRNA stability [95]
and to be required for sarcomere assembly [96] and for normal somitogenesis [90]. Other ser-
ine and arginine-rich splicing factors (SRSF5/SRp40 and SRSF3/SRp20) were also found as
putative DUX4 partners. CIQBP has been reported to bind SRSF9 and has been suggested to
be involved in RNA-protein shuttling from the nucleus to the cytoplasm [44]. C1QBP is also
involved in transcriptional regulation, ribosome biogenesis and mitochondrial translation [97,
98].

FUS and SFPQ were always found in 6 independent experiments using HaloTag co-IP to
identify DUX4/4c partners. FUS is a multifunctional protein component of the heterogeneous
nuclear ribonucleoprotein (hnRNP) complex that is involved in pre-mRNA splicing and the
export of fully processed mRNA to the cytoplasm. In the cytoplasm, FUS associates with RNP
granules that contain non-translating mRNAs [99]. FUS is also involved in transcription, pri-
miRNA maturation and mRNA translation [100]. SFPQ is involved in several nuclear pro-
cesses, such as transcription and pre-mRNA splicing in association with NONO, which is also
a putative DUX4 partner (S3 Table) [101]. SFPQ/NONO have also been reported in cyto-
plasmic RNP granules [102]. Cytoplasmic localization of SFPQ was reported after phosphory-
lation of C-terminal tyrosines [48]. In the present study, we also observed a SFPQ ring
immunostaining around the nuclei, similar to the DUX4/4c staining pattern in a few myoblasts
(see below and S5 Fig). Cytoplasmic interactions with FUS and SFPQ were more frequently
observed for DUX4c than DUX4. The interactions of desmin with DUX4/4c were cytoplasmic
but also found at the nuclear periphery (512 Fig). DUX4 and DUX4c were observed at the
nuclear periphery in myoblasts; however, the ring staining was more frequent for DUX4c and
thinner (S5 Fig). Desmin filaments links adjacent sarcomeres at the Z-discs, connects them to
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sarcolemma proteins, interacts with mitochondria, and also contacts the nuclear lamina and
contributes to positioning of the nuclei (reviewed by [86, 103]). Interestingly, myotube nuclei
are positioned abnormally following DUX4c overexpression (Vanderplanck et al, in
preparation).

Among the different helicases identified, DDX5 and DDX17 were identified as putative
DUX4/4c partners by two independent co-purifications (also by Y2H for DDX5). These heli-
cases are involved in a wide range of cellular processes, including transcription activation, pre-
mRNA splicing, mRNA export, rRNA and microRNA (miRNA) processing, and ribosome bio-
genesis (reviewed in [104, 105]). DDX5/17 are also B-catenin co-activators in the nucleus [104]
and can associate with RBM4 [106, 107], which promotes the expression of many muscle-spe-
cific mRNAs from individual genes by modulating alternative splicing [108]. During muscle
differentiation, RBM4 transiently translocates to the cytoplasm, where it participates in transla-
tion control [108]. DDX5/17 initiate and maintain specific mRNA splicing programs, resulting
in protein forms that are involved in actin cytoskeletal dynamics [107], and help to activate
MYOD1 transcriptional activity [89].

Several RNA-binding proteins identified as DUX4/4c partners are involved in the export of
spliced mRNAs associated with cytoplasmic RNA granules. These granules are transported by
microtubules to reach their correct location for translation (see above) [109]. We often
observed that DUX4/4c cytoplasmic labeling co-localized with DAPI staining spots or buds on
the nuclei that may correspond to such granules (Fig 7 and S8 and S9 Figs). Recently, the group
of Vivian Budnick has discovered that muscle cells export RNP granules by nuclear envelope
budding [110]. This mechanism is dependent on Lamin C, another putative DUX4 partner.
We also identified other RNA-binding proteins, such as ribosomal proteins, translation factors
and co-activators, as putative DUX4/4c partners. The mRNP granules contain numerous trans-
lation initiation factors, including small ribosomal subunits and are thought to contribute to
translation regulation [111].

Moreover, we occasionally observed DUX4/4c localization in regions in a few differentiating
myoblasts that may correspond to nucleoli (S10 and S11 Figs), which has been described for
several DUX4/4c binding partners (see S3 and 54 Tables) that regulate rRNA transcription and
processing ([112]; Fig 6, S5 Fig). During myoblast fusion, large amounts of RNA and RNPs
may translocate from the nucleoli to the cytoplasm [113] and the 3 types of cytoskeletal fila-
ments (IF, MTs and actin microfilaments) are involved in their transport to synthesize active
myofibril proteins [114]. We showed that during this process endogenous DUX4c (in healthy
and FSHD cells) and DUX4 (in FSHD cells) accumulate in the cytoplasm in association with
desmin. Moreover, DUX4c and DUX4 are associated with the RNA-binding proteins FUS and
SFPQ in the nucleus and in the cytoplasm and with cytoplasmic nucleic acids (DAPI staining).

In summary, our four independent experiments to identify DUX partners identified
mRNA-binding and cytoplasmic proteins. A majority of the DUX4/4c partners found are
known to have dual functions, one in the nucleus and the other one in the cytoplasm, particu-
larly in differentiating muscle cells. Several act in common pathways, such as in the regulation
of Myogenin expression via modulation of MYOD1 activity (RBM24, skNAC, FHL3, DDX5/
17) and myoblast differentiation including fusion and myofibrillogenesis (as evidenced by des-
min in elongating tips in parallel with actin/tubulin remodeling and folding, see above and S1
Text). Although these proteins are frequently considered experimental artifacts in partner
identifications, these interactions could nevertheless be of functional relevance and should be
further investigated. Moreover, the Interleukin Enhancer Binding Factor 2 and 3 (ILF2/3) are
known to associate with IGF2BP1-dependent mRNP granules. These granules travel along
microtubules to bring mRNA to the plasma membrane for translation. The validated partner
FUS (hnRNP P2) as well as the putative ones DHX9 (an ATP-dependent RNA helicase A),
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ELAVL1, HNRNPU, HNRNPH]1, PABPCI1, PCBP2, PABPC4, SYNCRIP (hnRNP Q), nucleo-
lin and several ribosomal proteins are present in these mRNP granules (Protein-protein inter-
action databases at UniProtKB; [115]). Other DUX protein partners are also part of known
RNP complexes, such as CLQBP/SRSF9, SFPQ/NONO, DDX5/17, RBM3/RPL4. All the
mRNP granules have features in common and are dynamic, self-assembling structures that
harbor non-translating mRNAs bound by various proteins that regulate mRNA translation,
localization, and turnover [111]. Further experiments will be needed to confirm whether
DUX4/4c are part of these multifunctional complexes and involved in the regulation of mRNP
granules.

DUX4 overexpression is toxic in muscle cells [9, 26, 27] and might cause aberrant cyto-
plasmic localization of nuclear factors in degenerating myotubes. Nevertheless, endogenous
DUX4c (expressed in almost all myoblasts in contrast to DUX4) is detected in the cytoplasm
during myoblast differentiation. Moreover, with different antibodies (mouse monoclonal and
rabbit antisera) used in several independent experiments (this study and Vanderplanck et al, in
preparation), we always observed cytoplasmic DUX4 and DUX4c at the tip of elongating myo-
tubes or next to clusters of nuclei thus arguing against an artifactual localization.

Proteins involved in muscle differentiation might be disturbed in FSHD
by interactions with DUX4/4c

Until now, research has focused on the transcriptional regulation function of DUX4 to explain
the physiopathology of FSHD [10, 24, 30, 31, 116]. The DUX4 protein is known to exhibit
strong transcriptional activity via its carboxyl-terminal domain [6, 117]. DUX4c contains a
shorter carboxyl-terminal domain than DUX4, and it has a weaker activity toward the PITX]I
and CRYM gene promoters [10, 41]. This different transcriptional activity was also confirmed
by our one-hybrid experiment in yeast (data not shown). DUX4c and DUX4 contain identical
homeodomains and may therefore bind to the same target genes. However, the precise DNA
target may be influenced by interaction with specific partners, and this question should be
addressed in ChIP-seq experiments.

If additional functions were defined for DUX4/4c in association with cytoplasmic protein
partners described in this study, they might be linked to the occasional cytoskeletal abnormali-
ties reported in FSHD muscles (see above) [37, 118, 119]. These might be related to the known
sporadic DUX4 expression in FSHD muscle cells [37, 118, 119] escaping cell death in condi-
tions where transient DUX4 expression burst is not fatal to the fiber or takes considerably lon-
ger to disrupt it [26]. Moreover, we observed DUX4c up-regulation in some FSHD muscles
[19], which could be related to the normal regeneration process. However, in our previous
study, higher amounts of DUX4c were generally detected in FSHD samples (6- to 15-fold
increase compared to controls) containing few regenerating fibers in comparison to the
DUZX4c level found in highly regenerating DMD muscles (3-4-fold increase) [19]. The larger
amount of DUX4c differs between patient muscles, and this difference may contribute to the
pathology. Indeed, we also observed the abnormal localization of contractile-associated pro-
teins and mis-localization of nuclei following DUX4c over-expression in muscle cells (Figs 7F,
9 and S4A and Vanderplanck et al in preparation). Moreover, we often observed abnormal
intracellular localization of DUX4c compared to healthy muscle cells: FSHD myoblasts already
harbor cytoplasmic DUX4c and, during late differentiation, FSHD myotubes still contained
nuclear DUX4c (S6B Fig). This was also observed in FSHD muscle fiber sections (Fig 9). We
also have preliminary data showing both nuclear and cytoplasmic endogenous DUX4 in FSHD
myotubes containing nuclei clusters (after fusion). Interestingly, in the local myopathy model
developed by injection of an AAV-DUX4-V5tag expression vector, this protein was specifically
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immunodetected both in the nuclei and the cytoplasm of degenerating myofibers [47]. These
data need further investigation to determine whether abnormal localization of DUX4 or
DUZX4c plays a role in FSHD physiopathology.

Differentiation defects have been reported in FSHD muscles, such as the inhibition of
MYOD1 target genes [120, 121] and genes involved in normal myogenesis, such as those
encoding proteins related to muscle structure proteins and stress responses [122]. DUX4 may
impact myogenesis at the transcriptional level [27, 30] and by interacting with proteins that
regulate these genes, such as MYOG (see above), which is upregulated in FSHD myoblasts in
comparison to healthy immortalized myoblasts [36]. The cytoskeleton plays critical roles in
cellular structure, proliferation, and intra- and inter-cellular signaling. This is especially impor-
tant in muscle cells, and the disruption of the cytoskeletal network can lead to a broad spec-
trum of myopathies such as desminopathies (reviewed in [123]). Cytoskeletal perturbations
also impact mitochondrial localization and function. Abnormal mitochondrial morphologies
and increased sensitivity to oxidative stress have been reported in FSHD muscles [72, 120, 124,
125]. Of note, we also found antioxidant enzymes, such as glutathione peroxidase and peroxir-
edoxins, among the putative DUX4/4c binding partners (S3 Table, Fig 10).

In desminopathies and other protein-aggregate diseases, a crosstalk has been suggested
between protein folding and RNP aggregation [126]. For example, muscles from desminopa-
thies contain cytoplasmic aggregates of the RNA-binding protein TDP-43, a component of
stress granules [127]. TDP-43 shares several normal and pathological functions with FUS (a
DUX4/4c partner), such as the formation of pathological cytoplasmic aggregates in degenerat-
ing motor neurons in ALS that are also associated with mitochondrial damage [128, 129].
Some validated and putative DUX4/4c RNA-binding partners are related to neuronal differen-
tiation (S3 Table), and DUX4 overexpression in mES cells induces neurogenesis [25]. TDP-43
nuclear aggregates were recently shown to be induced by DUX4 expression in muscle cells and
suggested as a potential pathological mechanisms in FSHD [33]. In our study, we observed that
DUX4c overexpression in myoblast induced delocalization of nuclear SFPQ, which may alter
the function of this splicing factor. SRp40, another DUX4 partner, is involved in the specific
splicing of Troponin T mRNA that is altered in FSHD muscles, yielding to contraction defects
[130]. In FSHD myoblasts, the splicing of muscle-specific mRNAs and mRNA stability are dis-
rupted [131, 132] (reviewed in [133]). Some mRNP are also thought to function in mRNA
decay [111], and DUX4 was recently reported to strongly inhibit NMD resulting in a global
accumulation of mRNAs normally degraded as NMD substrates [32].

In conclusion, during healthy and pathological muscle differentiation we detected the
DUX4 and DUX4c transcription factors in the nucleus but also in the cytoplasm in association
with proteins such as desmin and the RNA-binding proteins FUS and SFPQ. Other RNA-bind-
ing proteins playing roles during muscle differentiation were also validated as DUX4/4c part-
ners. Additional studies should define the molecular mechanisms of these interactions in
muscle differentiation and in neuro-muscular pathologies. Moreover, because a large portion
of the DUX4c protein is identical to DUX4, the current development of therapeutic approaches
to inhibit DUX4 expression in FSHD should avoid interference with the normal function of
DUX4c. Indeed, the inhibition of DUX4c decreases the myoblast proliferation required for
regeneration (Vanderplanck et al in preparation).

Supporting Information

S1 Fig. Purification of HaloTag-DUX4 or -DUX4c protein complexes. TE671 cells were
transfected with HaloTag-DUX4 or -DUX4c expression vectors. Cells were harvested 24 h later
and lysed. The HaloTag protein complexes were then purified by affinity chromatography on
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Halo-Link resin and released by digestion with TEV protease as described in Material and
Method. Twenty-five ug proteins of the purified HaloTag complex were analyzed by SDS
PAGE followed by a silver staining to show the complexity of the protein extract and DUX4 (*)
abundance. The DUX4c purification was not as efficient.

(TIFF)

S2 Fig. GST pull-down assays of DUX proteins with desmin. DUX proteins or luciferase
(negative control) were radiolabeled during in vitro transcription/translation (T/T) in the pres-
ence of [*°S]-cysteine in a reticulocyte lysate. GST-desmin or GST alone (black and white
arrowheads, respectively) expressed in E. coli were coupled with Glutathione Sepharose beads
and incubated with either the indicated radiolabeled proteins (T/T), [*°S]-cysteine alone or
buffer alone. After centrifugation, the T/T products and GST pull-down products were ana-
lyzed by SDS-PAGE followed by Coomassie blue staining (A) or by autoradiography (B). The
arrows show DUX1 and DUX4 (but not DUX4-t) interaction with GST-desmin but not with
GST alone (Luc: luciferase, DUX4-t: DUX4 tail).

(TIFF)

$3 Fig. DUX4 and DUX4c interaction with IPO13 and C1QBP. (A) GST pull-down samples
of GST-DUX4, GST-DUZX4c, GST-B56a. (unrelated protein) or GST alone incubated with
radiolabeled IPO13 (following in vitro T/T as in S2 Fig) were analyzed by SDS-PAGE followed
by autoradiography. (B) In situ Proximal Ligation Assay (PLA) performed using antibodies
against DUX4 (9A12 mAb) and IPO13 in FSHD myoblasts shows a DUX4/IPO13 interaction
in a few cells, with several PLA spots at the periphery of the nuclei that were stained with DAPI
(blue). (C) HEK293 cells were transfected or not (untransfected) with plasmids expressing V5
epitope-tagged DUX4 (DUX4.V5) or a DUX4 homeodomain mutant defective in DNA bind-
ing (HOX1.V5). Cell protein extracts before (input) or after immunoprecipitation with anti-V5
antibodies (V5 Co-IP) were analyzed by SDS-PAGE, transferred to a western blot and immu-
noblotted with anti C1QBP antibodies.

(TIFF)

$4 Fig. DUX4 and DUX4c interaction with splicing factors SFPQ and FUS. In situ Proximal
Ligation Assay (PLA) using antibodies against DUX4 or DUX4c and SFPQ (A) or FUS (B) was
performed in healthy myoblasts transfected with a strong DUX4- or DUX4c-expression vector
(pCIneo-DUX4 or -DUX4c), the empty parental vector (pClneo) or a vector with the endoge-
nous promoter (pENTR-DUX4c) as indicated. More interaction spots (red) were detected at or
near the nuclear periphery or in the cytoplasm in cells expressing DUX4 or DUX4c. The star
(*) points to a high PLA spot density showing DUX4c-FUS interactions at the tip of a myoblast.
Scale bar: 10 pm.

(TIFF)

S5 Fig. DUX4 and DUX4c immunodetection at the nuclear periphery. TE671 cells were
transfected with the pCIneo-DUX4 (top panel) or -DUX4c (bottom panel) expression vectors.
Confocal microscopy analyses were performed on cells immunostained with rabbit anti-DUX4
serum (#314, top left panel) or anti-DUX4c (bottom left panel) or mouse monoclonal anti-
DUX4 (9A12, right panels). The nuclei were stained with DAPI (blue). Arrowheads and circles
indicate cytoplasmic DAPI staining; arrows and circles indicate DUX4/4c cytoplasmic staining.
Magnifications of the circled regions from the top panels are shown in the middle panels (left
and right). The yellow box shows nuclear DUX4 staining in regions with low DAPI staining
(magnified in the central panel).

(TIFF)
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S6 Fig. Partial co-localization of endogenous DUX4c and desmin in myotube tips. DUX4c
(rabbit serum, red) and desmin (mouse monoclonal, green) were detected in an immortalized
myoblast line by immunofluorescence. Desmin was concentrated at the tips of an early myo-
tube after 1 day of differentiation (A). This myotube exhibited nuclear as well as cytoplasmic
DUX4c staining (B; D). The nuclei were stained with DAPI (C). The accumulation of DUX4c
spots was denser in the elongating myotube tips and partially co-localized with desmin (A).
Two arrows point to intense DUX4c spots in the boxed myotube tip that was enlarged in (A’,
B’,D’). Merged pictures are shown (D,D’). Scale bar: 50 pum.

(TIFF)

S7 Fig. (A) PABPC4 (a putative DUX4/DUX4c partner) expression in elongating myo-
tubes. PABPC4 (red) and desmin (green) were stained by immunofluorescence in healthy
primary myotubes after 4 days in the differentiation medium. PABPC4 was detected in
elongating myotubes around the aligned nuclei but also close to a tip, where it partially co-
localized with desmin. Other desmin-positive cells were not labeled for PABPC4. The
nuclei were stained with DAPI. (B) Endogenous DUX4c¢ in differentiating FSHD myo-
blasts. DUX4c was immunodetected in proliferating immortalized myoblasts and during a dif-
ferentiation time-course. Nuclear staining was observed in almost all nuclei in myoblasts and
after one day in the differentiation medium, as in healthy cells but with variable intensities; the
more intense nuclear signals are observed in myoblasts showing weak cytoplasmic staining and
small nuclei (arrows). Higher cytoplasmic labeling on one side of a cell was also observed in the
proliferation medium (circle). During differentiation, DUX4c was progressively detected in the
cytoplasm, and the nuclear labeling decreased at day 3. DUX4c nuclear staining was generally
lost at day 6, and some myotubes or myoblasts (circles) presented strong cytoplasmic staining.
A cluster with a high number of nuclei (boxed) had strong DUX4c labeling in and around the
nuclei. This is similar to the DUX4c immunostaining that was observed in FSHD muscle biop-
sies (Figs 8 and 9) and to the cluster observed in S8 Fig (desmin-DUX4c interaction in
DUX4c-overexpressing cells).

(TIFF)

S8 Fig. Localization of DUX4c at the nuclear periphery and in a nuclear bud. Healthy
immortalized myoblasts were transfected with a DUX4c expression vector, and detection of
DUZX4c (red) and Alpha-tubulin (green) by immunofluorescence was carried out after 6 days
in the differentiation medium (as in Fig 7). The nuclei were stained with DAPI. DUX4c was
observed at the nuclear periphery (as in S5 Fig). The circle surrounds a nuclear bud containing
DUX4c and DAPI staining as well as cytoplasmic DUX4c that co-localized with DAPI staining
(indicates by the arrow).

(TIFF)

S9 Fig. Nuclear and cytoplasmic localization of DUX4c¢ in an elongating transfected myo-
blasts. Higher magnification of Fig 7. DUX4c (green) and desmin (red) were detected by
immunofluorescence at day 6, and myoblast nuclei were stained with DAPI. Nuclear budding
could be observed (circle), and a few cytoplasmic spots (arrows) were stained for DUX4c. The
DUX4c nuclear staining presented a pattern of linear stripes that might reflect interactions
with the cytoskeleton above the nucleus.

(TIFF)

$10 Fig. Nuclear and cytoplasmic DUX4c detection in transfected muscle cells. Healthy
immortalized myoblasts were transfected with a DUX4c expression vector, and immunodetec-
tion was carried out after 6 days in the differentiation medium (as in Fig 7). (Top) A myoblast
(boxed) shows nuclear and weak cytoplasmic DUX4c labeling (green). Clusters of nuclei in
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myotubes (desmin in red) also exhibit a stronger DUX4c staining in regions unstained for

DAPI that could be nucleoli (as in S7 Fig*). (Bottom) Magnification of the boxed myoblast
showing DUX4c labeling at a lower exposure time in distinct areas of the nuclei, several of
them located at the nuclear periphery.

(TIFF)

S11 Fig. Nuclear localization of DUX4/DUX4c in regions unstained for DAPI and in
nuclear buds. Healthy immortalized myoblasts were transfected with DUX4c (A) or DUX4
(B) expression vectors, and immunofluorescence detection was carried out after 6 days in the
differentiation medium (as in Fig 7). In a few nuclei, stronger DUX4 and DUX4c staining was
observed in regions unstained for DAPI (arrowheads) that could be nucleoli. Middle panels:
magnification of the boxed nucleus (left: DUX4c and DAPI staining) and the circled nuclear
bud with strong DUX4 staining (right: DAPI and DUX4 staining).

(TIFF)

$12 Fig. Desmin interaction with DUX4 and DUX4c shown by proximity ligation assay.
(A-F) Healthy immortalized myoblasts were transfected with vectors expressing DUX4 (A-B)
or DUX4c (C-F) under control of the CMV promoter (C-D) or their endogenous promoter
(pDUX: A-B, E-F) and fixed either 24 h post transfection (A) or after 4 days in differentiation
medium (B-F). (G-]J) Untransfected immortalized healthy (G-I) or FSHD (J) myoblasts
expressing endogenous DUX4c were differentiated and fixed 4 days later. In situ PLA was per-
formed using the 9A12 mouse MADb to detect DUX4/DUX4c (A-C, F,]) or anti-DUX4c rabbit
serum (D-E, G-I) and rabbit or mouse antibodies against desmin, respectively (A-J). The red
spots indicate a desmin/DUX interaction, and the nuclei were stained with DAPI. The arrows
point to high spot densities close to nuclei.

(TIFF)

$13 Fig. Negative controls in FSHD muscle biopsies. A rabbit preimmune serum was used in
place of the anti-DUX4c serum. (A) Longitudinal section adjacent to the one used in Fig 7A-
7D. (B) Transverse section adjacent to the one used in Fig 9.

(TIFF)
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(PDF)
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(PDF)

S3 Table.
(PDF)

S4 Table.
(PDF)

S1 Text. Supporting Information Text.
(PDF)
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