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Abstract

We present a wavelet analysis of coarsening of mounds during molecular beam epitaxy. The advantage in using wavelets over Fourier

analysis is that one can track the coarsening process in both, location (direct space) and frequency (or scale) space at the same time. The

wavelets concise scale decomposition allows the discrimination of the coarsening process, i.e. tracking coarsening at different scales.
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1. Introduction

Microelectronics technology has created an increasing

interest in theoretical studies of molecular beam epitaxy

(MBE) over the last few decades [1,2]. Many aspects of

MBE growth were studied in a phenomenological frame-

work. Phenomenological continuum models consider the

surface of the growing film as a continuous variable of the

position. Growth mechanisms, such as diffusion and

desorption, can be introduced as functions of the surface

height derivatives, provided that symmetry requirements are

respected [3]. MBE growth can be summarized as follow:

atoms are adsorbed on the film surface from the gas phase,

where they undergo diffusion (which is thermally activated)

or desorption back to the gas phase. The diffused adatoms

will combine to other adatoms to form a dimmer, or will

bind to steps of existing islands on the surface. A whole

atomic layer is formed once all islands on the surface have

coalesced. In an ideal situation, the growth proceeds in a

layer-by-layer mode, resulting in atomically smooth sur-

faces. However, many experiments provide evidence that

layer-by-layer growth mode do not occur in many practical

situations [4,5]. The layer-by-layer mechanism may be

suppressed by two other dominant effects: shot noise, or

instabilities that arise from the so-called Ehrlich–Schwoebel

(ES) effect [6,7]. Shot noise originates from different
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mechanisms such as deposition, diffusion or nucleation.

The ES effect is due to the asymmetry in attachment–

detachment kinetics across an atomic step, i.e. atoms have to

overcome an energy barrier when descending a step. This

favours an ascending atomic current, which is responsible

for the instability of an initial flat surface against small

perturbations. As a result, the amplitude of such pertur-

bations will exponentially increase in time. This unphysical

situation can be cured by introducing a stabilizing

mechanism such as Mullins-like current arising from

thermodynamic relaxation through surface diffusion [8] or

from fluctuations in the nucleation process of new forming

islands [9,10]. In a deterministic picture, one can neglect all

noise sources; then growth can be treated considering only

the ES destabilizing and Mullins stabilising currents. These

two effects will induce the formation of a mound-like

structure on the surface; the formed mounds will coarsen

after an initial phase. So far, the analysis of the coarsening

process has been performed globally, i.e. it describes the

coarsening of mounds as a global process without taking

into consideration how coarsening proceeds at different

scales. The purpose of this paper is to make use of the

wavelets formalism to analyse the coarsening process at

different scales.
2. Basic equations

A phenomenological continuum model describing the

surface growth incorporating this two conserving
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mechanisms can be formulated as

vh

vt
ZKV~jd KV~js (1)

where h is the surface height, V is the gradient, jd is the ES

destabilizing current and js is the Mullins stabilizing current. A

simple model for the currents jd and js can be expressed as [11]

jd Z nm 1 K
m

m0

� �
; js Z KV2m (2)

where mZvh/vx is the surface slope; n and K are positive

constants. The model for the destabilizing current jd predicts

the emergence of the so-called ‘magic slope’, i.e. the surface

mounds approach a constant slope after a transient phase of

steepening. Eq. (1) has been investigated by mapping it to the

phase ordering problem [12] or by mapping it to a one-

dimensional system of interacting kinks [13].

The scenario as predicted by Eq. (1) is the following: due

to ES instability, the surface will evolve towards a mound

like structure with a well defined period Lc Z
ffiffiffiffiffiffiffiffiffiffi
2K=n

p
. Later

in time, the mounds will coarsen because of the non-

linearity of the current jd. The period of the mounds L(t) will

increase logarithmically. That is

LðtÞ Z a lnðtÞCb (3)

where a and b are constant coefficients. The surface slopes

they will evolve towards the constant value Gm0.
3. Wavelet analysis

Wavelet analysis is the breaking up of a signal into

shifted and scaled versions of the original (or mother)
Fig. 1. The scale decomposition of the surface profile for tZ2 an
wavelet. That is

js;xðyÞ Z
1ffiffi
s

p J
y Kx

s

� �
(4)

where s (sO0) and x are the scale parameter and the

dilatation parameter, respectively, y is the space variable,

and J is the mother wavelet. These basis functions vary in

scale by slicing the data space using different scale sizes.

The continuous wavelet transform (CWT) is defined as the

sum over all of the surface profile multiplied by the shifted

and scaled mother wavelet

Wðs; xÞ Z
Ð

hðyÞjs;xðyÞdy (5)

where W(s,x) is the wavelet coefficient which is a function

of the scale and the position. Then, CWT describes the

surface profile in a given position x and a given scale s.

We start our analysis by discretizing Eq. (1) and solve it

numerically in one dimensional space. Periodic boundary

conditions are used (i.e. h1ZhN, where N is the system size).

Then, the wavelet transform is performed using Eq. (5) at

different times. In Fig. 1, we show a splitted surface profile

generated from Eq. (1), and transformed using the transform

(5), and the ‘Mexican hat wavelet’, for three different scales

sZ0.8, 8 and 24 and for tZ2. Note that high oscillations

correspond to small scales, while low ones correspond to

large scales. Wavelets have the ability to split a surface

profile up into components that are not pure sine waves, as

opposed to Fourier transform. When summing all those

components, one retrieves the exact profile.

Fig. 2 shows the evolution of the magnitude of the wavelet

transform, for four different times: tZ6, 30, 40 and 70. At the

early stage (tZ6), the wavelet power is concentrated within

a band of scales, reminiscent of the instability leading to
d for sZ0.8, 8 and 24. The ‘Mexican hat’ wavelet is used.



Fig. 2. The evolution of the magnitude of the wavelet transform of the surface profile, computed using Eq. (4), for tZ6, 30, 40 and 70, showing the coarsening

with increasing time.

Fig. 3. Left: evolution of the surface feature size at different scales in log-linear plot, the integration parameters are nZ1, KZ0.4 and a system size of 1024

points. Right: the coefficients a(s) and b(s) for different scales
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a dominate scale (or mound size LZ
ffiffiffiffiffiffiffiffiffiffi
2K=n

p
). Later in time,

this band of scales shifts towards larger scales, an indication

of coarsening.

In order to discriminate, the coarsening process, we

compute the peak-to-peak distance Ls(t) (the mound size),

for each scale (or wavelet decomposition). The peak-to-

peak distance is given by

LsðtÞ Z

Ð
qj ~Wðs; qÞj2dqÐ
j ~Wðs; qÞj2dq

(6)

where j ~Wðs; qÞj2 is the Fourier power spectrum at a scale s

and q is the wavenumber. Fig. 3 displays Ls(t) for different

scales. This figure shows three phases: the early stage with

unstable growth phase, the transient phase and the

coarsening phase. In the coarsening phase, the mound size
varies logarithmically for all scales, i.e. Ls(t)Za(s)ln(t)C
b(s). This means that the global logarithmic law (3) does not

change with the scale. However, the coarsening speed a(s) is

scale-dependent as shown in Fig. 3. The coarsening speed

increases with the scale and reaches a maximum at sw8,

and decreases for large scales. In Fig. 3, the coefficient b(s)

is also shown to increase with increasing scale. This is

predictable since large scales correspond to large features.
4. Conclusion

In conclusion, an analysis of coarsening is performed

using wavelets formalism. Wavelet formalism has an

advantage over Fourier methods in a way that one can

track the coarsening process in the location (direct space),
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and at different scales, simultaneously. We have shown that

the global law of coarsening does not change with the scale,

i.e. at all scales, the logarithmic law holds. Another

important consequence of this analysis is that each scale

coarsens with different speed. There exist a well defined

scale where coarsening is the fastest.
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