Computational & Multiscale Mechanics of Materials

Probabilistic prediction of the quality factor of micro-resonator using a stochastic thermo-mechanical multi-scale approach

Wu Ling, Lucas Vincent, Nguyen Van-Dung, Paquay Stéphane, Golinval Jean-Claude, Noels Ludovic Voicu Rodica, Baracu Angela, Muller Raluca

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework. Experimental measurements provided by IMT Bucharest

MEMS structures

- Are not several orders larger than their micro-structure size
- Parameters-dependent manufacturing process
 - Low Pressure Chemical Vapor Deposition (LPCVD)
 - Properties depend on the temperature, time process, and flow gas conditions

- Material structure: grain size distribution
 Measurement of SEM (Scanning electron microscope)
 - Grain size dependent on the LPCVD temperature process
 - 2 μm-thick poly-silicon films

Deposition temperature: 580 °C

Deposition temperature: 650 °C

Temperature [°C]	580	610	630	650
Average grain diameter [µm]	0.21	0.45	0.72	0.83

SEM images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

Material structure: grain orientation distribution

- Grain orientation by XRD (X-ray Diffraction) measurements on 2 μm-thick poly-silicon films

Si(111)
Si(311)

PolySi, T=650°C

Si(422)
Si(331)
Si(400)
Si(400)

30
60
20_B [°]
90

Deposition temperature: 580 °C

Deposition temperature: 630 °C

Temperature [°C]	580	610	630	650
<111> [%]	12.57	19.96	12.88	11.72
<220> [%]	7.19	13.67	7.96	7.59
<311> [%]	42.83	28.83	39.08	38.47
<400> [%]	4.28	5.54	3.13	3.93
<331> [%]	17.97	18.14	21.32	20.45
<422> [%]	15.15	13.86	15.63	17.84

XRD images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

Surface topology: asperity distribution

 Upper surface topology by AFM (Atomic Force Microscope) measurements on 2 μmthick poly-silicon films

Temperature [°C]	580	610	630	650
Std deviation [nm]	35.6	60.3	90.7	88.3

Université de Liège

MEMS structures

- Are not several orders larger than their micro-structure size
- Parameters-dependent manufacturing process
 - Low Pressure Chemical Vapor Deposition (LPCVD)
 - Properties depend on the temperature, time process, and flow gas conditions
- As a result, their macroscopic properties

can exhibit a scatter

- Due to the fabrication process (photolithography, wet and dry etching)
- Due to uncertainties of the material
- •

Application example

- Poly-silicon resonators
- Quantities of interest
 - Eigen frequency
 - Quality factor due to thermo-elastic damping

Monte-Carlo for a fully modelled beam

- The first mode frequency distribution can be obtained with
 - A 3D beam with each grain modelled
 - Grains according to experimental measurements
 - Monte-Carlo simulations

Considering each grain is expensive and time consuming
 Motivation for stochastic multi-scale methods

Motivations

- Multi-scale modelling
 - 2 problems are solved concurrently
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)

Length-scales separation

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading To be statistically representative: Size of the meso-scale volume element larger than the characteristic length of the microstructure

Motivations

For structures not several orders larger than the micro-structure size

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading

Meso-scale volume element no longer statistically representative: Stochastic Volume Elements*

Possibility to propagate the uncertainties from the micro-scale to the macro-scale

*M Ostoja-Starzewski, X Wang, 1999

P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015

X. Yin, W. Chen, A. To, C. McVeigh, 2008

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011

. . . .

A 3-scale process

Grain-scale or micro-scale	Meso-scale	Macro-scale
 Samples of the microstructure (volume elements) are generated 	Intermediate scaleThe distribution of the	Uncertainty quantification of the macro-scale quantity
Each grain has a random orientation	material property $\mathbb{P}(C)$ is defined	E.g. the first mode frequency $\mathbb{P}(f_1)$ /Quality factor $\mathbb{P}(Q)$

CM3

Content

Thermo-mechanical problems

- Governing equations
- Macro-scale stochastic finite element
- Meso-scale volume elements

$$Q \sim \frac{W}{\Delta W}$$

Thermoelastic damping is a source of intrinsic material <u>damping</u> due to thermoelasticity present in almost all materials

Content

Thermo-mechanical problems

- Governing equations
- Macro-scale stochastic finite element
- Meso-scale volume elements

From the micro-scale to the meso-scale

- Thermo-mechanical homogenization
- Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
- Need for a meso-scale random field

The meso-scale random field

- Definition of the thermo-mechanical meso-scale random field
- Stochastic model of the random field: Spectral generator & non-Gaussian mapping

From the meso-scale to the macro-scale

- 3-Scale approach verification
- Application to extract the quality factor

Extension to stochastic-plate finite elements

- Second-order stochastic homogenization
- Rough Stochastic Volume Elements
- Topology uncertainties effects

Thermo-mechanical problem

Governing equations

- Thermo-mechanics
 - Linear balance $\rho \ddot{\boldsymbol{u}} \nabla \cdot \boldsymbol{\sigma} \rho \boldsymbol{b} = 0$
 - Clausius-Duhem inequality in terms of volume entropy rate $\dot{S} = -\frac{\nabla \cdot \mathbf{q}}{T}$
 - Helmholtz free energy

$$\begin{cases} \mathcal{F}(\boldsymbol{\varepsilon}, T) = \mathcal{F}_0(T) - \boldsymbol{\varepsilon} : \frac{\partial^2 \psi}{\partial \boldsymbol{\varepsilon} \partial \boldsymbol{\varepsilon}} : \alpha(T - T_0) + \psi(\boldsymbol{\varepsilon}) \\ \boldsymbol{\sigma} = \left(\frac{\partial \mathcal{F}}{\partial \boldsymbol{\varepsilon}}\right)_T, \quad S = \left(\frac{\partial \mathcal{F}}{\partial T}\right)_{\boldsymbol{\varepsilon}} & \& \quad \left(\frac{\partial^2 \mathcal{F}_0}{\partial T \partial T}\right) = \rho C_v \end{cases}$$

- Strong form in terms of the displacements u and temperature change ϑ (linear elasticity)

Finite element discretization

$$\begin{bmatrix} \mathbf{M}(\rho) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\vartheta \mathbf{u}}(\boldsymbol{\alpha}, \mathbb{C}) & \mathbf{D}_{\vartheta \vartheta}(\rho C_{\upsilon}) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}}(\mathbb{C}) & \mathbf{K}_{\mathbf{u}\vartheta}(\boldsymbol{\alpha}, \mathbb{C}) \\ \mathbf{0} & \mathbf{K}_{\vartheta \vartheta}(\boldsymbol{\kappa}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\vartheta} \end{bmatrix}$$

Thermo-mechanical problem

- Macro-scale stochastic finite element method
 - Meso-scale material properties subjected to uncertainties
 - Elasticity tensor $\mathbb{C}_M(\boldsymbol{\theta})$,
 - Heat conductivity tensor $\kappa_M(\theta)$, and
 - Thermal expansion tensors $\alpha_M(\theta)$

in the sample space $\theta \in \Omega$

$$\begin{bmatrix} \mathbf{M}(\rho_{\mathbf{M}}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\vartheta\mathbf{u}}(\boldsymbol{\alpha}_{\mathbf{M}}, \mathbb{C}_{\mathbf{M}}) & \mathbf{D}_{\vartheta\vartheta}(\rho_{\mathbf{M}}C_{\upsilon\mathbf{M}}) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}}(\mathbb{C}_{\mathbf{M}}) & \mathbf{K}_{\mathbf{u}\vartheta}(\boldsymbol{\alpha}_{\mathbf{M}}, \mathbb{C}_{\mathbf{M}}) \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta}(\boldsymbol{\kappa}_{\mathbf{M}}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\vartheta} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\vartheta\mathbf{u}}(\boldsymbol{\theta}) & \mathbf{D}_{\vartheta\vartheta} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}}(\boldsymbol{\theta}) & \mathbf{K}_{\mathbf{u}\vartheta}(\boldsymbol{\theta}) \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta}(\boldsymbol{\theta}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\vartheta} \end{bmatrix}$$

- Defining the random properties at the meso-scale by
 - Using micro-scale information (SEM, XRD, images)
 - Homogenization method

Content

- Thermo-mechanical problems
 - Governing equations
 - Macro-scale stochastic finite element
 - Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor
- Extension to stochastic-plate finite elements
 - Second-order stochastic homogenization
 - Rough Stochastic Volume Elements
 - Topology uncertainties effects

Thermo-mechanical problem

- Meso-scale Volume Elements (VE)
 - Micro-scale material properties
 - Elasticity tensor \mathbb{C}_m ,
 - Heat conductivity tensor κ_m , and
 - Thermal expansion tensors $lpha_m$ defined on each phase/heterogeneity

- Length scales separation assumptions
 - VE small enough for the time for strain wave to propagate in the SVE to remain negligible
 - VE small enough for the time variation of heat storage to remain negligible

$$\begin{bmatrix} \mathbf{M}(\rho_m) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\vartheta u}(\boldsymbol{\alpha}_m, \mathbb{C}_m) & \mathbf{D}_{\vartheta\vartheta}(\rho_m \mathcal{C}_{\upsilon m}) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{uu}(\mathbb{C}_m) & \mathbf{K}_{u\vartheta}(\boldsymbol{\alpha}_m, \mathbb{C}_m) \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta}(\boldsymbol{\kappa}_m) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_u \\ \boldsymbol{F}_\vartheta \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{K}_{\mathrm{u}\mathrm{u}} & \mathbf{K}_{\mathrm{u}\vartheta} \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathrm{u}} \\ \boldsymbol{F}_{\vartheta} \end{bmatrix}$$

Transition from meso-scale BVP realizations to the meso-scale random properties

Stochastic thermo-mechanical homogenization

- Thermo-mechanical homogenization
 - Down-scaling

$$\begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\varepsilon}_{\mathrm{m}} d\omega \\ \\ \boldsymbol{\nabla}_{\mathrm{M}} \boldsymbol{\vartheta}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\nabla}_{\mathrm{m}} \boldsymbol{\vartheta}_{\mathrm{m}} d\omega \\ \\ \boldsymbol{\vartheta}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \frac{\rho_{\mathrm{m}} C_{v\mathrm{m}}}{\rho_{\mathrm{M}} C_{v\mathrm{M}}} \boldsymbol{\vartheta}_{\mathrm{m}} d\omega \end{cases}$$

Meso-scale BVP fluctuation fields

$$\begin{cases} u_{\mathrm{m}} = \boldsymbol{\varepsilon}_{\mathrm{M}} \cdot \boldsymbol{x} + \boldsymbol{u}' \\ \vartheta_{\mathrm{m}} = \nabla_{\mathrm{M}} \vartheta_{\mathrm{M}} \cdot \boldsymbol{x} + \vartheta_{\mathrm{m}}' \end{cases}$$

Satisfied by periodic boundary conditions

 $\boldsymbol{\varepsilon}_{\mathrm{M}},$

 $\nabla_{\mathrm{M}}\vartheta_{\mathrm{M}}$,

Thermo-mechanical homogenization (2)

Upscaling

$$\begin{cases} \boldsymbol{\sigma}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\sigma}_{\mathrm{m}} d\omega \\ \boldsymbol{q}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{q}_{\mathrm{m}} d\omega \\ \rho_{\mathrm{M}} C_{v\mathrm{M}} = \frac{1}{V(\omega)} \int \rho_{\mathrm{m}} C_{v\mathrm{m}} dV \end{cases}$$

Satisfied by periodic boundary conditions & volume constraint

 \mathcal{X}

Meso-scale BVP

 $\boldsymbol{\sigma}_{\mathsf{M}}, \, \boldsymbol{q}_{\mathsf{M}}, \, (\rho_{\mathsf{M}} \mathcal{C}_{v\mathsf{M}})$

 $\mathbb{C}_{\mathsf{M}}, \, \kappa_{\mathsf{M}}, \boldsymbol{\alpha}_{\mathsf{M}} \mathbb{C}_{\mathsf{M}},$

- Thermo-mechanical homogenization (3)
 - Micro-scale BVP

$$\begin{cases} \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}} & \mathbf{K}_{\mathbf{u}\vartheta} \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\vartheta} \end{bmatrix} \\ \mathbf{C} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \mathbf{S} \begin{bmatrix} \nabla_{\mathbf{M}} \boldsymbol{u}_{\mathbf{M}} \\ \nabla_{\mathbf{M}} \vartheta_{\mathbf{M}} \\ \vartheta_{\mathbf{M}} \end{bmatrix} \end{cases}$$

Solution is the stationary point of $\Psi = \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix}^T \begin{bmatrix} \mathbf{K}_{\mathrm{u}\mathrm{u}} & \mathbf{K}_{\mathrm{u}\vartheta} \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} - \boldsymbol{\lambda}^T \left[\mathbf{C} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} - \mathbf{S} \begin{bmatrix} \nabla_{\mathrm{M}} \boldsymbol{u}_{\mathrm{M}} \\ \nabla_{\mathrm{M}} \vartheta_{\mathrm{M}} \\ \vartheta_{\mathrm{M}} \end{bmatrix} \right]$

$$\mathbf{\sigma}_{\mathrm{M}} = \frac{1}{V(\omega)} \frac{\partial \Psi}{\partial \mathbf{u}_{\mathrm{M}} \otimes \mathbf{v}_{\mathrm{M}}}$$
$$\mathbf{q}_{\mathrm{M}} = \frac{1}{V(\omega)} \frac{\partial \Psi}{\partial \nabla_{\mathrm{M}} \vartheta_{\mathrm{M}}}$$

$$\begin{cases}
\mathbb{C}_{M} = \frac{\partial \boldsymbol{\sigma}_{M}}{\partial \boldsymbol{u}_{M} \otimes \boldsymbol{\nabla}_{M}} & \mathbf{g} \quad \boldsymbol{\alpha}_{M} : \mathbb{C}_{M} = -\frac{\partial \boldsymbol{\sigma}_{M}}{\partial \vartheta_{M}} \\
\boldsymbol{\kappa}_{M} = -\frac{\partial \boldsymbol{q}_{M}}{\partial \nabla_{M} \vartheta_{M}}
\end{cases}$$

$$oldsymbol{\kappa}_{\mathrm{M}} = -rac{\partial oldsymbol{q}_{\mathrm{M}}}{\partial oldsymbol{V}_{\mathrm{M}} artheta_{\mathrm{M}}}$$

- Definition of Stochastic Volume Elements (SVEs)
 - Poisson Voronoï tessellation realizations
 - SVE realization ω_i
 - Each grain ω_i is assigned material properties
 - $\mathbb{C}_{\mathbf{m}^i}$ $\kappa_{\mathbf{m}^i}$ $\alpha_{\mathbf{m}^i}$
 - Defined from silicon crystal properties
 - Each \mathbb{C}_{m^i} is assigned a random orientation
 - Following XRD distributions
- Stochastic homogenization
 - Several SVE realizations
 - For each SVE $\omega_i = \bigcup_i \omega_i$

$$\mathbb{C}_{\mathrm{m}^i}$$
, κ_{m^i} , α_{m^i} $\forall i$ Computational homogenization

 $\mathbb{C}_{\mathsf{M}^j}, \, \kappa_{\mathsf{M}^j}, \alpha_{\mathsf{M}^j}$ Samples of the mesoscale homogenized elasticity tensors

Homogenized material tensors not unique as statistical representativeness is lost*

*"C. Huet, 1990

- Distribution of the apparent mesoscale elasticity tensor \mathbb{C}_M
 - For large SVEs, the apparent tensor tends to the effective (and unique) one

- The bounds do not depend on the SVE size but on the silicon elasticity tensor
- However, the larger the SVE, the lower the probability to be close to the bounds

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable -
 - Monte-Carlo simulations

 $\mathbb{C}_{\mathsf{M}^1}$ $\mathbb{C}_{\mathsf{M}^2}$ $\mathbb{C}_{\mathsf{M}^3}$

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable -
 - Monte-Carlo simulations

 No convergence: the macro-scale distribution (first resonance frequency) depends on SVE and mesh sizes

 $\mathbb{C}_{\mathsf{M}^1}$ $\mathbb{C}_{\mathsf{M}^2}$ $\mathbb{C}_{\mathsf{M}^3}$

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable -
 - Monte-Carlo simulations

More random variables having the same distribution

 $\mathbb{C}_{\mathsf{M}^1}$ $\mathbb{C}_{\mathsf{M}^2}$ $\mathbb{C}_{\mathsf{M}^3}$

- Need for a meso-scale random field
 - Introduction of the (meso-scale) spatial correlation
 - Define large tessellations
 - SVEs extracted at different distances in each tessellation
 - Evaluate the spatial correlation between the components of the meso-scale material operators
 - For example, in 1D-elasticity
 - · Young's modulus correlation

$$R_{\boldsymbol{E}_{\boldsymbol{x}}}(\boldsymbol{\tau}) = \frac{\mathbb{E}\left[\left(\boldsymbol{E}_{\boldsymbol{x}}(\boldsymbol{x}) - \mathbb{E}(\boldsymbol{E}_{\boldsymbol{x}})\right)\left(\boldsymbol{E}_{\boldsymbol{x}}(\boldsymbol{x} + \boldsymbol{\tau}) - \mathbb{E}(\boldsymbol{E}_{\boldsymbol{x}})\right)\right]}{\mathbb{E}\left[\left(\boldsymbol{E}_{\boldsymbol{x}} - \mathbb{E}(\boldsymbol{E}_{\boldsymbol{x}})\right)^{2}\right]}$$

Correlation length

$$L_{E_x} = \frac{\int_{-\infty}^{\infty} R_{E_x}(\tau) d\tau}{R_{E_x}(0)}$$

- Need for a meso-scale random field (2)
 - The meso-scale random field is characterized by the correlation length L_{E_x}
 - The correlation length L_{E_x} depends on the SVE size

CM3

- Need for a meso-scale random field (3)
 - Use of the meso-scale random field
 - Monte-Carlo simulations at the macro-scale
 - Macro-scale beam elements of size l_{mesh}
 - Convergence in terms of $\alpha = \frac{L_{E_{\chi}}}{l_{\rm mesh}}$

 $\mathbb{C}_{\mathsf{M}^1}(x) \ \mathbb{C}_{\mathsf{M}^1}(x+\tau)$

- Need for a meso-scale random field (3)
 - Effect of the ratio $\alpha = \frac{L_{E_{\chi}}}{l_{\rm mesh}}$ (Only one gauss point in one element)

- For extreme values of α :

 $\alpha\gg$ 1: no more scale separation if $l_{\rm SVE}{\sim}L_{\rm macro}$

 $\alpha \ll 1$: loss of microstructural details if $l_{\rm SVE} \sim L_{\rm micro}$

Content

- Thermo-mechanical problems
 - Governing equations
 - Macro-scale stochastic finite element
 - Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor
- Extension to stochastic-plate finite elements
 - Second-order stochastic homogenization
 - Rough Stochastic Volume Elements
 - Topology uncertainties effects

- Use of the meso-scale distribution with stochastic (macro-scale) finite elements
 - Use of the meso-scale random field
 - Monte-Carlo simulations at the macro-scale
 - BUT we do not want to evaluate the random field from the stochastic homogenization
 for each simulation
 Meso-scale random field from a generator

Stochastic model of meso-scale elasticity tensors

- Definition of the thermo-mechanical meso-scale random field
 - Elasticity tensor $\mathbb{C}_{\mathrm{M}}(x,\theta)$ (matrix form C_{M}) & thermal conductivity κ_{M} are bounded
 - Ensure existence of their inverse
 - Define lower bounds \mathbb{C}_{L} and κ_{L} such that

$$\begin{cases} \boldsymbol{\varepsilon} : (\mathbb{C}_{M} - \mathbb{C}_{L}) : \boldsymbol{\varepsilon} > 0 & \forall \boldsymbol{\varepsilon} \\ \nabla \vartheta \cdot (\boldsymbol{\kappa}_{M} - \boldsymbol{\kappa}_{L}) \cdot \nabla \vartheta > 0 & \forall \nabla \vartheta \end{cases}$$

Use a Cholesky decomposition when semi-definite tensors are required

$$\begin{cases} C_{\mathrm{M}}(x,\theta) = C_{\mathrm{L}} + \left(\overline{\mathcal{A}} + \mathcal{A}'(x,\theta)\right)^{T} \left(\overline{\mathcal{A}} + \mathcal{A}'(x,\theta)\right) \\ \kappa_{\mathrm{M}}(x,\theta) = \kappa_{\mathrm{L}} + \left(\overline{\mathcal{B}} + \mathcal{B}'(x,\theta)\right)^{T} \left(\overline{\mathcal{B}} + \mathcal{B}'(x,\theta)\right) \\ \alpha_{\mathrm{M}_{ij}}(x,\theta) = \overline{\mathcal{V}}^{(t)} + \mathcal{V}'^{(t)}(x,\theta) \end{cases}$$

- We define the homogenous zero-mean random field $\mathcal{V}'(x,\theta)$, with as entries
 - Elasticity tensor $\mathcal{A}'(x, \theta) \Rightarrow \mathcal{V}'^{(1)} \dots \mathcal{V}'^{(21)}$,
 - Heat conductivity tensor $\mathcal{B}'(x, \theta) \Rightarrow \mathcal{V}'^{(22)} \dots \mathcal{V}'^{(27)}$
 - Thermal expansion tensors $v'^{(t)} \Rightarrow v'^{(28)} \dots v'^{(33)}$

- Characterization of the meso-scale random field
 - Generate large tessellation realizations
 - For each tessellation realization
 - Extract SVEs centred on $x + \tau$
 - For each SVE evaluate $\mathbb{C}_{\mathrm{M}}(x+\tau)$, $\kappa_{\mathrm{M}}(x+\tau)$, $\alpha_{\mathrm{M}}(x+\tau)$
 - From the set of realizations $\mathbb{C}_{\mathrm{M}}(x,\theta)$, $\kappa_{\mathrm{M}}(x,\theta)$, $\alpha_{\mathrm{M}}(x,\theta)$
 - Evaluate the bounds \mathbb{C}_{L} and $oldsymbol{\kappa}_{\mathrm{L}}$
 - Apply the Cholesky decomposition $\Rightarrow \mathcal{A}'(x, \theta), \mathcal{B}'(x, \theta)$
 - Fill the 33 entries of the zero-mean homogenous field $\mathcal{V}'(x,\theta)$
 - NB: for the thermal conductivity we use a grain-size dependent empirical relation
 - Compute the auto-/cross-correlation matrix

$$R_{\boldsymbol{v}_{\prime}}^{(rs)}(\boldsymbol{\tau}) = \frac{\mathbb{E}\left[\left(\boldsymbol{v}^{\prime(r)}(\boldsymbol{x}) - \mathbb{E}(\boldsymbol{v}^{\prime(r)})\right)\left(\boldsymbol{v}^{\prime(s)}(\boldsymbol{x}+\boldsymbol{\tau}) - \mathbb{E}(\boldsymbol{v}^{\prime(s)})\right)\right]}{\sqrt{\mathbb{E}\left[\left(\boldsymbol{v}^{\prime(r)} - \mathbb{E}(\boldsymbol{v}^{\prime(r)})\right)^{2}\right]\mathbb{E}\left[\left(\boldsymbol{v}^{\prime(s)} - \mathbb{E}(\boldsymbol{v}^{\prime(s)})\right)^{2}\right]}}$$

- Stochastic model of the meso-scale random field: Spectral generator*
 - Start from the auto-/cross-covariance matrix

$$\tilde{R}_{\nu_{\prime}}^{(rs)}(\tau) = \sigma_{\nu^{\prime(r)}} \sigma_{\nu^{\prime(s)}} R_{\nu_{\prime}}^{(rs)}(\tau) = \mathbb{E}\left[\left(\nu^{\prime(r)}(x) - \mathbb{E}(\nu^{\prime(r)})\right)\left(\nu^{\prime(s)}(x+\tau) - \mathbb{E}(\nu^{\prime(s)})\right)\right]$$

- Evaluate the spectral density matrix from the periodized zero-padded matrix $\widetilde{R}_{\mathcal{V}'}^{\mathrm{P}}(\tau)$

$$S_{\nu_{\prime}}^{(rs)}[\boldsymbol{\omega}^{(m)}] = \sum_{n} \widetilde{R}_{\nu_{\prime}}^{P(rs)}[\boldsymbol{\tau}^{(n)}] e^{-2\pi i \boldsymbol{\tau}^{(n)} \cdot \boldsymbol{\omega}^{(m)}} \quad \& \qquad S_{\nu_{\prime}}[\boldsymbol{\omega}^{(m)}] = \boldsymbol{H}_{\nu_{\prime}}[\boldsymbol{\omega}^{(m)}] \boldsymbol{H}_{\nu_{\prime}}^{*}[\boldsymbol{\omega}^{(m)}]$$

- ω gathers the discrete frequencies
- τ gathers the discrete spatial locations
- Generate a Gaussian random field $\mathcal{V}'(x,\theta)$

$$\mathcal{V}'^{(r)}(x,\boldsymbol{\theta}) = \sqrt{2\Delta\omega} \,\Re\left(\sum_{s} \sum_{\boldsymbol{m}} H_{\mathcal{V}'}^{(rs)} \big[\boldsymbol{\omega}^{(\boldsymbol{m})}\big] \eta^{(s,\boldsymbol{m})} \, e^{2\pi i \big(x \cdot \boldsymbol{\omega}^{(\boldsymbol{m})} + \boldsymbol{\theta}^{(s,\boldsymbol{m})}\big)}\right)$$

- η and θ are independent random variables
- Quid if a non-Gaussian distribution is sought?

*Shinozuka, M., Deodatis, G., 1988

- Stochastic model of the meso-scale random field: non-Gaussian mapping*
 - Start from micro-sampling of the stochastic homogenization
 - The continuous form of the targeted PSD function

$$S^{\mathbf{T}^{(r_S)}}(\boldsymbol{\omega}) = \Delta \boldsymbol{\tau} S_{\boldsymbol{v}_{\prime}}^{(r_S)} \big[\boldsymbol{\omega}^{(m)} \big] = \Delta \boldsymbol{\tau} \sum_{n} \widetilde{R}_{\boldsymbol{v}^{\prime}}^{\mathbf{P}^{(r_S)}} \big[\boldsymbol{\tau}^{(n)} \big] e^{-2\pi i \boldsymbol{\tau}^{(n)} \cdot \boldsymbol{\omega}^{(m)}}$$

- The targeted marginal distribution density function $F^{\mathrm{NG}(r)}$ of the random variable $\mathcal{V}'^{(r)}$
- A marginal Gaussian distribution $F^{G(r)}$ of zero-mean and targeted variance $\sigma_{\mathcal{V}'^{(r)}}$
- Iterate

*"Deodatis, G., Micaletti, R., 2001

- Polysilicon film deposited at 610 °C
 - SVE size of 0.5 x 0.5 μ m²
 - Comparison between micro-samples and generated field PDF

- Polysilicon film deposited at 610 °C (2)
 - Comparison between micro-samples and generated field cross-correlations

The meso-scale random field

Polysilicon film deposited at 610 °C (3)

Comparison between micro-samples and generated random field realizations

Content

- Thermo-mechanical problems
 - Governing equations
 - Macro-scale stochastic finite element
 - Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor
- Extension to stochastic-plate finite elements
 - Second-order stochastic homogenization
 - Rough Stochastic Volume Elements
 - Topology uncertainties effects

- 3-Scale approach verification with direct Monte-Carlo simulations
 - Use of the meso-scale random field
 - Monte-Carlo simulations at the macro-scale $\mathbb{C}_{\mathrm{M}^1}(x) \ \mathbb{C}_{\mathrm{M}^1}(x+\tau)$
 - Macro-scale beam elements of size $l_{
 m mesh}$
 - Convergence in terms of $\alpha = \frac{l_{E_{\chi}}}{l_{\rm mesh}}$

- 3-Scale approach verification ($\alpha \sim 2$) with direct Monte-Carlo simulations
 - First bending mode

Second bending mode

Quality factor

- Micro-resonators
 - Temperature changes with compression/traction
 - Energy dissipation

- Eigen values problem
 - Governing equations

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\mathbf{u}\boldsymbol{\vartheta}}(\boldsymbol{\theta}) & \mathbf{D}_{\boldsymbol{\vartheta}\boldsymbol{\vartheta}} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}}(\boldsymbol{\theta}) & \mathbf{K}_{\mathbf{u}\boldsymbol{\vartheta}}(\boldsymbol{\theta}) \\ \mathbf{0} & \mathbf{K}_{\boldsymbol{\vartheta}\boldsymbol{\vartheta}}(\boldsymbol{\theta}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\boldsymbol{\vartheta}} \end{bmatrix}$$

· Free vibrating problem

$$\begin{bmatrix} \mathbf{u}(t) \\ \boldsymbol{\vartheta}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{u_0} \\ \boldsymbol{\vartheta_0} \end{bmatrix} e^{i\omega t}$$

$$\begin{bmatrix} -K_{uu}(\theta) & -K_{u\vartheta}(\theta) & \mathbf{0} \\ \mathbf{0} & -K_{\vartheta\vartheta}(\theta) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \\ \dot{\mathbf{u}} \end{bmatrix} = i\omega \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{M} \\ \mathbf{D}_{\vartheta u}(\theta) & \mathbf{D}_{\vartheta\vartheta} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \\ \dot{\mathbf{u}} \end{bmatrix}$$

- Quality factor
 - From the dissipated energy per cycle

•
$$Q^{-1} = \frac{2|\Im\omega|}{\sqrt{(\Im\omega)^2 + (\Re\omega)^2}}$$

- Application of the 3-Scale method to extract the quality factor distribution
 - Perfectly clamped micro-resonator
 - Different sizes easily considered
 - Meso-scale random fields
 - From stochastic homogenization
 - Generated for different deposition temperatures
 - Effect of the deposition temperature

- Application of the 3-Scale method to extract the quality factor distribution (2)
 - Perfectly clamped micro-resonator
 - Effect of the geometry

15 x 3 x 1 μm³-beam, deposited at 610 °C

- Application of the 3-Scale method to extract the quality factor distribution (3)
 - 3D models readily available
 - The effect of the anchor can be studied

CM₃

Content

- Thermo-mechanical problems
 - Governing equations
 - Macro-scale stochastic finite element
 - Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor
- Extension to stochastic-plate finite elements
 - Second-order stochastic homogenization
 - Rough Stochastic Volume Elements
 - Topology uncertainties effects

Extension to stochastic-plate finite elements

- How to account for the surface topology uncertainties?
 - Upper surface topology by AFM measurements on 2 μm-thick poly-silicon films

Temperature [°C]	580	610	630	650
Std deviation [nm]	35.6	60.3	90.7	88.3

CM3

Stochastic multi-scale method for Kirchhoff-Love (KL) plates

Macro-scale

Stochastic Kirchhoff-Love plates

Meso-scale

- Rough Stochastic Volume Elements (RSVEs)
- Profiles from AFM

Scale transition

- Downscaling
 - In plane deformation $oldsymbol{arepsilon}_{\mathrm{M}}$
 - Curvature/torsion $\kappa_{\rm M}$
- Upscaling
 - In-plane stress per unit length $\widetilde{\pmb{n}}_{\mathrm{M}}$
 - Bending moment/torque per unit length $\widetilde{m{m}}_{
 m M}$

Micro-scale

- Grain size/orientation distributions
- From SEM/XRD measurements

Stochastic multi-scale method for Kirchhoff-Love (KL) plates

- Rough Stochastic Volume Element
 - Poisson Voronoï tessellation realizations
 - From topology generator
 - Use of AFM measurements
 - Extraction of volume elements ω_i
 - Each grain ω_i is assigned material properties $\mathbb{C}_{\mathsf{m}^i}$
 - Defined from silicon crystal properties
 - Each \mathbb{C}_{m^i} is assigned a random orientation
 - Uniformly distributed
 - Following XRD distributions
 - Governing equations
 - Classical continuum mechanics

$$\begin{cases} \nabla \cdot \boldsymbol{\sigma}_{\mathbf{m}} = 0 \\ \boldsymbol{\varepsilon}_{\mathbf{m}_{i,j}} = \frac{\boldsymbol{u}_{\mathbf{m}_{i,j}} + \boldsymbol{u}_{\mathbf{m}_{i,j}}}{2} \end{cases}$$

Anisotropic grains

$$\sigma_{\mathrm{m}}^{i} = \mathbb{C}_{\mathrm{m}^{i}} : \boldsymbol{\varepsilon}_{\mathrm{m}}^{i}$$

Stochastic multi-scale method for Kirchhoff-Love (KL) plates

- Second-order homogenization
 - Upscaling

$$\begin{cases} \widetilde{\boldsymbol{n}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{1}} : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{2}} : \boldsymbol{\kappa}_{\mathrm{M}} \\ \\ \widetilde{\boldsymbol{m}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{3}} : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{4}} : \boldsymbol{\kappa}_{\mathrm{M}} \end{cases}$$

- Stochastic homogenization
 - Several SVE realizations
 - For each SVE $\omega_j = \cup_i \omega_i$

The density per unit area is now non-constant

The meso-scale random field

- Generator of meso-scale random fields
 - Spectral generator &
 - Non-Gaussian mapping
- Polysilicon film deposited at 610 °C
 - SVE size of 0.5 x 0.5 x 0.5 μ m³
 - Comparison between micro-samples and generated field PDF

Topology uncertainties effects

Polysilicon film deposited at 610 °C

- Cantilever of 8 x 3 x 0.5 μ m³
- SVE size of 0.5 x 0.5 x 0.5 μ m³

Roughness effect is the most important for 8 x 3 x 0.5 μ m³ cantilevers

Grain orientation distribution effect for 8 x 3 x 0.5 μ m³ cantilevers

- Flat SVEs (no roughness) F
- Rough SVEs (Polysilicon film deposited at 610 °C) R
- Grain orientation following XRD measurements Si_{pref}
- Grain orientation uniformly distributed Si_{uni}
- Reference isotropic material Iso

Topology uncertainties effects

- Polysilicon film deposited at 610 °C
 - Cantilever of 8 x 3 x 2 μ m³
 - SVE size of 0.5 x 0.5 x 2 μ m³

Roughness effect is of same importance as orientation for 8 x 3 x 2 μ m³ cantilevers

Grain orientation distribution effect for 8 x 3 x 2 μ m³ cantilevers

Conclusions & Perspectives

Efficient stochastic multi-scale method

- Micro-structure based on experimental measurements
- Computational efficiency rely on the meso-scale random field generator
- Used to study probabilistic behaviors

Perspectives

- Other material systems
- Non-linear behaviors
- Non-homogenous random fields

Thank you for your attention!

Extension to stochastic-plate finite elements

Macro-scale Kirchhoff-Love plates

- Displacement fields
 - Displacement u of Cosserat plane, and
 - Cross section direction t with

$$\Delta t_{\alpha} = -u_{z,\alpha}$$

Kinematics: in-plane strain and curvature

$$\begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}_{\alpha\beta}} = \frac{\boldsymbol{u}_{\beta,\alpha} + \boldsymbol{u}_{\alpha,\beta}}{2} \\ \boldsymbol{\kappa}_{\mathrm{M}_{\alpha\beta}} = \frac{\boldsymbol{\Delta}\boldsymbol{t}_{\beta,\alpha} + \boldsymbol{\Delta}\boldsymbol{t}_{\alpha,\beta}}{2} = -\boldsymbol{u}_{z,\alpha\beta} \end{cases}$$

Resultant in-plane & bending stresses

$$\begin{cases} \mathbf{n}_{\mathrm{M}}^{\alpha} = \tilde{n}_{\mathrm{M}}^{\alpha\beta} \mathbf{E}_{\beta} = \int_{h} \mathbf{\sigma}_{\mathrm{M}}^{\alpha\beta} dz \, \mathbf{E}_{\beta} \\ \mathbf{\tilde{m}}_{\mathrm{M}}^{\alpha} = \tilde{m}_{\mathrm{M}}^{\alpha\beta} \mathbf{E}_{\beta} = \int_{h} \mathbf{\sigma}_{\mathrm{M}}^{\alpha\beta} z \, dz \, \mathbf{E}_{\beta} \end{cases}$$

Constitutive laws

$$\begin{cases} \widetilde{\boldsymbol{n}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{1}} : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{2}} : \boldsymbol{\kappa}_{\mathrm{M}} \\ \\ \widetilde{\boldsymbol{m}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{3}} : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{4}} : \boldsymbol{\kappa}_{\mathrm{M}} \end{cases}$$

Extension to stochastic-plate finite elements

- Stochastic macro-scale Kirchhoff-Love plates
 - Strong form:

$$\begin{cases} \bar{\rho}_{\mathrm{M}} \ddot{\boldsymbol{u}} + (\boldsymbol{n}_{\mathrm{M}}^{\alpha})_{,\alpha} = 0 \\ I_{P_{\mathrm{M}}} \ddot{\boldsymbol{t}} + (-\lambda \boldsymbol{E}_{z}) + (\widetilde{\boldsymbol{m}}_{\mathrm{M}}^{\alpha})_{,\alpha} = 0 \end{cases}$$
with $\Delta \boldsymbol{t}_{\alpha} = -\boldsymbol{u}_{z,\alpha}$

Constitutive equations & density per unit area from stochastic homogenization

$$\begin{cases} \widetilde{\boldsymbol{n}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{1}}(\boldsymbol{x}, \boldsymbol{\theta}) : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{2}}(\boldsymbol{x}, \boldsymbol{\theta}) : \boldsymbol{\kappa}_{\mathrm{M}} \\ \widetilde{\boldsymbol{m}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{3}}(\boldsymbol{x}, \boldsymbol{\theta}) : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{4}}(\boldsymbol{x}, \boldsymbol{\theta}) : \boldsymbol{\kappa}_{\mathrm{M}} \end{cases} \quad \text{with} \quad \begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}_{\alpha\beta}} = \frac{\boldsymbol{u}_{\beta,\alpha} + \boldsymbol{u}_{\alpha,\beta}}{2} \\ \boldsymbol{\kappa}_{\mathrm{M}_{\alpha\beta}} = \frac{\boldsymbol{\Delta}\boldsymbol{t}_{\beta,\alpha} + \boldsymbol{\Delta}\boldsymbol{t}_{\alpha,\beta}}{2} = -\boldsymbol{u}_{z,\alpha\beta} \end{cases}$$

Stochastic (Discontinuous Galerkin) finite elements

$$\longrightarrow M(\theta)\ddot{\mathbf{u}} + K_{uu}(\theta)\mathbf{u} = \mathbf{F}$$

Second-order stochastic homogenization

- Meso-scale BVP boundary conditions (BCs)
 - Downscaling

$$\begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\varepsilon}_{\mathrm{m}} d\omega \\ \boldsymbol{\eta}_{\mathrm{M}} \text{ independant of BC} \end{cases}$$

Meso-scale BVP fluctuation field

$$\mathbf{u}_{\mathrm{m}} = \epsilon_{\mathrm{M}} \otimes x + \frac{1}{2} \eta_{\mathrm{M}} : (x \otimes x) + \mathbf{u}' \qquad \qquad \mathbf{0} = \int_{\partial \omega} \mathbf{u}' \otimes \mathbf{n} \, d\partial \omega$$

$$0 = \int_{\partial \omega} \mathbf{u}' \otimes \mathbf{n} \otimes x \, d\partial \omega$$

Satisfied by periodic and kinematic boundary conditions
First equation satisfied by static boundary conditions

Second-order stochastic homogenization

Meso-scale BVP boundary conditions (2)

- Upscaling

$$\begin{cases} \mathbf{n}_{\mathrm{M}} = \frac{1}{S} \int_{\omega} \mathbf{\sigma}_{\mathrm{m}} d\omega \\ \mathbf{m}_{\mathrm{M}} = \frac{1}{S} \int_{\omega} \mathbf{\sigma}_{\mathrm{m}} \otimes \mathbf{x} \ d\omega \end{cases}$$

Consistency

Satisfied by periodic, kinematic, static boundary conditions

- Top and bottom surfaces
 - Stress free
 plane stress is naturally ensured
- Side surfaces
 - Mixed boundary conditions

Second-order stochastic homogenization

Second-order homogenization

Downscaling

$$\begin{cases} \boldsymbol{\epsilon}_{\mathrm{M}} = \boldsymbol{u}_{M} \otimes \nabla \\ = \boldsymbol{\varepsilon}_{\mathrm{M}}^{\alpha\beta} \boldsymbol{E}_{\alpha} \otimes \boldsymbol{E}_{\beta} + \hat{\boldsymbol{\epsilon}}_{\mathrm{M}} \end{cases}$$
$$\boldsymbol{\eta}_{\mathrm{M}} = \boldsymbol{u}_{M} \otimes \nabla \otimes \nabla \\ = \boldsymbol{\kappa}_{\mathrm{M}}^{\alpha\beta} \boldsymbol{E}_{\alpha} \otimes \boldsymbol{E}_{\beta} \otimes \boldsymbol{E}_{z} + \hat{\boldsymbol{\eta}}_{\mathrm{M}} \end{cases}$$

• $\hat{\epsilon}_{\rm M}$ & $\hat{\eta}_{\rm M}$ undefined for KL plates

Upscaling

$$\begin{cases} \mathbf{n}_{\mathrm{M}} = \frac{1}{S} \int_{\omega} \mathbf{\sigma}_{\mathrm{m}} d\omega = \widetilde{\mathbf{n}}_{\mathrm{M}}^{\alpha\beta} \mathbf{E}_{\beta} \otimes \mathbf{E}_{\beta} + \widehat{\mathbf{n}}_{\mathrm{M}} \\ \mathbf{m}_{\mathrm{M}} = \frac{1}{S} \int_{\omega} \mathbf{\sigma}_{\mathrm{m}} \otimes \mathbf{x} \ d\omega = \widetilde{\mathbf{m}}_{\mathrm{M}}^{\alpha\beta} \mathbf{E}_{\beta} \otimes \mathbf{E}_{\beta} \otimes \mathbf{E}_{z} + \widehat{\mathbf{m}}_{\mathrm{M}} \end{cases}$$

•
$$\widehat{\boldsymbol{n}}_{\mathrm{M}}=0$$
 & $\widehat{\boldsymbol{m}}_{\mathrm{M}}=0$ for KL plates

$$\begin{cases} \widetilde{\boldsymbol{n}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{1}} : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{2}} : \boldsymbol{\kappa}_{\mathrm{M}} \\ \\ \widetilde{\boldsymbol{m}}_{\mathrm{M}} = \mathbb{C}_{\mathrm{M}_{3}} : \boldsymbol{\varepsilon}_{\mathrm{M}} + \mathbb{C}_{\mathrm{M}_{4}} : \boldsymbol{\kappa}_{\mathrm{M}} \end{cases}$$

