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Abstract. Nanostructured metal oxide films are extensively studied due to their numerous 
applications such as optoelectronic devices, sensors. In this work, we report the Y–Zn–O 
nanostructured films prepared by sol-gel technology from sols with different concentration of 
yttrium precursor, followed by post-annealing treatment. The Y doped ZnO thin films have 
been deposited on Si and quartz substrates by spin coating method, then treated at temperatures 
ranging from 300-800oC. XRD analysis reveals modification of the film structure and phases in 
the doped ZnO films. 

1. Introduction 
ZnO gains a great scientific research in respect to its interesting properties such as wide band gap 
(3.37 eV at room temperature) with large exciton binding energy (60 meV), high chemical stability, 
low dielectric constant, large electrochemical coupling coefficient, high thermal conductivity, binding, 
antibacterial and UV protection [1,2]. ZnO films possess high transmittance in the infrared and visible 
spectral regions and high refractive index, which extend their application range. They are used as 
chemical and biological gas sensors, UV light emitters, thin film transistors, solar cell windows [3].  

The doping of ZnO with rare earth impurities such as Y has also been reported as its ionic radius is 
very close to that of Zn [4]. ZnO:Y nanostructures are studied in respect to improved photocatalytic 
properties, enhance intensity of UV emission in photoluminescence, conducting transparent coatings 
etc [5, 6]. 

In this work, we report the Y–Zn–O nanostructured films prepared by sol-gel technology from sols 
with different concentration of yttrium precursor, followed by post-annealing treatment. Sol-gel 
technology has been proved to be very successfully for obtaining doped ZnO films. The sol-gel 
approach offers possibility to control the film stoichiometry, composition modification (mixing on a 
molecular level), cost effective process, inexpensive equipments resulting in homogeneous and 
smooth thin films [7]. 
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The sol-gel Y doped ZnO thin films have been deposited on Si and quartz substrates by spin 
coating method, then treated at the temperatures ranging from 300-800oC. XRD analysis reveals the 
modification of the film structure and phases in the doped ZnO films. Vibrational properties are 
investigated by FTIR spectroscopy and optical behavior has been studied by UV-VIS 
spectrophotometry (transmittance and reflectance spectra). Optical band gaps are estimated as a 
function of the annealing temperatures. 

2. Experimental details 
The sol solution for ZnO deposition has been previously reported [8]. The precursor used is zinc 
acetate, dissolved in an absolute ethanol (0.4 M concentration). The complexing agent and stabilizer 
used is monoethanolamine (MEA). The molar ratio MEA/Zn is fixed to 1. The yttrium has been 
involved by adding Y(NO3)3 monohydrate in the following weight percents: 0,1 and 1. The 
corresponding sols and thin films obtained from them are labeled ZnO:Y 0.1 and ZnO:Y 1 and they 
are referred with these labels throughout the text. For depositing ZnO:Y thin films, the Zn solutions 
with Y additive were homogenized by ultrasonic treatment for few hours. The sol solutions are found 
to be very stable retaining their film forming properties for more than three months. 

The films were deposited by spin coating method at 4000 rpm on Si wafers and quartz substrates, 
the samples undergo five layer depositions. The preheating temperature used (heating between layers) 
is 300oC for 10 minutes. After repeating the coating procedures five times, the films have been 
subjected to annealing at temperatures of 300 to 800oC in air ambient for 1 hour. The heating rate for 
the preheating and annealing temperatures has been kept constant 10oC/minute. 

XRD spectra of the sol-gel films have been recorded by means of XRD diffractometer Bruker D8, 
at the grazing angle 2o and step time of 8 s and step a of 0.1o FTIR measurements are performed in the 
spectral region 350-4000 cm-1 by Shimadzu FTIR Spectrophotometer IRPrestige-21. Optical 
measurements have been were done by using UV-VIS-NIR Shimadzu 3600 spectrophotometer. 

3. Results and discussions 
The ZnO and ZnO:Y films, annealed at 600 and 800oC have been subjected to XRD measurements 
and the recorded diffraction patterns are presented in figure 1. 
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Figure 1. XRD spectra of ZnO:Y films compared to ZnO and annealed at 600 (a) and 800oC (b). 
The inset figures represent enlarged diffraction patterns in the 2θ range 25 - 39o. 

 
The yttrium doping leads to suppress film crystallization as it is clearly observed for the films, 

annealed at 600oC. At the highest annealing temperature (800oC) only the film with the lower Y 
addition reveals a degree of crystallization close to that of ZnO films. The XRD patterns of ZnO, 
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ZnO:Y 0.1 and ZnO:Y 1 show predominantly diffraction peaks due to wurtzite ZnO phase (JSPDS 01-
070-8070) with weak lines related to ZnO2 phase (JSPDS 04-005-4315). Interesting features appear in 
the XRD spectra of ZnO:Y1 (very weak line) (figure 1b). The extra peak at 2θ=29,1o (marked with 
asterisk) can be assigned to (222) reflection of cubic Y2O3 phase [JCPDS 01-073-1334, 9]. Additional 
experiments with higher yttrium concentrations reveal that cubic yttrium oxide appeared as separate 
phase after high temperature annealing. 

The average crystallite sizes can be estimated from the XRD data according to Scherrer’s formula 
(using XRD peaks: 100, 002 and 101) and the results obtained are given in table 1. Table 1 presents 
also the calculated lattice parameters of the wurtzite ZnO phase and the dislocation density of the 
films. Dislocations are an imperfection in a crystal associated with misregistry of the lattice in one part 
of the crystal with respect to another part. The dislocation density of the films is given by the 
Williamson and Smallman’s relation [10]: δ = n /d2 (1), where n is a factor, which equals unity giving 
minimum dislocation density and d is the grain size. Dislocation densities manifest a decrease with 
increasing annealing temperatures, which indicates a lower concentration of lattice imperfections. 
 

Table 1. Crystallite sizes (d), dislocation density and lattice parameters
of ZnO and ZnO:Y films. 

 ZnO ZnO:Y 0.1 ZnO:Y 1 
600oC    
d, (nm) 30.9 15.8 8.9 
δx10-4 ,  (1/nm2) 10.5 40.1 126.2 
a (Å) 3.243 3.246 3.243 
c (Å) 5.193 5.197 5.191 
800oC    
d, (nm) 36.2 31.6 24.0 
δx10-4 , (1/nm2) 7.6 10.0 17.4 
a (Å) 3.241 3.245 3.243 
c (Å) 5.185 5.190 5.195 

 
The yttrium component influences the crystallization of the films and respectively the crystallite 

sizes are found to be smaller than those of ZnO films for the two annealing temperatures. XRD study 
reveals that yttrium doping content affects considerably the crystalline structure of sol-gel ZnO:Y thin 
films and formation of Y2O3 phase begins at higher Y concentrations. 

FTIR spectroscopy has been used for studying the vibrational properties of ZnO:Y films as it is 
well known that FTIR spectroscopy is a very sensitive characterization method and can contribute to 
XRD conclusions. Figure 2 shows FTIR spectra of ZnO and ZnO:Y films, treated at temperatures of 
300oC and 800oC.  

The lowest annealing temperature of 300oC results in FTIR spectra revealing a weak band at 668 
cm-1 (Zn-O stretching mode). This band can be observed for all studied films independently of thermal 
treatments. The effect of yttrium additive is clearly seen: the shape and the intensity of the main 
absorption bands are considerably different than those of undoped ZnO. The main band of ZnO film is 
broad and strong centred at 372 cm-1 (300oC) and shifting to 395 cm-1 for higher annealing 
temperatures. The doped films manifest broader bands with doublets or triplets peaks depending on 
annealing above 300oC. In this spectral range, there is obviously an overlapping of IR lines, 
contributions both from ZnO and Y2O3 phases. Other authors [11, 12] reported that cubic yttrium 
oxide shows peaks at 375, 383, 395, 420, 435 and 468 cm-1 (for Y2O3 films). Some of these lines are 
seen in figure 2. This result confirms that there is yttrium oxide presence even at the lowest annealing 
temperature although the XRD analysis do not show any traces of this phase. It must be noted that the 
spectra of ZnO:Y 0.1 (for all thermal treatments (FTIR spectra of annealed films at 400, 500 and 
700oC were measured and analyzed but not given here) matches ZnO spectrum without a sign for 
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yttrium oxide with exception of the highest annealing at 800oC, where its main absorption band clearly 
indicates some contribution of Y-O phase.  
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Figure 2. FTIR spectra of ZnO and ZnO:Y films annealed at 300 (a), 600 (b) and 800oC (c). 
The inset figures show enlarged main absorption band in the spectral range 350-500 cm-1. 

 
The FTIR spectra of ZnO based films, annealed at 800oC shows some additional features. The 

clear band at 1068 cm-1 can be assigned to Si-O bonds and it is due to the Si substrate. New weak 
bands appeared at 471, 465 cm-1 and a clear line at 565 cm-1 for ZnO:Y 1 sample. The absorption band 
at 565 cm-1 is assigned to Y-O lattice vibration or Y-O stretching bond [13]. FTIR study shows that a 
fraction of yttrium oxide can exist in ZnO:Y 1 independently of the annealing temperatures. 

The optical transmittance and reflectance spectra of sol-gel ZnO:Y films are shown in figure 3 (the 
films are deposited on quartz substrates). It can be observed that the thermal annealing influences the 
optical behavior of the films considerably. The transparency in the visible spectral range is decreasing 
with raising the annealing temperatures. It can be seen that the transmittance diminishes from 94 % 
(for 500oC annealed ZnO:Y 0.1 films) to 74 % (800oC) at the wavelength of 550 nm. The ZnO:Y 1 
films show lower transmittance in comparison to ZnO:Y 0,1 films, but the optical transparency also 
shows strong reduction after high temperature treatment. This had been observed for sol-gel ZnO 
films, as their transmittance drops from 78% at 400oC annealing down to 65 % at 800oC. 

The specific bands which have been observed in the optical spectra of ZnO:Y 0.1 (annealing 
temperatures 500oC and above) below the absorption edge are due to the excitonic absorption of ZnO. 
The excitonic feature of the bulk ZnO is located near to 373 nm. ZnO films reveal excitonic absorption 
features even after 300oC treatment. The appearance of excitonic peak is reported to be a sign of high 
optical quality and good crystallinity of ZnO [14]. The excitonic absorption peaks prove that these sol-
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gel ZnO and ZnO:Y 0,1 thin films have good optical properties. On the other hand, no excitonic band 
can be observed for ZnO:Y 1 even at the highest annealing temperatures. 
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Figure 3. UV-VIS spectra of ZnO:Y 0,1 and ZnO:Y 1 films, annealed at different temperatures. 
 
Figure 3 shows comparison of ZnO and ZnO:Y film transmittance for two annealing temperatures. 

The lower yttrium concentration leads to slight improvement of the optical transparency in respect of 
undoped ZnO. The higher yttrium doping results in lower transmittance of ZnO:Y 1 film which might 
be due to higher scattering.  
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Figure 4. Transmittance spectra of ZnO and ZnO:Y films, annealed at 600 and 800oC. 
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Figure 5. The dependence of the optical 
band gap with the annealing temperatures. 

 
The optical band gaps (Eg) versus the annealing temperatures are presented in figure 5. For ZnO 

films, the obtained Eg values are in the range of 3.27 to 3.29 eV, which is below to the reported value 
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(3.37 eV) of bulk ZnO [15] but close to those given in the literature for ZnO thin films [16]. The 
bandgap difference between the thin film and crystal can be related to grain boundaries and 
imperfections of the polycrystalline film structure. The optical band gap values of ZnO:Y 0.1 and 
ZnO:Y 1 films decrease with increasing the annealing temperatures. This can be attributed to increase 
of the crystallites size (as it is proved by the XRD analysis); it is known that optical band gap 
increased with decreasing particle size [17]. Other authors claim that yttrium contribution in sol-gel 
ZnO films can lead either to higher or smaller optical band gap [18]. In this study, it can be seen a 
strong correlation with the annealing temperatures and yttrium concentration. The optical band gap of 
Y2O3 is reported 5.5 eV [11] so it seems logically to expect that that ZnO:Y films will show higher Eg 
values than undoped ZnO. A more detail optical study will be further performed for sol-gel ZnO:Y 
films with higher yttrium doping. 

4. Conclusions 
Sol-gel technology is found to be very suitable approach for obtaining nanocrystalline thin films and 
for deposition of undoped and doped ZnO films. The prepared sols remain stable and were usable for 
spin-coating within 3 months. ZnO and ZnO:Y films are polycrystalline and have wurtzite structure 
with a small trace of yttrium oxide phase for ZnO:Y 1 annealed at 800oC. This conclusion is 
confirmed by FTIR investigation. The optical transparency is improved by a low Y doping and then 
strongly decreases for higher yttrium concentration. The optical band gaps in ZnO and ZnO:Y films 
vary in the range of  3.25 eV to 3.34 eV. The obtained properties of ZnO and ZnO:Y films on Si and 
quartz substrates are promising for applications in optoelectronic devices or solar cells. 
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