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On Generalized Hölder-Zygmund Spaces

Promoteur : Prof. S. Nicolay
Co-promoteur : Prof. F. Bastin
Composition du Jury :
Prof. S. Ja�ard
Prof. J.-P. Schneiders
Prof. J. Wengenroth

Thèse présentée en vue de l'obtention du
grade de
Docteur en Sciences
par :
Damien KREIT

Juin 2016



Remerciements

J'adresse mes remerciements aux personnes qui m'ont aidé ou soutenu lors de la réalisation
de cette thèse. En premier lieu, à mon promoteur de thèse, Monsieur le Professeur Samuel
Nicolay, pour m'avoir o�ert sa con�ance et l'opportunité de suivre la formation doctorale,
mais aussi pour son support, sa disponibilité et ses qualités humaines de compréhension et
d'écoute.

Merci à Madame le Professeur Françoise Bastin qui a accepté d'être ma co-promotrice,
et à Messieurs les Professeurs Stéphane Ja�ard, Jochen Wengenroth et Jean-Pierre Schnei-
ders qui ont accepté de faire partie de mon jury de thèse. Je souhaite exprimer à Monsieur
le Professeur Jochen Wengenroth ma plus profonde gratitude pour m'avoir donné le goût
de la recherche lors de mes dernières années d'étude en master de sciences mathématiques.
Sans lui, je ne me serais peut-être jamais orienté vers une thèse de doctorat, et je le remercie
pour cette belle et riche expérience.

Un merci particulier à mon épouse Marie Bla�art, à mes parents Patrick et Krystyna
Kreit, et à ma grand-mère Danuta Cybulska, qui n'ont jamais cessé de croire en moi et qui
m'ont toujours fourni le courage et le soutien nécessaire pour poursuivre dans la voie que
j'ai choisie. J'adresse une pensée particulière au reste de ma famille, et à ceux qui ne sont
plus là.

Merci aussi à toutes les personnes que j'ai croisées durant mon parcours, et qui, d'une
façon ou d'une autre, ont contribué à sa réussite : merci à Marianne Clausel, Julien
Hamonier, Qidi Peng, Mehdi Madani, Rukiye Cavus,... ainsi qu'aux nombreuses autres
personnes que je n'ai pas citées.

Ces dernières années furent une expérience de vie inoubliable que je n'hésiterai pas à
renouveler.

ii



Abstract

To study the regularity of functions, many functional spaces have been introduced during
the 20th century. Among them, let us mention the Hölder-Zygmund spaces Λα(Rd) and
the Besov spaces Bα

p,q(R
d) where α > 0 somehow indicates the regularity of their elements

(p, q ∈]0,+∞]). The Hölder-Zygmund spaces are particular cases of Besov spaces in the
sense that Λα(Rd) = Bα

∞,∞(Rd).
A generalization of Besov spaces has been introduced in the middle of the seventies and

is still studied nowadays. This new type of space allows a deepest study of the regularity
of functions (see e.g. [50]). In this thesis, we start from this generalization in order to
introduce a generalization of Hölder-Zygmund spaces.

The �rst aim of this thesis is to show that most classical properties of Hölder-Zygmund
spaces can be transposed to their generalized version. Among others, a complete charac-
terization of these spaces in terms of wavelet coe�cients is proved, which opens their use
in the context of the signal analysis.

The second aim of this thesis is to introduce a generalized version of the pointwise
Hölder spaces similarly to their global version. We then show that most properties of the
global spaces can be transposed to their generalized pointwise version.

Finally, we study the regularity of some �nancial stochastic processes.
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Résumé

A�n d'étudier la régularité des fonctions, divers espaces fonctionnels ont été introduits au
XXème siècle. Parmis eux, citons les espaces de Hölder-Zygmund Λα(Rd) et les espaces de
Besov Bα

p,q(R
d), où α > 0 indique d'une certaine manière la régularité de leurs éléments

(p, q ∈]0,+∞]). Les espaces de Hölder-Zygmund sont des cas particuliers d'espaces de
Besov, en ceci que Λα(Rd) = Bα

∞,∞(Rd).
Une généralisation des espaces de Besov a été introduite durant les années 1970 et est

encore étudiée aujourd'hui. Ce nouveau type d'espace permet une étude plus approfondie
de la régularité (voir par ex. [50]). Dans cette thèse, nous partons de cette généralisation
pour introduire une généralisation des espaces de Hölder-Zygmund.

Le premier objectif de cette thèse est de démontrer que la plupart des propriétés clas-
siques des espaces de Hölder-Zygmund peuvent être transposées à leur version généralisée.
Entre autre, une caractérisation complète de ces espaces en terme de coe�cients en on-
delettes est démontrée, ce qui ouvre leur utilisation dans le contexte de l'analyse du signal.

Le second objectif de cette thèse est d'introduire une version généralisée des espaces de
Hölder ponctuels, de manière similaire à leur version globale. Nous démontrons ensuite que
la plupart des propriétés et caractérisations des espaces globaux peuvent être transposées
à leur version ponctuelle généralisée.

Diverses applications d'étude de régularité de processus stochastiques �nanciers seront
entre autres illustrées.
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Some basic notations

• N0 = {0, 1, 2, 3, ...} denotes the set of natural numbers.

• N∗ = {1, 2, 3, ...}.

• Z denotes the set of integers.

• R denotes the set of real numbers.

• Rd = {(x1, ..., xd) : xi ∈ R ∀i ∈ {1, ..., d}} denotes the d-dimensional euclidean
space (d ∈ N∗).

• Nd
0 = {(α1, ..., αd) : αi ∈ N0 ∀i ∈ {1, ..., d}} denotes the set of multi-indices (d ∈

N∗).

• B(x,R) denotes the open ball with center x ∈ Rd and radius R > 0.

• B(x,≤ R) denotes the closed ball with center x ∈ Rd and radius R > 0.

• bxc = sup{m ∈ Z : m ≤ x} denotes the �oor of x ∈ R.

• dxe = inf{m ∈ Z : m ≥ x} denotes the ceiling of x ∈ R.

• (x)+ = max{x, 0} denotes the positive part of a real number x ∈ R.

• α! denotes the value α! = α1!...αd! if α ∈ Nd
0 is a multi-index.

• |α| denotes the value α1 + ...+ αd if α ∈ Nd
0 is a multi-index.

•
(
m
j

)
= m!

(m−j)!j! where m, j ∈ N0 and m ≥ j.

• C(A) denotes the space of continuous functions de�ned on A ⊆ Rd.

• Cp(Ω) (p ∈ N0 ∪{∞}) denotes the space of functions which are p-times continuously
di�erentiable on Ω (where Ω is an open set of Rd).

• D(Ω) denotes the subspace of C∞(Ω) made from compactly supported functions on
Ω ⊆ Rd.

• Lp(A) denotes the space of measurable functions on A satisfying

‖f‖Lp(A) =
(∫

A
|f(x)|p dx

)1/p
< ∞ (where p ∈]0,∞[ and A is a measurable set of

Rd).

• L∞(A) denotes the space of measurable functions on A satisfying
‖f‖L∞(A) = supppA |f | <∞ (where A is a measurable set of Rd).

• ‖f‖E = supx∈E |f(x)| where f is a function de�ned on E ⊆ Rd.
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• Lp = Lp(Rd) if p ∈]0,∞].

• lp = lp(N0) denotes the space of sequences (an)n∈N0 such that
‖(an)n∈N0‖lp = (

∑∞
n=0 |an|p)1/p <∞ (p ∈ [0,∞[).

• l∞ = l∞(N0) denotes the space of sequences (an)n∈N0 such that ‖(an)n∈N0‖l∞ =
supn∈N0

|an| <∞.

• D′(Rd) denotes the space of distributions on Rd.

• S(Rd) = S denotes the Schwartz space, composed of all rapidly decreasing in�nitely
di�erentiable functions on Rd.

• S ′(Rd) = S ′ denotes the topological dual of the space S, i.e. the space of all tempered
distributions on Rd.

• Ff denotes the Fourier transform of the distribution f ∈ S ′(Rd). If the function f
belongs to L1(Rd), this expression is equal to Ff(ξ) = (2π)−d/2

∫
Rd e

−ixξf(x) dx.

• F−1f denotes the inverse Fourier transform of the distribution f ∈ S ′(Rd). If the
function f belongs to L1(Rd), this expression is equal to F−1f(ξ) = (2π)−d/2

∫
Rd e

+ixξf(x) dx.



Introduction

The Hölder condition has been �rst introduced by Otto Ludwig Hölder, and is more than
130 years old. It is formally de�ned as follows: a real or complex-valued function f satis�es
a Hölder condition if there exist C > 0 and α ∈]0, 1[ such that

|f(x)− f(y)| ≤ C|x− y|α,

for all x, y belonging to the domain of f . If such an inequality is satis�ed, one says that f
belongs to the Hölder space of index α. It is easy to de�ne these spaces for α ≥ 1. They are
used in many areas such as the theory of partial di�erential equation, harmonic analysis,
stochastic di�erential equations and function spaces (see e.g. [4, 29, 48, 56, 118]). More
recently, it gave birth to the multifractal analysis theory (see e.g. [13, 64, 67]).

The concept of Hölder-Zygmund space Λα(Rd) (α > 0) is directly linked with the Hölder
condition and can be used to measure the global regularity through the parameter α. Let
Wα be the Weierstraÿ function given by

Wα(x) =
+∞∑
j=0

2−jα cos(2jπx),

where α ∈]0, 1[. This function and the Brownian motion share a particular property: these
functions are continuous but nowhere di�erentiable. A natural question that arises is how
to determine which one of them is more regular. Using Hölder-Zygmund spaces, one can
answer the question depending on the value of the parameter α. One can prove that the
Weierstraÿ function is more regular than the Brownian motion if and only if α ≥ 1/2.

Hölder-Zygmund spaces are particular cases of Besov spaces Bα
p,q(R

d) where 0 < p, q ≤
+∞ and α > 0 ([118]). Besov spaces were de�ned in 1959 by O. V. Besov in [18, 19].
A large number of references are now dedicated to them, see [20, 21, 117, 118, 119, 120,
121, 122]. These spaces were generalized in the middle of the seventies by several authors,
with di�erent starting points and in di�erent contexts. They were �rst considered by
the Russian school, and are still studied today in connection with embeddings, limiting
embeddings, entropy numbers, probability theory and theory of stochastic processes (see
e.g. [25, 46, 47, 85, 99]).

Meanwhile, S. Ja�ard and Y. Meyer proposed a generalization of Hölder-Zygmund
spaces in [65] for several purposes, such as Sobolev embeddings results, the study of reg-
ularity and multifractal purpose. This new type of Hölder-Zygmund spaces relies on the

1
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concept of modulus of continuity. Our approach is to propose a uni�ed view. It consists
in de�ning generalized Hölder-Zygmund spaces Λσ,α(Rd) as a particular case of generalized
Besov spaces through the use of admissible sequences. This generalizes S. Ja�ard's ap-
proach and helps to stand back from the di�erent theories to obtain a better understanding
of the underlying mechanisms behind the spaces. The generalized Hölder-Zygmund spaces
Λσ,α(Rd) allow a more precise study of the regularity of a function, as illustrated by the
following example. The Brownian motion is α-regular with α < 1

2
, in the sense that it

belongs to the space Λα(Rd) = Λσ,α(Rd) with σj = 2−jα. Using a result of A. Khintchine
([72]), this sequence can be replaced by 2−j/2

√
log(j), giving a better characterization of

the regularity of the Brownian motion. The concepts of Besov spaces and Hölder-Zygmund
spaces, as well as their generalized versions, are recalled in chapter 1.

As generalized Hölder-Zygmund spaces Λσ,α(Rd) measure the regularity of functions,
it is natural to wonder what links these spaces and classical concepts of regularity, like
CN(Rd) spaces. For this purpose, the second chapter is dedicated to the study of the char-
acterizations of the spaces Λσ,α(Rd). It is shown that the properties of classical Hölder-
Zygmund spaces can be transposed to their generalized version. In particular, elements in
the generalized Hölder-Zygmund spaces can be characterized through approximation with
polynomials, smooth functions obtained from a convolution product, a Taylor decomposi-
tion formula, wavelet coe�cients and Littlewood-Paley decomposition. We also show that
those spaces can be obtained through a (generalized) real interpolation of Sobolev spaces.
The results of this chapter have been published in [76, 77] (except theorem 115).

An important concept associated to Hölder spaces is the Hölder exponent of some
function f , which measures the global regularity of f . It is de�ned as follows: if f ∈
L∞(Rd), the Hölder exponent of f is given by

Hf = sup{α > 0 : f ∈ Λα(Rd)}.

In chapter 3, we explain how to transpose this concept to the generalized Hölder spaces,
so we can de�ne a concept of generalized Hölder exponents. As opposed to Hölder spaces
which allow to measure the regularity of functions through the Hölder exponent, the uni-
form irregular spaces somehow measure the irregularity of a function ([31, 32, 33]). We
show in the same chapter that those spaces can be expressed in terms of generalized Hölder-
Zygmund spaces. Finally, we discuss some considerations related to �nancial models. Only
results of section 3.1 have been published in [76, 77].

Up to now, we have considered the study of global regularity through the generalized
Hölder-Zygmund spaces Λσ,α(Rd). There also exists a pointwise version of the Hölder-
Zygmund spaces, which gives some indication about the regularity at a given point x0.
These spaces are denoted by Λα(x0) and we can de�ne a pointwise version of the Hölder
exponent. It is formally de�ned as follows: if f ∈ L∞loc(R

d), the Hölder exponent of f at x0

is given by
hf (x0) = sup{α > 0 : f ∈ Λα(x0)}.
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As Hölder-Zygmund spaces have been generalized through the use of admissible sequences,
it is therefore natural to do the same for pointwise Hölder spaces. We introduce the
generalized pointwise Hölder spaces in chapter 4 and we show that main properties of
classical pointwise spaces are kept. In particular, we obtain a wavelet characterization of
those spaces as well as a Taylor decomposition formula for their elements. Then, we study
the pointwise and the global regularity of the Takagi function. We also show how to de�ne
a pointwise generalized Hölder exponent using these new spaces. Results of this chapter
have been published in [78].

Several necessary theories and results are recalled in the appendix.



Chapter 1

Origins of the study of generalized

Hölder-Zygmund spaces � State of the

Art

1.1 Background: reminder of basic concepts

The Besov spaces are the central point of the study of this thesis. These spaces allow one
to measure the smoothness of functions, and are a useful tool to solve partial di�erential
equations. They were �rst introduced in the 1960's and are de�ned here below.

Let us introduce some notations linking spaces lq and Lp(Rd). If 0 < p, q ≤ ∞ and
(fj)j∈N0 is a sequence of Lebesgue-measurable functions on Rd, we set

‖(fj)j∈N0 |lq(Lp(Rd))‖ =

(
∞∑
j=0

‖fj‖qLp(Rd)

)1/q

if q 6=∞

and
‖(fj)j∈N0 |l∞(Lp(Rd))‖ = sup

j∈N0

‖fj‖Lp(Rd) else.

To de�ne Besov spaces, we need to introduce particular sequences of in�nitely di�er-
entiable compactly supported functions which constitute a smooth resolution of unity.

De�nition 1. Let Φ(Rd) denote the set of sequences (ϕj)j∈N0 ⊂ S(Rd) satisfying the
following properties:

1. suppϕ0 ⊆ {ξ ∈ Rd : |ξ| ≤ 2};

2. suppϕj ⊆ {ξ ∈ Rd : 2j−1 ≤ |ξ| ≤ 2j+1}, j ∈ N∗;

3. supξ∈Rd |Dαϕj(ξ)| ≤ cα2−j|α|, j ∈ N0, α ∈ Nd
0;

4.
∑∞

j=0 ϕj(ξ) = 1, ξ ∈ Rd.

4
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H. Triebel introduced the de�nition of Besov spaces in [118] as:

De�nition 2 (Besov spaces). Let (ϕj)j∈N0 ∈ Φ(Rd) and 0 < p, q ≤ ∞, s ∈ R. We de�ne
the Besov space Bs

p,q(Rd) by

Bs
p,q(Rd) = {f ∈ S ′(Rd) : ‖f‖Bsp,q(Rd) := ‖(2jsF−1(ϕjFf))j∈N0|lq(Lp(Rd))‖ <∞}.

Remark 3. 1. This de�nition does not depend on the chosen sequence (ϕj)j∈N0 ∈
Φ(Rd) (see e.g. [117, 118]).

2. The distributions F−1(ϕjFf) (j ∈ N0) are associated to analytic functions de�ned
on Rd by the Paley-Wiener theorem. So, they belong to C∞(Rd).

3. The spaces Bs
p,q(Rd) are quasi-Banach spaces and Banach spaces if p, q ≥ 1 ([119]).

These spaces have many interesting properties, but they will not be discussed in further
detail here. We refer to [43, 118, 119, 121] for a rather complete study.

Let us introduce Hölder spaces. We need to introduce the concept of �nite di�erence.
This concept is developed further in section 1.7 because it is one of the most important
aspects of this thesis.

De�nition 4. Let x, h ∈ Rd and a function f de�ned on Rd. We de�ne the (forward)
�nite di�erence of order m ∈ N∗ of f by

∆1
hf(x) := f(x+ h)− f(x)

∆m
h f(x) := ∆1

h∆
m−1
h f(x) (m ∈ N∗).

If the function f is continuously di�erentiable in a neighbourhood of x ∈ Rd, we have
(by de�nition)

lim
h→0
h6=0

∆1
hei
f(x)

h
= Dxif(x).

More generally, we have the following result ([73], lemma 4.4). This result can be easily
proved using the de�nition of a derivative and permuting and reducing all the limits to a
single one, thanks to the regularity assumption.

Lemma 5. If f is a n-times continuously di�erentiable function on a neighbourhood of
x ∈ Rd, then we have

lim
h→0
h∈R0

∆n
hei
f(x)

hn
= Dn

xi
f(x)

The Hölder-Zygmund spaces can be interpreted as a continuum between the classical
spaces Cn(Rd) of n-times continuously di�erentiable functions on Rd. In this way, they
allow a more precise measurement of the global regularity of functions.
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De�nition 6 (Hölder-Zygmund spaces). Let α > 0. We de�ne the Hölder-Zygmund space
Λα(Rd) by

Λα(Rd) = {f ∈ L∞(Rd) : sup
j∈N0

2jα sup
|h|≤2−j

‖∆bαc+1
h f‖L∞ <∞}. (1.1)

The spaces Λn(Rd) do not coincide with the spaces Cn(Rd), but each function belonging
to Λn+ε(Rd) with ε > 0 is n-times continuously di�erentiable ([73]). These spaces have
many interesting properties. For example, these spaces can be characterized by Taylor
decomposition of their elements and can even be characterized by wavelet coe�cients1

([93]).

Remark 7. 1. Some authors ask the continuity of the elements of the Hölder spaces
in the de�nition (see e.g. [73]). This is not necessary: indeed, we will see that
functions of Hölder spaces can be modi�ed on a set of null measure so that they
become continuous (proposition 80).

2. These spaces are Banach spaces with the norm de�ned by

‖f‖Λα(Rd) = ‖f‖L∞ + sup
j∈N0

sup
0 6=|h|≤2−j

‖∆bαc+1
h f‖L∞
|h|α

but they are not separable. They are indeed isomorphic to l∞ ([118], p.87, Remark
1).

The Hölder spaces are closely linked to Besov spaces. Indeed, they are particular cases
of Besov spaces as stated by the following result [118].

Theorem 8. Let α > 0. We have

Bα
∞,∞(Rd) = Λα(Rd)

with equivalent norms.

To conclude this introduction to Besov and Hölder spaces, let us note that Besov spaces
Bα
p,q(R

d) in general can be expressed in terms of �nite di�erences. This fact is expressed
by the next result ([117]).

Theorem 9. Let 0 < p, q ≤ +∞, α > d( 1
inf{1,p} − 1) and M ∈ N0 such that M > α. We

have

Bα
p,q(R

d) =
{
f ∈ S ′(Rd) : ‖f‖(1),M

Bαp,q
< +∞

}
=
{
f ∈ S ′(Rd) : ‖f‖(2),M

Bαp,q
< +∞

}
1The concept of wavelet is developed further in section 5.4.
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where

‖f‖(1),M
Bαp,q

= ‖f‖Lp +

(∫
Rd
|h|−αq sup

|y|≤|h|
‖∆M

y f‖qp
dh

|h|d

)1/q

and

‖f‖(2),M
Bαp,q

= ‖f‖Lp +

(∫
Rd
|h|−αq‖∆M

h f‖qp
dh

|h|d

)1/q

are equivalent quasi-norms to ‖f‖Bαp,q (with the usual modi�cation if q =∞).

1.2 An overview of admissible sequences

The core of generalized Besov and Hölder spaces relies on the notion of admissible sequence.
We propose to study this concept separately before entering the de�nition of the generalized
spaces.

De�nition 10. A sequence σ = (σj)j∈N0 of real positive numbers is called an admissible
sequence if there exists two positive constants d0 and d1 such that

d0σj ≤ σj+1 ≤ d1σj, j ∈ N0 . (1.2)

In the following, we will only consider admissible sequences which are not identically
zero. This implies in particular that no element can be equal to 0.

For an admissible sequence σ = (σj)j∈N0 , let

σj := inf
k≥0

σj+k
σk

and σj := sup
k≥0

σj+k
σk

, j ∈ N0 .

The lower and upper Boyd indices are respectively de�ned by

s(σ) := lim
j→+∞

log2(σj)

j
and s(σ) := lim

j→+∞

log2(σj)

j
.

Let us show that the two previous limits exist and are �nite. For s(σ), this results from
the fact that the sequence (log2(σj))j∈N0 is subadditive and from the following lemma (see
lemma 189 in the appendix for a proof of this lemma).

Lemma 11 (Fekete (1923)). For every subadditive sequence (an)n∈N∗, the limit limn→+∞
an
n

exists and is equal to infn∈N∗
an
n
(the limit can be equal to −∞).

Indeed, if j, l ∈ N0 then

σj+k+l

σk
=
σj+k+l

σk+l

σk+l

σk
∀k ∈ N0

which implies

sup
k∈N0

σj+k+l

σk
≤ sup

k∈N0

σj+k+l

σk+l

sup
k∈N0

σk+l

σk
≤ sup

k∈N0

σj+k
σk

sup
k∈N0

σk+l

σk
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hence the conclusion. The same proof can be used to show that s(σ) is well de�ned (we
use the analogous result of lemma 11 for superadditive sequences).

The Boyd index s(σ) of an admissible sequence σ describes the asymptotic behaviour
of σj; similarly, the index s(σ) describes the asymptotic behaviour of σj. We notice that
for ε > 0, there exist two positive constants c1 = c1(ε) and c2 = c2(ε) such that

c12(s(σ)−ε)j ≤ σj ≤
σj+k
σk
≤ σj ≤ c22(s(σ)+ε)j, j, k ∈ N0 . (1.3)

Conversely, s(σ) and s(σ) are respectively the biggest and the lowest real numbers satisfying
inequalities (1.3) for every ε > 0.

Remark 12. Let us remark that the supremum of the constants d0 > 0 satisfying (1.2)
also satis�es this inequality. It corresponds to σ1. Similarly, the in�num of constants
d1 > 0 satisfying (1.2) corresponds to σ1. If there exists a constant d0 > 1 satisfying (1.2),
then this implies that σj → +∞ (if the sequence is not identically null). Similarly, if there
exists a constant d1 < 1 satisfying (1.2), then σj → 0. For Boyd indices: if s(σ) < 0, then
σj → 0; if s(σ) > 0, then σj → +∞.

The following results are immediate.

Lemma 13. Let σ = (σj)j∈N0 and γ = (γj)j∈N0 be two admissible sequences.

1. The sequence σ + γ = (σj + γj)j∈N0 is admissible;

2. the sequence rσ = (rσj)j∈N0 is admissible for every positive real number r;

3. the sequence σγ = (σjγj)j∈N0 is admissible;

4. the sequence σ−1 = (σ−1
j )j∈N0 is admissible.

Lemma 14. Let α ∈ R and σ be an admissible sequence. The new sequence σα is admissible
and

1. if α > 0, then we have

s(σα) = αs(σ) and s(σα) = αs(σ);

2. if α < 0, then we have

s(σα) = αs(σ) and s(σα) = αs(σ).

Proof. The proof is immediate: we start from inequalities (1.3) for the sequences σ and
σα, and we raise them to the power α and 1/α respectively.
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Example 15. The following example will be fundamental for the basis of this thesis. It
is closely linked to classical Hölder spaces. Let α ∈ R and σj := 2jα for every j ∈ N∗.
Because the sequence σ satis�es

2ασj = σj+1,

it is an admissible sequence and we have

σj = 2jα = σj

so that
s(σ) = s(σ) = α.

Example 16. The sequence σ de�ned by σj = 22j (j ∈ N∗) is not admissible. To show
that, we proceed by reductio ad absurdum. As

σj+1 = σ2
j ,

the inequalities (1.2) should imply σj ≤ C for some constant. This example gives an idea
about how to interpret the de�nition of admissible sequence: inequalities (1.2) imply some
limits on the speed of convergence and divergence.

The following examples come from [6] and [49].

Example 17. A function Φ :]0, 1]→]0,+∞[ is a slowly varying function if it is
(Lebesgue-) measurable and satis�es

lim
x→0

Φ(λx)

Φ(x)
= 1, ∀λ > 0.

For all s ∈ R, the sequence σ = (2sjΦ(2−j))j∈N0 is admissible and satis�es s(σ) = s(σ) = s.
An example of slowly varying function is given by Φ(x) = |log(x)| (de�ned on some interval
]0, a[ with a < 1 and extended outside of this interval by a constant).

Example 18. Let (jn)n∈N0 the increasing sequence de�ned by

j0 = 0, j1 = 1, j2n = 2j2n−1 − j2n−2, j2n+1 = 2j2n , n ∈ N∗ .

We set a sequence σ = (σj)j∈N0 by

σj =

{
2j2n if j2n ≤ j ≤ j2n+1

2j2n4(j−j2n+1) if j2n+1 ≤ j < j2n+2.

The sequence σ is admissible : by proceeding by case-to-case, we remark that

σj ≤ σj+1 ≤ 4σj ∀j ∈ N0 .

The sequence σ oscillates in�nitely between (j)j∈N0 and (2j)j∈N0 , i.e. we have

j ≤ σj ≤ 2j ∀j ∈ N0

and there exist in�nitely many indices n ∈ N0 and m ∈ N0 such that σn = n and σm = 2m

respectively.
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Example 19. Let s ∈ R and σ = (σj)j∈N0 be the sequence de�ned in the previous example.
Then the new sequence

γj = 2jsσj

is admissible (lemma 13). Moreover, the sequence γ oscillates between (j2js)j∈N0 and
(2j(s+1))j∈N0 , i.e.

j2js ≤ γj ≤ 2j(s+1) ∀j ∈ N0

where the left inequality is attained as well as the right one for in�nitely many indices j.

The reader should note that in section 2.7 we provide a method to construct an admis-
sible sequence such that the Boyd indices can take any given values (this method consists
in adapting the previous example).

Before concluding this section, let us consider some classical terminologies linked to
admissible sequences.

De�nition 20. A sequence σ = (σj)j∈N∗ of positive real numbers is called

1. almost increasing if there is a positive constant d0 such that

d0σj ≤ σk for all j, k such that 0 ≤ j ≤ k.

2. strongly increasing if it is almost increasing and, in addition, there is a natural number
k0 such that

2σj ≤ σk for all j, k such that j + k0 ≤ k.

3. of bounded growth if there is a positive constant d1 such that

σj+1 ≤ d1σj for all j ∈ N0 .

Example 21. The following examples illustrate these notions.

1. The sequence de�ned by σj = 2jα(1+ j)β (where α > 0, β ∈ R) is strongly increasing
and of bounded growth.

2. The sequence de�ned by σj = j! is strongly increasing, but not of bounded growth.

3. The sequence de�ned by σj = j is not strongly increasing but of bounded growth.

Let us note that each almost increasing and of bounded growth sequence is admissible,
but the converse is false as it is shown by the admissible sequence (2−jα)j∈N0 for α > 0.
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1.3 Generalized Besov Spaces

In this section, we will present some of the generalizations of Besov spaces that have been
proposed in the literature for more than 30 years. One of the most general de�nitions until
now is the one given by the de�nition 31, presented at the end of this section.

De�nition 22. The set B is de�ned by

B =

{
φ ∈ C(]0,∞[) : φ > 0, φ(1) = 1 and sup

s>0

φ(ts)

φ(s)
<∞ ∀t > 0

}
.

De�nition 23. Let E be a quasi-normed space, φ ∈ B and 0 < q ≤ ∞. We de�ne

lq,φ(E) = {(aj)j∈N0 ∈ EN0 : ‖(φ(2j)aj)j‖lq(E) <∞}.

This is a quasi-normed space.

De�nition 24. Let (ϕj)j∈N0 ∈ Φ(Rd) be a sequence of functions. For a chosen function
φ ∈ B, 0 < p ≤ ∞ and 0 < q ≤ ∞, we de�ne

Bφ
p,q(Rd) = {f ∈ S ′(Rd) : ‖f |Bφ

p,q(R
d)‖ := ‖(F−1(ϕjFf))j∈N0 |lq,φ(Lp(Rd))‖ <∞}.

Remark 25. 1. This de�nition does not depend on the chosen sequence (ϕj)j∈N0 (see
e.g. [6]).

2. Moreover, the distributions F−1(ϕjFf) (j ∈ N0) are associated with analytic func-
tions de�ned on Rd by the Paley-Wiener theorem. So, they belong to C∞(Rd).

Another (identical) de�nition is expressed in terms of admissible sequences. The idea
is to replace the terms ϕ(2j) by σj.

De�nition 26 (Generalized Besov spaces). Let (ϕj)j∈N0 ∈ Φ(Rd), σ = (σj)j∈N0 be an
admissible sequence and 0 < p, q ≤ ∞. The generalized Besov space Bσ

p,q is de�ned by

Bσ
p,q(R

d) = {f ∈ S ′(Rd) : ‖f |Bσ
p,q(R

d)‖ := ‖(σjF−1(ϕjFf)))j∈N0|lq(Lp(Rd))‖ < +∞}.

Remark 27. Let α ∈ R. By considering φ(2j) = 2αj = σj (j ∈ N∗), we �nd the classical
Besov spaces ([7]).

We note that the de�nition of the spaces Bσ
p,q is equivalent to the one of Bφ

p,q. Indeed,
the following result has been demonstrated in [6].

Proposition 28. Let σ = (σj)j∈N0 be an admissible sequence and 0 < p, q ≤ ∞. There
exists a function φσ ∈ B such that

Bφσ
p,q = Bσ

p,q

and so that φσ(2j) = σj for all j ∈ N∗.
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Proof. Let σ be an admissible sequence. By considering the new sequence σ′ de�ned by
σ′0 = 1, σ′n = σn ∀n ≥ 1 (which does not change anything on the associated space Bσ

p,q), we
can suppose that the �rst term of the sequence is 1. Then we construct a function φσ ∈ B
in the following way:

φσ(t) =

{ σj+1−σj
2j

(t− 2j) + σj, t ∈ [2j, 2j+1[, j ∈ N0

1, t ∈]0, 1[.

So, φσ(2j) = σj for all j ∈ N∗, which is su�cient to conclude.

The next result gives the converse part.

Lemma 29. Let φ ∈ B et 0 < p, q ≤ ∞. The sequence σφ de�ned by σφ,j = φ(2j) (j ∈ N0)
is admissible and such that

Bφ
p,q = B

σφ
p,q.

Proof: Indeed, we have for all j ∈ N0

φ(22j)

φ(2j)
≤ sup

s>0

φ(2s)

φ(s)
< +∞

and
φ(2−12j)

φ(2j)
≤ sup

s>0

φ(2−1s)

φ(s)
< +∞.

The de�nition given in [50, 97] generalizes those de�nitions. They allow a change of scale
in the support of the functions ϕj, where the scale is associated with a strongly increasing
sequence. LetN = (Nj)j∈N0 be a strongly increasing sequence, J a natural number di�erent
from zero and k0 the natural number associated to the strongly increasing sequence N . We
de�ne the associate covering ΩN,J = (ΩN,J

j )j∈N0 of Rd by

ΩN,J
j =

{
ξ ∈ Rd : |ξ| ≤ Nj+Jk0

}
if j = 0, 1, ..., Jk0 − 1,

and
ΩN,J
j =

{
ξ ∈ Rd : Nj−Jk0 ≤ |ξ| ≤ Nj+Jk0

}
if j = Jk0, Jk0 + 1, ...

As for classical Besov spaces, we de�ne a smooth resolution of unity associated to the
covering (ΩN,J

j )j∈N0 .

De�nition 30. We let ΦN,J(Rd) denotes the set of sequences (ϕN,Jj )j∈N0 ⊂ S(Rd) satisfying
the following properties:

1. ϕN,Jj (ξ) ≥ 0 for all ξ ∈ Rd, j ∈ N0;

2. suppϕN,Jj ⊆ ΩN,J
j for all j ∈ N0;
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3. for all α ∈ Nd
0, there exists a constant cα > 0 such that for all j ∈ N0 we have

|DαϕN,Jj (ξ)| ≤ cα(1 + |ξ|2)−|α|/2 for all ξ ∈ Rd;

4. there exists a constant cϕ > 0 such that

0 <
∞∑
j=0

ϕN,Jj (ξ) = cϕ <∞ for all ξ ∈ Rd .

The construction (and so the existence) of such a sequence of functions is tricky. We
refer to [50] for such constructions.

De�nition 31. Let N = (Nj)j∈N0 be a strongly increasing sequence and of bounded
growth. Let J ∈ N∗, (ϕN,Jj )j∈N0 ∈ ΦN,J(Rd) and σ = (σj)j∈N0 be an admissible sequence.
Let 0 < p, q ≤ ∞. The generalized Besov space Bσ,N

p,q is de�ned by

Bσ,N
p,q (Rd) = {f ∈ S ′(Rd) : ‖f |Bσ,N

p,q (Rd)‖ := ‖(σjF−1(ϕN,Jj Ff)))j∈N0 |lq(Lp(Rd))‖ < +∞}.

As for classical Besov spaces, the distributions F−1(ϕN,Jj Ff) are associated with func-
tions belonging to C∞(Rd). The assumption on N implies in particular that N is an
admissible sequence. One can easily adapt the usual proofs for the classical properties of
Besov spaces in [118] ([50]), to prove the independence of the de�nition from the choice of
the sequence (ϕN,Jj )j∈N0 , the inclusion of the Schwartz space into those spaces and so on.

Remark 32. If we consider the sequence Nj = 2j (j ∈ N0), de�nition 31 is equivalent to

de�nition 26 so that we have Bσ,(2j)j
p,q = Bσ

p,q.

The generalized Besov spaces have been studied since the mid of 1970's by many authors
using many di�erent approaches. Several references about these ones can be found in [50]
with many historical explanations about them.

1.4 A central result

In this section, we introduce the generalized Hölder-Zygmund spaces that are studied in
this thesis. We explain their origins and some �rst reasons why these have interesting
properties.

The following result is the core of our work. It has been proved in [97].

Theorem 33. Let 0 < p, q ≤ ∞, σ = (σj)j∈N0 and N = (Nj)j∈N0 be two admissible
sequences such that N1 > 1 and s(σ−1)s(N)−1 > n(1/p − 1)+. Let M ∈ N0 such that
M > s(σ−1)s(N)−1. We have

Bσ−1,N
p,q =f ∈ Lmax(1,p) : ‖f |Bσ−1,N

p,q ‖(M) := ‖f‖Lp +

(
∞∑
j=0

σ−qj

(
sup
|h|≤N−1

j

‖∆M
h f‖Lp

)q)1/q

<∞


(with an obvious modi�cation if q =∞), in the sense of equivalent quasi-norms.
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If we consider the particular case Nj = 2j and p = q = +∞, then N1 = 2 and
s(N) = s(N) = 1, so that the previous result can be restated in this case as follows.

Corollary 34. Let σ = (σj)j∈N0 be an admissible sequence such that s(σ−1) > 0 and let
M ∈ N0 such that M > s(σ−1). We have

Bσ−1

∞,∞ =

{
f ∈ L∞ : ‖f |Bσ

∞,∞‖(M) := ‖f‖L∞ + sup
j∈N0

σ−1
j sup
|h|≤2−j

‖∆M
h f‖L∞ <∞

}

in the sense of equivalent quasi-norms.

Let us remark the immediate analogy with the classical Hölder-Zygmund spaces: it
consists of replacing the sequence 2−jα of de�nition 6 by an arbitrary admissible sequence
σ which satis�es the conditions of corollary 34. This means replacing the following control
of the �nite di�erence

sup
|h|≤2−j

‖∆M
h f‖L∞ ≤ C2−jα

by the more general control
sup
|h|≤2−j

‖∆M
h f‖L∞ ≤ Cσj.

Theorem 33 shows that an even more generalized control is possible: it consists of replacing
the ball of dyadic radius on which we consider the �nite di�erence (h ∈ B(0, 2−j)) by a
ball of a more general radius linked to an arbitrary admissible sequence (h ∈ B(0, N−1

j )).
The control on the �nite di�erence under that last generalization is then

sup
|h|≤N−1

j

‖∆M
h f‖L∞ ≤ Cσj.

The next step is to study the conditions needed for the sequence σ to be able to apply
the corollary 34. We provide some results that can help the reader to interpret these
conditions and that are often used in the sequel.

Lemma 35. Let σ = (σj)j∈N0 be an admissible sequence. If s(σ−1) > 0, then there exists
C > 0 such that

+∞∑
j=J

σj ≤ CσJ ∀J ∈ N0 .

Proof. Let ε > 0 such that s(σ−1)− ε > 0. Using inequalities (1.3), we obtain

+∞∑
j=J

σj =
+∞∑
j=0

σJ+j ≤ C

+∞∑
j=0

σJ2−(s(σ−1)−ε)j ≤ CσJ

for all J ∈ N0.
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So the condition s(σ−1) > 0 does not only ask for the sequence σ to converge to 0, but
also asks the convergence to be �as quick� as some arbitrary power of 2. This is con�rmed
by inequalities (1.3) which implies

σj ≤ C2−(s(σ−1)−ε)j

(where the constant C depends on ε) where ε can be taken as arbitrarily small. Moreover,
the Boyd index gives the power of 2 that should be used. One can easily prove the following
result.

Lemma 36. Let σ = (σj)j∈N0 be an admissible sequence. It satis�es s(σ) > 0 if and only
if there exist ε > 0 and C > 0 such that C2εj ≤ σj for all j ∈ N∗.

The next result allows for the interpretation of the condition M > s(σ−1) in the corol-
lary 34.

Lemma 37. Let σ = (σj)j∈N0 be an admissible sequence. If M ∈ N0 satis�es M > s(σ−1),
then there exists C > 0 such that

J∑
j=0

2jMσj ≤ C2JMσJ ∀J ∈ N0 .

Proof. Let ε > 0 such that s(σ−1) + ε < M − ε. Using inequalities (1.3), we obtain
σk
σj+k

≤ C2jM2−εj ∀j, k ∈ N0

which implies for J ∈ N0

2−JMσ−1
J

J∑
j=0

2jMσj ≤ C
J∑
j=0

2−ε(J−j) ≤ C

hence the conclusion.

So the conditionM > s(σ−1) means that the growth of the sequence 2jMσj must be fast
enough so that the term 2JMσJ is still �comparable� to the sum of the previous elements
of the sequence ({2Mσ1, 2

2Mσ2..., 2
JMσJ}). The natural M we have to choose to apply

corollary 34 must be large enough so that 2jMσj grows su�ciently fast. We can also note
that inequalities (1.3) imply in particular that C ≤ 2jMσj for all j ∈ N0.

Another important characterization of spaces Bσ,N
p,q is proved in [97] (Theorem 3.1).

This characterization states that any element of Bσ,N
p,q can be approximated by functions

with compactly supported Fourier transforms. Let 0 < p ≤ ∞ and N be an admissible
sequence such that N1 > 1. We easily show that N is a strongly increasing sequence, and
so there exists a natural number k0 ∈ N0 such that

Nk ≥ 2Nj ∀k, j satisfying k ≥ j + k0.

We set

UNp = {a = (aj)j∈N0 : aj ∈ S ′ ∩ Lp, suppFaj ⊂ {y : |y| ≤ Nj+k0}, j ∈ N0} .
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Theorem 38. Let 0 < p, q ≤ ∞, σ = (σj)j∈N0 and N = (Nj)j∈N0 be two admissible
sequences such that N1 > 1 and s(σ)s(N)−1 > n(1/p− 1)+. We have

Bσ,N
p,q =

{
f ∈ S ′ : ∃a = (aj)j ∈ UNp such that f = lim

k→+∞
ak in S ′ and

‖f |Bσ,N
p,q ‖a := ‖a0‖Lp + ‖(σk(f − ak))k∈N∗|lq(Lp)‖ <∞

}
.

Moreover,
‖f |Bσ,N

p,q ‖X := inf ‖f |Bσ,N
p,q ‖a

(where the in�mum is taken over all admissible systems a ∈ UNp ), is an equivalent quasi-
norm in Bσ,N

p,q .

If we consider Nj = 2j and p = q = +∞, this result can be restated in this case as
follows:

Corollary 39. Let σ = (σj)j∈N0 be an admissible sequence such that s(σ) > 0. Then

Bσ
∞,∞ =

{
f ∈ S ′ : ∃a = (aj)j ∈ U∞ such that f = lim

k→+∞
ak in S ′ and

‖f |Bσ
∞,∞‖a := ‖a0‖L∞ + sup

k∈N∗
σk‖f − ak‖L∞ <∞

}
where

U∞ =
{
a = (aj)j∈N0 : aj ∈ S ′ ∩ L∞, suppFaj ⊂ {y : |y| ≤ 2j+1}, j ∈ N0

}
.

1.5 De�nition of generalized Hölder-Zygmund spaces

In this section, we introduce the de�nition of generalized Hölder-Zygmund spaces studied
in this thesis. We show also that these spaces generalize a particular type of space studied
from the wavelet2 point of view some years ago by Stéphane Ja�ard, Yves Meyer and
Marianne Clausel ([65, 30]). Indeed, these authors already noticed that the useful wavelet
characterization known for classical Hölder spaces could be generalized to a more broad
scope which can be used in practice. It is remarkable that the path they follow to generalize
Hölder spaces and the completely di�erent path followed through the generalization of
Besov point of view (by Hans-Gerd Leopold, Walter Farkas, Susana Moura, Alexandre
Almeida, ...) merge into one unique notion several years after their work, when restricted
to the Hölder case.

Let us give a de�nition of the generalized Hölder-Zygmund spaces. This de�nition relies
on the principles exposed in the previous section.

2Wavelets are a mathematical tool used to study signals in mathematical analysis, in engineering and
physical domains (see [89] for a good overview on the subject). This concept is introduced in section 5.4.
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De�nition 40. Let α > 0, σ = (σj)j∈N0 and N = (Nj)j∈N0 be two admissible sequences.
The generalized Hölder-Zygmund space Λα

σ,N(Rd) is de�ned by

Λα
σ,N(Rd) = {f ∈ L∞(Rd) : sup

j∈N0

σ−1
j sup
|h|≤N−1

j

‖∆bαc+1
h f‖L∞ <∞}.

If Nj = 2j (j ∈ N0), then we note Λσ,α(Rd) instead of Λα
σ,N(Rd) to simplify notations.

Remark 41. The application

f 7→ |f |Λασ,N = sup
j∈N0

σ−1
j sup
|h|≤N−1

j

‖∆bαc+1
h f‖L∞

is a semi-norm on the space Λα
σ,N(Rd). The application

f 7→ ‖f‖Λασ,N
= ‖f‖L∞ + |f |Λασ,N

is trivially a norm on this space. Moreover, the space (Λα
σ,N , ‖.‖Λασ,N

) is complete. Let
(fj)j∈N0 be a Cauchy sequence on this space. Because the space L∞ is complete, the
sequence fj converges in L∞ to a function f . We can choose a subsequence (fk(j))j∈N0 of
the Cauchy sequence such that

|fk(j+1) − fk(j)|Λασ,N < 2−j ∀j ∈ N0 .

We set g1 = fk(1) and gj+1 = fk(j+1) − fk(j) (j ∈ N∗), so that we obtain f =
∑+∞

j=1 gj. We
�nd

|f − fk(j)|Λασ,N ≤
+∞∑
l=j+1

|gl|Λασ,N ≤
+∞∑
l=j+1

2−l+1.

As a consequence, ‖f − fk(j)‖Λασ,N
→ 0 if j → +∞. Proposition 4.4.4 of [106] leads to the

following result:

Proposition 42. Let α > 0, σ and N be two admissible sequences. The space (Λα
σ,N , ‖.‖Λασ,N

)
is a Banach space.

Remark 43. The choice of the order of the �nite di�erence should take into account the
speed of convergence of the sequence σ, so that the spaces are not reduced to the space of
constant functions. Indeed, we prove in section 2.3 that if m+1 < s(σ−1) (where m ∈ N0),
then the space Λσ,m is composed of constant functions.

As already mentioned, another generalized version of the classical Hölder-Zygmund
spaces has been introduced in [65] et [30], which relies on the concept of moduli of conti-
nuity. Let us introduce that concept.

De�nition 44 (Modulus of continuity). A non-decreasing function non identically null ω
de�ned on [0,+∞[ is a modulus of continuity if it satis�es the two following conditions:
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1. ω(0) = 0

2. there exists a constant Cω > 0 such that

ω(2t) ≤ Cωω(t), ∀t ∈ [0,+∞[. (1.4)

Obviously, such a function cannot be equal to 0 at any point distinct of 0. The gener-
alized version of Hölder-Zygmund space linked to this concept is the following.

De�nition 45. Let α > 0 and ω be a modulus of continuity. We say that a function
f ∈ L∞(Rd) belongs to the generalized Hölder-Zygmund space Λω,α(Rd) if there exists a
constant C > 0 such that

sup
|h|≤2−j

‖∆bαc+1
h f‖L∞ ≤ Cω(2−j) ∀j ∈ N0 .

Since only the behavior of ω near the origin really matters, we could de�ne a modulus
of continuity using germ functions. The purpose of the remaining part of this section is to
study the link between these spaces and the generalized Hölder-Zygmund spaces based on
admissible sequences.

Let ω be a modulus of continuity. We de�ne σj := ω(2−j) for all j ∈ N0. The sequence
σ so de�ned is admissible and shows that the generalized Hölder-Zygmund spaces linked to
moduli of continuity are a particular case of the ones concerned by the de�nition 40. The
reader might wonder what the exact link is between moduli of continuity and admissible
sequences. The two following immediate results give an answer to that question.

Lemma 46. Let (σj)j∈N0 be an admissible sequence. There exists a modulus of continuity
ω such that σj = ω(2−j) ∀j ∈ N0 if and only if (σj)j∈N0 is a non-increasing sequence.

Lemma 47. Let (σj)j∈N0 be an admissible sequence. There exists a modulus of continuity
ω continuous at 0 and such that σj = ω(2−j) ∀j ∈ N0 if and only if (σj)j∈N0 is a non-
increasing sequence that converges to 0.

Proof: We de�ne the modulus of continuity by ω(r) := σj if r ∈ [2−j, 2−(j−1)[ (j ∈ N0),
and we extend it by a constant over the interval [1,+∞[.

Our considerations of the section 1.4 can now be restated as follow.

Proposition 48. 1. Let σ and N be two admissible sequences such that N1 > 1 and
s(σ−1)s(N)−1 > 0. We have

Bσ−1,N
∞,∞ (Rd) = Λ

s(σ−1)s(N)−1

σ,N (Rd) = ΛM−1
σ,N (Rd)

for all M ∈ N0 such that M > s(σ−1)s(N)−1.

2. Let σ be an admissible sequence such that s(σ−1) > 0. We have

Bσ−1

∞,∞(Rd) = Λσ,s(σ−1)(Rd) = Λσ,M−1(Rd)

for all M ∈ N0 such that M > s(σ−1).
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3. Let ω be a modulus of continuity. We set σ = (ω(2−j))j∈N∗. If s(σ−1) > 0, then

Bσ−1

∞,∞(Rd) = Λω,s(σ−1)(Rd).

A modulus of continuity satis�es the conditions of this result if, for example, there exist
C > 1 and J ∈ N∗ such that

ω(2−j) ≥ Cω(2−(j+1)) ∀j ≥ J.

This condition is often realized for interesting moduli of continuity or admissible sequences
(i.e. the ones that give interesting properties to the associated spaces). For example,
this is the case for the sequence σj = ω(2−j) := 2−jα (α > 0) which corresponds to the
classical Hölder-Zygmund spaces. To end this section, we show some examples of admissible
sequences which are moduli of continuity for which the proposition 48 can or cannot be
applied.

Example 49. Let 0 < a < 1. We de�ne a modulus of continuity by

ω(r) =

{
|log2(r)|−1 si r ∈]0, a[
|log2(a)|−1 si r ≥ a.

The sequence σ = (ω(2−j)−1)j∈N0 is such that s(σ) = 0.

Example 50. We look back at the example 18. The sequence σ is non-decreasing so σ−1

de�nes a modulus of continuity by lemma 46. For all j ∈ N0, we have

σj = inf
k≥0

σj+k
σk
≥ 1

and by considering n ∈ N0 su�ciently large so that j2n + j ≤ j2n+1, we obtain σj+j2n =
σj2n = 2j2n . So

σj = 1

which implies s(σ) = 0.

Example 51. We look back at the example 19 with s > 0. The sequence γ is non-
decreasing and γ−1 de�nes a modulus of continuity. Moreover, by lemma 52 which is
proved below, we have s(γ) ≥ s > 0 and corollary 48 can be applied.

Lemma 52. Let σ and γ be two admissible sequences. We have

s(σγ) ≥ s(σ) + s(γ)

and
s(σγ) ≤ s(σ) + s(γ)
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Proof. For every j ∈ N0, we have

σγ
j

= inf
k≥0

σj+kγj+k
σkγk

≥ σjγj

which implies
log2(σγ

j
)

j
≥

log2(σj)

j
+

log2(γ
j
)

j
.

This proves the �rst inequality. The second one can be proved in the same way.

Before ending this section, let us provide generalizations of lemmata 37 and 35 (these
results do not appear in [76, 77]).

Lemma 53. Let σ = (σj)j∈N0 and N = (Nj)j∈N0 be two admissible sequences such that
s(N) > 0. If M ∈ N0 is such that M > s(σ−1)s(N)−1, then there exists a constant C > 0
such that

J∑
j=0

NM
j σj ≤ CNM

J σJ ∀J ∈ N0 .

Proof. Let ε > 0 such that s(σ−1) + ε < M(s(N) − ε) − ε. Using inequalities (1.3) we
obtain

σk
σj+k

≤ C

(
Nj+k

Nk

)M
2−εj ∀j, k ∈ N0

which implies, for J ∈ N0,

N−MJ σ−1
J

J∑
j=0

NM
j σj ≤ C

J∑
j=0

2−ε(J−j) ≤ C

which allows to conclude.

One can proceed similarly to prove the following result.

Lemma 54. Let σ = (σj)j∈N0 and N = (Nj)j∈N0 be two admissible sequences such that
s(N) > 0. If L ∈ N0 is such that L < s(σ−1)s(N)−1, then there exists a constant C > 0
such that

+∞∑
j=J

NL
j σj ≤ CNL

J σJ ∀J ∈ N0 .
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1.6 Some last remarks about generalized Besov and
Hölder-Zygmund spaces

The purpose of this section is to discuss some last points about generalized Besov spaces.
After this section, we will only be interested in generalized Hölder-Zygmund spaces. The
�rst remark states that some results and references connect classical and generalized Besov
spaces with wavelets. These comments are interesting as we will consider characterizations
of generalized Hölder spaces in terms of wavelet coe�cients in section 2.9. Secondly, as
stated in the proposition 48, generalized Besov spaces coincide with generalized Hölder
spaces in particular cases. It is thus natural to ask whether it is the case in general.
The second remark gives a negative answer to that question. Finally, the last remark
somehow connects the generalized Besov spaces with the classical Hölder-Zygmund spaces,
and consequently with the usual notion of continuity.

Remark 55. A characterization of classical Besov spaces Bs
p,q (s ∈ R, 0 < p, q ≤ +∞)

in terms of wavelet decomposition has been proved in [120] (see also [35, 40, 41]). This
result has been generalized to Weighted Besov spaces in [61], and recently to spaces Bσ

p,q

(0 < p < +∞, 0 < q ≤ +∞) in [6]. The existence of a topological isomorphism between
the generalized Besov spaces and sequences spaces was also proved in the last reference.
Other characterizations of these spaces were proved in [27]. In section 2.9, we show a simple
characterization of space Bσ

∞,∞ in terms of wavelet coe�cients under some assumptions on
the admissible sequence σ.

Remark 56. The goal of this section is to show that if σ is an admissible sequence with
s(σ) = 0, then the spaces Bσ

∞,∞ can be di�erent from every generalized Hölder-Zygmund
space Λψ,α (for all arbitrary admissible sequence ψ). By considering the sequence σ−1

j = 1
j

which corresponds to the admissible sequence given by example 49, we know that s(σ) = 0
and proposition 3.13 of [28] implies that

Bσ
∞,∞ 6↪→ L∞,

where the symbol � ↪→� means that the corresponding embedding is continuous. In partic-
ular, the space Bσ

∞,∞ can not be written as a generalized Hölder-Zygmund space.
This fact shows that the condition s(σ) > 0 of theorem 33 is necessary and that the

concept of generalized Besov space can not always be directly linked to some generalized
Hölder-Zygmund spaces.

Remark 57. The following result was proved in [6] (proposition 4).

Proposition 58. Let φ, ψ ∈ B, 0 < p ≤ ∞, 0 < q0, q1 ≤ ∞. If ( φ(2j)
ψ(2j)

)j∈N0 ∈ lmin{q1,1},
then

Bψ
p,q0

(Rd) ↪→ Bφ
p,q1

(Rd).

We obtain the following result from the previous one.
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Proposition 59. Let 0 < p, q0 ≤ ∞, 1 ≤ q1 ≤ ∞ and σ = (σj)j∈N0 be an admissible
sequence such that s(σ) > 0. For every 0 < ε < s(σ), we have

Bσ
p,q0

(Rd) ↪→ Bs(σ)−ε
p,q1

(Rd).

Proof. Let 0 < ε < s(σ). By inequalities (1.3), there exists C > 0 such that

c2(s(σ)−ε/2)jσ0 ≤ σj ∀j ∈ N0

which implies
+∞∑
j=0

2j(s(σ)−ε)σ−1
j <∞.

Proposition 58 allows to conclude.

Corollary 60. Let σ = (σj)j∈N0 be an admissible sequence such that s(σ) > 0. There
exists s > 0 such that

Bσ
∞,∞(R)d ↪→ Bs

∞,∞(Rd) = Λs(Rd).

In particular, the elements of Bσ
∞,∞(Rd) coincide almost everywhere with a continuous

function de�ned on Rd.

1.7 Some reminders on �nite di�erences

The concept of �nite di�erences is at the core of the future developments done throughout
this thesis. In this regard, we need to recall the two di�erent types of �nite di�erences as
well as their main properties that are used at a later stage.

The concept of forward �nite di�erence has already been introduced in the section 1.1.

Example 61. We �nd the following expressions

∆2
hf(x) = f(x+ 2h)− 2f(x+ h) + f(x),

∆3
hf(x) = f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

for the (forward) �nite di�erence of order 2 and 3 respectively.

Remark 62. We can easily check recursively that we have the following expression for the
�nite di�erences:

∆m
h f(x) :=

m∑
j=0

(−1)m−j
(
m

j

)
f(x+ jh).

In the literature, there exists another de�nition of �nite di�erence which is called �cen-
tral � ([68]).
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De�nition 63. The central �nite di�erence of order m ∈ N∗ associated to f is de�ned
recursively by

δ1
hf(x) := f(x+ h/2)− f(x− h/2),

δmh f(x) := δ1
hδ
m−1
h f(x),

where x, h ∈ Rd.

Example 64. We �nd the expression

δ2
hf(x) = f(x+ h)− 2f(x) + f(x− h)

and

δ3
hf(x) = f(x+ 3

h

2
)− 3f(x+

h

2
) + 3f(x− h

2
)− f(x− 3

h

2
)

for the central �nite di�erence of order 2 and 3 respectively.

Remark 65. As δ1
hf(x) = ∆1

hf(x − h
2
), we can link the two concepts of �nite di�erence

together by the following formulae :

δmh f(x) = ∆m
h f(x−mh

2
) et δmh f(x+m

h

2
) = ∆m

h f(x).

In particular we deduce the following formula for the central �nite di�erence of f :

δmh f(x) =
m∑
j=0

(−1)m−j
(
m

j

)
f(x+ (j − m

2
)h).

Remark 66. In the following, we mostly consider the norm in the Lp(Rd) space (for
p ∈ [1,+∞]) of the �nite di�erence of f . As

‖∆m
h f‖Lp = ‖δmh f‖Lp

for f ∈ Lp(Rd) and h ∈ Rd, we can use either central or forward �nite di�erences and move
from one concept to another depending on our needs without modifying the results of this
thesis.

For the results of this thesis, we need to connect and control �nite di�erences of di�erent
orders together. First, let us remark that it is easy to control �nite di�erences of order
m+ 1 by �nite di�erences of order m. Indeed, we have

|∆m+1
h f(x)| = |∆m

h f(x+ h)−∆m
h f(x)| ≤ 2 sup

y∈{x,x+h}
|∆m

h f(y)|.

However, the converse is less trivial: it is more complicated to control �nite di�erences of
order m by �nite di�erences of order m+1. To obtain such a result, we need two lemmata.



SOME REMINDERS ON FINITE DIFFERENCES 24

Lemma 67. Let m ∈ N∗ and f be a function de�ned on Rd. We have

∆m
2hf(x) =

m∑
j=0

(
m

j

)
∆m
h f(x+ jh)

for all x,h ∈ Rd.

Proof. We proceed by induction on m. For m = 1, this results immediately from

∆1
2hf(x) = f(x+ 2h)− f(x+ h) + f(x+ h)− f(x) = ∆1

hf(x+ h) + ∆1
hf(x).

We suppose that the result is true for m and we prove that it is still true for m + 1. We
obtain successively

∆m+1
2h f(x) = ∆m

2h(∆
1
2h)f(x)

=
m∑
j=0

(
m

j

)
∆m
h (∆1

2hf)(x+ jh)

=
m∑
j=0

(
m

j

)
∆m
h (∆1

hf(x+ (j + 1)h) + ∆1
hf(x+ jh))

=
m∑
j=0

((
m+ 1

j + 1

)
−
(

m

j + 1

))
∆m+1
h f(x+ (j + 1)h) +

m∑
j=0

(
m

j

)
∆m+1
h f(x+ jh)

=
m∑
j=0

(
m

j

)
∆m+1
h f(x+ jh) +

m∑
j=1

((
m+ 1

j

)
−
(
m

j

))
∆m+1
h f(x+ jh)+(

m

m

)
∆m+1
h f(x+ (m+ 1)h)

=

(
m+ 1

0

)
∆m+1
h f(x) +

(
m+ 1

m+ 1

)
∆m+1
h f(x+ (m+ 1)h) +

m∑
j=1

(
m+ 1

j

)
∆m+1
h f(x+ jh)

=
m+1∑
j=0

(
m+ 1

j

)
∆m+1
h f(x+ jh).

Lemma 68. Let k, m ∈ N∗ and f be a function de�ned on Rd. We have

∆m
khf(x) =

k−1∑
i1=0

...
k−1∑
im=0

∆m
h f(x+ i1h+ ...+ imh)

for all x, h ∈ Rd.
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Proof. We proceed by induction on m. For m = 1, there is nothing to prove. We suppose
the result is true for m and we show that it is still true for m+ 1. We obtain successively

∆m+1
kh f(x) = ∆1

kh∆
m
khf(x)

= ∆m
khf(x+ kh)−∆m

khf(x)

=
k−1∑
i1=0

...

k−1∑
im=0

(∆m
h f(x+ kh+ i1h+ ...+ imh)−∆m

h f(x+ i1h+ ...+ imh))

=
k−1∑
i1=0

...

k−1∑
im=0

∆1
kh∆

m
h f(x+ i1h+ ...+ imh),

so the conclusion by the case m = 1.

The next proposition is an important result that is used in section 3.1 to explicitly
control �nite di�erences of order m by �nite di�erences of order m+ 1.

Proposition 69. Let m ∈ N∗ and f be a function de�ned on Rd. We have

|∆m
h f(x+mh)| ≤ m

2
sup
j∈N0

|∆m+1
h f(x+ jh)|+ 1

2m
|∆m

2hf(x+ (m− 1)h)|

for all x, h ∈ Rd.

Proof. We proceed by induction on m. For m = 1, we easily check that we have

|∆1
hf(x+ h)| = |f(x+ 2h)− f(x+ h)|

≤ 1

2
|f(x+ 2h)− 2f(x+ h) + f(x)|+ 1

2
|f(x+ 2h)− f(x)|

≤ 1

2
|∆2

hf(x)|+ 1

2
|∆1

2hf(x)|

for all x, h ∈ Rd. We suppose that the result is true for m and we prove that it is still true
for m+ 1. Let x, h ∈ Rd. By the induction hypothesis, we have

|∆m+1
h f(x+ (m+ 1)h)| = |∆m

h (∆1
hf)((x+ h) +mh)|

≤ m

2
sup
j∈N0

|∆m+1
h (∆1

hf)((x+ h) + jh)|+

1

2m
|∆m

2h(∆
1
hf)((x+ h) + (m− 1)h)|.

Let us remark that

∆m
2h(∆

1
hf) =

1

2
(∆m

2h∆
1
2hf −∆m

2h∆
2
hf).
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By lemma 67, we have for all y ∈ Rd

|∆m
2h∆

2
hf(y)| ≤

m∑
j=0

(
m

j

)
|∆m+2

h f(y + jh)|

≤ 2m sup
j∈{0,...,m}

|∆m+2
h f(y + jh)|.

So we obtain

|∆m
2h(∆

1
hf)(y)| ≤ 1

2

(
|∆m+1

2h f(y)|+ sup
j∈{0,...,m}

|∆m+2
h f(y + jh)|2m

)

for all y ∈ Rd. As a result, we �nd

|∆m+1
h f(x+ (m+ 1)h)| ≤

(
m+ 1

2

)
sup
j∈N0

|∆m+2
h f(x+ jh)|+ 1

2m+1
|∆m+1

2h f(x+mh)|,

which allows to conclude.



Chapter 2

Characterizations and basic properties

of generalized Hölder-Zygmund spaces

Λσ,α(Rd)

In this chapter we show that the main properties of the usual Hölder-Zygmund spaces
are still satis�ed in the generalized setting previously introduced. Consequently, such a
generalization implies more �exibility for approximation purposes.

2.1 A reminder of the characterizations of Hölder-Zygmund spaces
Λα(Rd)

Since the aim of the forthcoming subsections is to generalize properties related to the char-
acterizations of the Hölder-Zygmund spaces Λα(Rd), we �rst recall some of these properties.
Proofs can be found in [42, 73, 84, 93] for example.

Let us �rst give a characterization in terms of convolution with smooth functions

Theorem 70. Let α > 0. Then f ∈ Λα(Rd) if and only if there exists C > 0 and
Φ ∈ D(Rd) so that, with Φδ(x) := δ−dΦ(x/δ),

‖f − f ? Φδ‖L∞ ≤ Cδα ∀δ > 0.

Notation 71. Let Pm denote the set of polynomials of degree less or equal to m ∈ N0. The
following result shows a close link between Hölder spaces and polynomial approximations.

Theorem 72. Let α > 0 and f ∈ L∞(Rd). The following assertions are equivalent:

1. f ∈ Λα(Rd);

2. there exist a constant C > 0 and J ∈ N0 such that

inf
P∈Pbαc

‖f − P‖L∞(B(x,2−j)) ≤ C2−jα, ∀x ∈ Rd, j ≥ J.

27



CHARACTERIZATIONS OF Λα(Rd) 28

The next result establishes a strong connection between the somehow classical concept
of regularity given by Cn spaces and the regularity expressed through Hölder spaces. Some
authors (e.g. [73, 93]) even introduce these spaces in terms of such a characterization.

Proposition 73. Let α > 0. A function f ∈ Λα(Rd) satis�es1

1. f ∈ Cdαe−1(Rd),

2. Dνf ∈ L∞(Rd) ∀|ν| ≤ dαe − 1,

3. sup|h|≤2−j ‖∆
bαc+1−|ν|
h Dνf‖L∞ ≤ C2−j(α−|ν|) ∀j ∈ N0, |ν| ≤ dαe − 1.

Conversely, if f ∈ Cdαe−1(Rd) ∩ L∞(Rd) satis�es

sup
|h|≤2−j

‖∆bαc+1−|ν|
h Dνf‖L∞ ≤ C2−j(α−|ν|) ∀j ∈ N0, |ν| = dαe − 1,

then f ∈ Λα(Rd).

It is also well known that the Hölder-Zygmund spaces are closely related to the Taylor
approximation.

Theorem 74. Let N ∈ N0, α > 0 such that N < α < N + 1. If f ∈ Λα(Rd), then, for all
x ∈ Rd, we have

f(x+ h) =
∑
|ν|≤N

Dνf(x)
hν

|ν|!
+RN(x, h), ∀h ∈ Rd

where |RN(x, h)| ≤ C|h|α.
Conversely, if f ∈ L∞(Rd) ∩ CN(Rd) satis�es

f(x+ h) =
∑
|ν|≤N

Dνf(x)
hν

|ν|!
+RN(x, h) ∀x, h ∈ Rd,

where |RN(x, h)| ≤ C|h|α, then f ∈ Λα(Rd).

The next result is a characterization of Hölder-Zygmund spaces in terms of wavelet
coe�cients. The concept of wavelet and multiresolution analysis is recalled in section 5.4.
A proof of this result can be found in [64, 93].

Theorem 75. Let α > 0 such that α /∈ N0. Given a multiresolution analysis of regularity
r > α with r ∈ N0, the following assertions are equivalent:

1. f ∈ Λα(Rd);

1The function f in the next expressions should be understood by the reader as a function which is equal
almost everywhere to the original function f and which is (dαe− 1)-times continuously di�erentiable. The
existence of such a function is demonstrated in proposition 80.
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2. ∃C > 0 :

{
|Ck| ≤ C ∀k ∈ Zd
|cij,k| ≤ C2−jα ∀j ∈ N0,∀i ∈ {1, . . . , 2d − 1},∀k ∈ Zd,

where Ck and cij,k denote wavelet coe�cients of f associated respectively to the �father� and
the �mother� wavelets (see section 5.4).

The following result shows that Hölder spaces can be written as a real interpolation
of Sobolev spaces. Reminders about Sobolev spaces and the real interpolation theory are
made in section 5.5. A proof of the following result can be found in [84].

Theorem 76. Let N , M be two natural numbers and α > 0 such that N < α < M and
α = (1− θ)N + θM . Then

Λα(Rd) = [W∞
N ,W

∞
M ]θ,∞,J = [W∞

N ,W
∞
M ]θ,∞,K .

2.2 Some preliminary results

The aim of this section is to present some basic results that are often used in the sequel.
Let ρ ∈ D(Rd) be a function whose support is included in the closed ball B(0,≤ 1) and

satis�es the following conditions:

1. 0 ≤ ρ ≤ 1;

2.
∫
Rd ρ(x)dx = 1;

3. ρ is a radial function, i.e. we have |x| = |y| ⇒ ρ(x) = ρ(y).

We set ρδ(x) := δ−dρ(x/δ) ∀δ > 0. A classical example of such a function is given by

ρ(x) =

{
e−1/(1−|x|2) if |x| < 1,
0 if |x| ≥ 1

up to a normalisation factor.

Proposition 77. Let m ∈ N, σ = (σj)j∈N0 be an admissible sequence and f ∈ L1
loc(R) be

a function such that sup
|h|≤2−j

‖∆m
h f‖L∞ ≤ Cσj ∀j ∈ N0. There exists Φ ∈ D(R) such that

sup
δ≤2−j

‖f ? Φδ − f‖L∞ ≤ Cσj, ∀j ∈ N0 .

Proof. We can increase m by 1, 2 or 3 units if necessary so that we can assume that m is
equal to 2n where n is an odd integer. We set

Φ̃(t) :=

m/2−1∑
j=0

(−1)j
(
m

j

)
1

2j −m
ρ

(
t

2j −m

)
,
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where
(
m
j

)
= m!

(m−j)!j! (m, j ∈ N0 andm ≥ j). Let cm :=
∫

Φ̃(t)dt = 1
2

(
m
m/2

)
, Φ(t) := Φ̃(t)/cm

and Φδ(t) := δ−1Φ(t/δ). We have

f ? Φδ(x)− f(x) =

∫
f(x− t)Φδ(t)dt− f(x)

=

∫
f(x− δt)Φ(t)dt− f(x)

=
1

cm

m/2−1∑
j=0

(−1)j
(
m

j

)
1

2j −m

∫
f(x− δt)ρ

(
t

2j −m

)
dt− f(x)

=
1

cm

m/2−1∑
j=0

(−1)j
(
m

j

)∫
f(x− δ(2j −m)t)ρ(t)dt− f(x)

=
1

2cm

 m∑
j=0

j 6=m/2

(−1)j
(
m

j

)∫
f(x− δ(2j −m)t)ρ(t)dt− 2cmf(x)


=

1

2cm

∫
∆m

2δtf(x)ρ(t)dt.

We conclude that

sup
δ≤2−j

‖f ? Φδ − f‖L∞ ≤
2m

2cm
Cσj.

Lemma 78. Let σ = (σj)j∈N0 be an admissible sequence. If f ∈ L1
loc(R) is a function

satisfying
‖f ? ρ2−j − f‖L∞(R) ≤ Cσj ∀j ∈ N0,

then, for all k ∈ N0, we have

‖Dk (f ? ρ2−j − f ? ρ2−j+1) ‖L∞(R) ≤ C ′2jkσj ∀j ∈ N∗ .

Proof. For δ > 0, let us write

f ? ρδ − f ? ρ2δ =ρδ ? (f ? ρδ − f ? ρ2δ)

+ ρδ ? (f − f ? ρδ)
− ρ2δ ? (f − f ? ρδ)

One gets

|Dkρδ ? (f ? ρδ − f ? ρ2δ)| ≤ ||Dkρδ||L1||f ? ρδ − f ? ρ2δ||L∞
≤ C1δ

−k (||f ? ρδ − f ||L∞ + ||f − f ? ρ2δ||L∞) .
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By considering δ = 2−j, the previous inequality leads to

|Dkρ2−j ? (f ? ρ2−j − f ? ρ2−j+1)| ≤ C2jkC(σj + σj−1) ≤ C2jkσj,

for all j ∈ N∗. The two other terms in the decomposition of f ? ρδ(x)− f ? ρ2δ(x) can be
handled in the same way.

Remark 79. All the results from this section can easily be adapted to Rd.

2.3 Generalized Hölder spaces Λσ,α(Rd) and Ck(Rd) spaces

The next result binds the regularity of the elements of Λσ,α(Rd) to the classical notion of
di�erentiability.

Proposition 80. Let m ∈ N∗, k ∈ N0 and σ = (σj)j∈N0 be an admissible sequence such
that

+∞∑
j=1

2jkσj <∞.

If f ∈ L∞(Rd) satis�es
sup
|h|≤2−j

‖∆m
h f‖L∞ ≤ Cσj ∀j ∈ N0,

then f is k-times continuously di�erentiable (in the sense that f coincides almost every-
where on Rd with a k-times continuously di�erentiable function).

Proof. Let Φ be the function de�ned by proposition 77 and f1 := f ? Φ2−1 , fj := f ?
(Φ2−j − Φ2−j+1) (j > 1). By proposition 77, we have ||fj||L∞ ≤ Cσj for all j ∈ N∗, where
the constant C does not depend on j. We thus get

k∑
j=1

||fj||L∞ ≤ C
k∑
j=1

σj,

for all k ∈ N∗. So, the series
∑+∞

j=1 fj converges uniformly on Rd to a function which
coincides almost everywhere with f . Moreover, we have

‖Dαfj‖L∞ ≤ C2jkσj ∀j ∈ N∗, |α| ≤ k.

Therefore, the series
∑∞

j=1 D
αfj converges uniformly, which leads to the conclusion.

Remark 81. This result does not depend on the order m of the �nite di�erence.

Under the assumptions of theorem 33, this result can be rewritten in the following way.
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Corollary 82. Let k ∈ N0, σ = (σj)j∈N0 be an admissible sequence such that s(σ−1) > 0
and

+∞∑
j=1

2jkσj <∞.

We have
Bσ−1

∞,∞(Rd) = Λσ,s(σ−1)(Rd) ⊆ Ck(Rd).

If s(σ−1) > 0, the last result is always satis�ed for k = 0. In this case, the elements of
Λσ,s(σ−1)(Rd) are continuous.

Remark 83. If we apply corollary 82 to the admissible sequence σj = 2−jα (α > 0), we
recover the di�erentiability properties of classical Hölder-Zygmund spaces. Corollary 82
gives additional information about di�erentiability properties of those spaces. Indeed, it is
well known that the elements of Λm(Rd) are at least (m − 1)-times continuously di�eren-
tiable (m ∈ N∗) and that the elements of Λm+ε(Rd) are m-times continuously di�erentiable
for any ε > 0. A question that naturally arises is the following: can we sensibly modify
the admissible sequences of the usual Hölder spaces Λm(Rd) so that its elements become
m-times continuously di�erentiable? The answer is also given by corollary 82, which states
that if we replace the sequence (2−jm)j with σ

(m)
j = 2−jmj−1log(j)−(1+ε) (j ∈ N0, j > 1,

ε > 0), then we have Λσ(m),m(Rd) ⊂ Cm(Rd). This is a direct consequence of the study of
Bertrand series, which is recalled in the next result:

Lemma 84. Let α, β ∈ R. The series∑
j≥2

1

jα(log(j))β

converges if and only if α > 1 or (α = 1 and β > 1)

Remark 85. Let m ∈ N0. If σ is an admissible sequence satisfying

+∞∑
j=1

2j(m+1)σj <∞, (2.1)

then the generalized Hölder-Zygmund space Λσ,m(Rd) is composed of constant functions.
Let us prove this assertion. If f ∈ Λσ,m(Rd), then the function f belongs to Cm+1(Rd)

by proposition 80. By lemma 5, we �nd

|∆m+1
2−jei

f(x)|
2−j(m+1)

→ |Dm+1
xi

f(x)|

and
|∆m+1

2−jei
f(x)|

2−j(m+1)
≤ C2j(m+1)σj → 0 if j → +∞,
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so that Dm+1
xi

f = 0 for all i ∈ {1, . . . , d}. For all j ∈ {1, . . . , d}, the function f can be
written as

f(x1, ..., xj, ..., xd) =
m∑
i=0

a(i)
x1,...,xj−1,xj+1,...,xd

xij.

As f ∈ L∞(Rd), we have

f(x1, ..., xj, ..., xd) = a(0)
x1,...,xj−1,xj+1,...,xd

so that Dxjf = 0. As a conclusion, the function f is constant.
The condition (2.1) implies that the sequence (σj)j∈N∗ converges faster to 0 than

(2−j(m+1))j∈N∗ . In particular, if m + 1 < s(σ−1) (m ∈ N0), then the spaces Λσ,m are
composed of constant functions.

2.4 A characterization of spaces Λσ,α(Rd) in terms of convolution
product

The aim of this section is to generalize theorem 70 to spaces Λσ,α(Rd). The following result
gives the converse of proposition 77.

Proposition 86. Let m ∈ N∗, σ = (σj)j∈N0 be an admissible sequence satisfying

∀J ∈ N0,
J∑
j=0

2jmσj ≤ C2JmσJ (2.2)

and

∀J ∈ N0,
+∞∑
j=J

σj ≤ CσJ . (2.3)

If f ∈ L∞(Rd) is a function for which there exists Φ ∈ D(Rd) satisfying

‖f ? Φ2−j − f‖L∞ ≤ Cσj ∀j ∈ N0,

then we have
sup
|h|≤2−j

‖∆m
h f‖L∞ ≤ Cσj ∀j ∈ N0 .

Proof. We keep the same notations as the ones introduced in the proof of proposition 80.
We know that ∆m

h f =
∑+∞

j=1 ∆m
h fj with uniform convergence on Rd. For all N ∈ N∗, we
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have

‖∆m
h f‖L∞ ≤

N∑
j=1

‖∆m
h fj‖L∞ +

+∞∑
j=N+1

‖∆m
h fj‖L∞

≤ C
N∑
j=1

|h|m sup
|α|=m

‖Dαfj‖L∞ +
+∞∑

j=N+1

2m‖fj‖L∞

≤ C|h|m
N∑
j=1

2jmσj + C

+∞∑
j=N+1

σj,

so
‖∆m

h f‖L∞ ≤ C(1 + |h|m2Nm)σN .

We get
sup
|h|≤2−N

‖∆m
h f‖L∞ ≤ CσN ∀N ∈ N0,

which ends the proof.

The following corollary is the main result of this section.

Corollary 87. (D.K., S. Nicolay) Let σ = (σj)j∈N0 be an admissible sequence such that
s(σ−1) > 0. We have

Bσ−1

∞,∞(Rd) = Λσ,s(σ−1)(Rd) ={
f ∈ L∞(Rd) : ∃Φ ∈ D(Rd) sup

j∈N0

(
σ−1
j sup

δ≤2−j
‖f ? Φδ − f‖L∞

)
<∞

}
. (2.4)

Moreover, the norm

‖f‖L∞ + inf

{
sup
j∈N0

(
σ−1
j sup

δ≤2−j
‖f ? Φδ − f‖L∞

)}
,

where the in�mum is taken on the set of functions Φ ∈ D(Rd) satisfying (2.4) and
sup|α|=bs(σ−1)c+1 ‖DαΦ‖L1(Rd) ≤ 2bs(σ

−1)c+1, is equivalent to ‖f‖Λσ,s(σ
−1) .

Proof. This is a consequence of propositions 48, 77, 86 and from lemmata 35 and 53.

2.5 A polynomial characterization of spaces Λσ,α(Rd)

The following result shows that generalized Hölder-Zygmund spaces and polynomials ap-
proximations are closely linked. It is a generalization of theorem 72.

Theorem 88. Let m ∈ N∗, f ∈ L∞(Rd) be a continuous function on Rd and (σj)j∈N0 be
an admissible sequence. The following assertions are equivalent:
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1. there exists a constant C > 0 such that sup|h|≤2−j ‖∆m
h f‖L∞ ≤ Cσj ∀j ∈ N0,

2. there exist a constant C > 0 and a natural number J such that

inf
P∈Pm−1

‖f − P‖L∞(B(x,2−j)) ≤ Cσj,

∀x ∈ Rd, j ≥ J .

Notation 89. We de�ne the following notation:

Bh(x0, r) := {x ∈ B(x0, r) : [x, x+mh] ⊂ B(x0, r)},

where [a, b] refers to the segment in Rd joining the points a and b.

We need the following classical result ([24]).

Theorem 90. Let m ∈ N∗ and f ∈ L∞(Rd). There exists a constant C > 0 (which depends
only on m and d) such that for all x0 ∈ Rd and r > 0, we have

inf
P∈Pm−1

‖f − P‖L∞(B(x0,r)) ≤ C sup
|h|≤r
‖∆m

h f‖L∞(Bh(x0,r)).

Proof of theorem 88. Implication 1⇒ 2 is a consequence of theorem 90. Let us prove that
2⇒ 1. We remark that for all x ∈ Rd and j ≥ J , there exists a polynomial P ∈ Pm−1 such
that

sup
y∈B(x,2−j)

|f(y)− P (y)| ≤ Cσj.

For any polynomial P ∈ Pm−1, we have

|∆m
h f(x)| = |∆m

h (f − P )(x)|
≤ 2m sup

y∈{x,...,x+mh}
|f(y)− P (y)|.

Then, for |h| ≤ 2−(j+m), we have

|∆m
h f(x)| ≤ 2mCσj

≤ 2mCd−m0 σj+m,

which ends the proof.

One gets the following corollary.

Corollary 91. (D.K., S. Nicolay) Let σ = (σj)j∈N0 be an admissible sequence such that
s(σ−1) > 0. If M ∈ N0 is such that M > s(σ−1), then

Bσ−1

∞,∞(Rd) = Λσ,s(σ−1)(Rd) ={
f ∈ L∞(Rd) : sup

x∈Rd

(
sup
j∈N0

(
σ−1
j inf

P∈PM−1

‖f − P‖L∞(B(x,2−j))

))
<∞

}
.

Moreover, the semi-norm supx∈Rd
(
supj∈N0

(
σ−1
j infP∈PM−1

‖f − P‖L∞(B(x,2−j))

))
is equiva-

lent to |f |Λσ,s(σ−1) .
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2.6 A characterization of spaces Λσ,α(Rd) in terms of derivatives

The goal of this section is to present a characterization of the generalized Hölder spaces
Λσ,s(σ−1)(Rd) in terms of derivatives of their elements. The following result generalizes
proposition 73.

Proposition 92. (D.K., S. Nicolay) Let σ be an admissible sequence and N , M be two
natural numbers such that N < s(σ−1) ≤ s(σ−1) < M . If f belongs to Λσ,s(σ−1)(Rd), then
we have

1. f ∈ CN(Rd),

2. Dνf ∈ L∞(Rd) ∀|ν| ≤ N ,

3. sup|h|≤2−j ‖∆
M−|ν|
h Dνf‖L∞ ≤ Cσj2

j|ν| ∀j ∈ N0, |ν| ≤ N .

Conversely, if f ∈ CN(Rd) ∩ L∞(Rd) satis�es

sup
|h|≤2−j

‖∆M−|ν|
h Dνf‖L∞ ≤ Cσj2

j|ν| ∀j ∈ N0, |ν| = N,

then f ∈ Λσ,s(σ−1)(Rd).

Proof. Let f ∈ Λσ,s(σ−1)(Rd). Using the same notations as in proposition 80, we have

+∞∑
j=1

Dνfj = Dνf (uniformly) ∀|ν| ≤ N.

By lemma 78, we get
+∞∑
j=1

‖Dνfj‖L∞ ≤ C
+∞∑
j=1

2jNσj < +∞,

which proves the two �rst assertions. Let ν ∈ Nd
0 be a multi-index such that |ν| ≤ N ,

h ∈ Rd and J ∈ N0 such that |h| ≤ 2−J . By the mean value theorem, we have

‖∆M−|ν|
h Dνf‖L∞ ≤

J∑
j=1

‖∆M−|ν|
h Dνfj‖L∞ +

+∞∑
j=J+1

‖∆M−|ν|
h Dνfj‖L∞

≤
J∑
j=1

|h|M−|ν| sup
|α|=M−|ν|

‖Dα+νfj‖L∞ + C

+∞∑
j=J+1

|h|N−|ν| sup
|α|=N−|ν|

‖Dα+νfj‖L∞

≤ C

J∑
j=1

|h|M−|ν|2Mjσj + C

+∞∑
j=J+1

|h|N−|ν|σj2Nj

≤ C2J |ν|σJ .
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Let us prove the converse. Let |h| ≤ 2−j; by the mean value theorem, we have

‖∆M
h f‖L∞ ≤ C|h|N sup

|ν|=N
‖∆M−N

h Dνf‖L∞

≤ C2−jN2jNσj = Cσj.

Theorem 33 leads to the conclusion.

We can explain the last result in the following way: the value of s(σ−1) characterizes
the number of times a function of Λσ,s(σ−1) is di�erentiable. On the other hand, the value
of s(σ−1) is linked to the order of the �nite di�erence.

The same proof as the one given in proposition 92 leads to the following result, which
ends our study of the generalized Hölder spaces in terms of derivatives.

Lemma 93. Let N ∈ N0, σ be an admissible sequence and f ∈ CN(Rd)∩L∞(Rd). If there
exists a natural number M > N such that

sup
|h|≤2−j

‖∆M−N
h Dνf‖L∞ ≤ Cσj2

jN ∀|ν| = N

then f ∈ Λσ,M−1(Rd).

The next result is a characterization of the generalized Hölder-Zygmund spaces in terms
of derivatives.

Corollary 94. (D.K., S. Nicolay) Let σ be an admissible sequence and N , M be two
natural numbers such that N < s(σ−1) ≤ s(σ−1) < M . Then

Bσ−1

∞,∞(Rd) = Λσ,s(σ−1)(Rd) = {f ∈ L∞(Rd) ∩ CN(Rd) :

sup
|h|≤2−j

‖∆M−N
h Dνf‖L∞ ≤ Cσj2

jN ∀j ∈ N0, |ν| = N}. (2.5)

2.7 A Characterization of spaces Λσ,α(Rd) in terms of Taylor de-
composition

The �rst goal of this section is to present a particular case of admissible sequences called
strong admissible sequences, which rely on strong assumptions about the convergence to
0. This concept has already been introduced by S. Ja�ard and Y. Meyer ([65]) and by
M. Clausel ([30]) in the particular case of moduli of continuity (in section 1.5, we have
seen that a modulus of continuity leads to an admissible sequence, whereas the converse
is false). Examples of such sequences are then provided to bring a better understanding of
the underlying conditions.

Secondly, a characterization of spaces Λσ,s(σ−1)(Rd) in terms of a Taylor decomposition
is presented, under the assumption that the admissible sequence σ is strong. This charac-
terization re�nes the polynomial approximation of those spaces obtained in the section 2.5:
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the characterization given by corollary 91 gives an approximation of functions in terms of
polynomials, but the choice of those polynomials depends on the scale j. The characteri-
zation presented here not only allows to break away from this dependence on the scale j,
but also gives the expression of the polynomial that approximates f . This polynomial is
expressed only in terms of derivatives of the function f .

First, we de�ne the concept of strong admissible sequence.

De�nition 95. An admissible sequence σ = (σj)j∈N0 is strong of order N ∈ N∗ if it satis�es
J∑
j=0

2Njσj ≤ C2NJσJ , (2.6)

+∞∑
j=J

2(N−1)jσj ≤ C2(N−1)JσJ (2.7)

for all J ∈ N0.

Before providing some examples of strong admissible sequences in the sequel, let us
study the implications of being a strong admissible sequences on the Boyd indices. Those
preliminary results lead to a better understanding of the underlying conditions. They also
lead to an easier method for constructing such sequences.

The following result shows that the concept of strong admissible sequence implies strong
conditions on the values of the Boyd indices s(σ−1) and s(σ−1).

Lemma 96. If σ = (σj)j∈N0 is a strong admissible sequence of order N ∈ N∗, then

N − 1 ≤ s(σ−1) ≤ s(σ−1) ≤ N.

Proof. We have

2Nkσk ≤
j+k∑
l=0

2Nlσl ≤ C2N(j+k)σj+k,

so that
σk
σj+k

≤ C2Nj,

which implies

lim
j→+∞

log2(supk
σk
σj+k

)

j
≤ N

and s(σ−1) ≤ N . Similarly, we have

2(N−1)(j+k)σj+k ≤
+∞∑
l=k

2(N−1)lσl ≤ C2(N−1)kσk

and
2(N−1)j

C
≤ σk
σj+k

,

so N − 1 ≤ s(σ−1).
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The following lemma gives some partial converse to the previous result.

Lemma 97. Let N ∈ N∗. If σ = (σj)j∈N0 is an admissible sequence satisfying

N − 1 < s(σ−1) and s(σ−1) < N

then σ is a strong admissible sequence of order N .

Proof. Inequalities (2.6) and (2.7) follow from lemmata 53 and 54.

The following result clari�es the concept of strong admissible sequence.

Lemma 98. If σ = (σj)j∈N0 is a strong admissible sequence of order N ∈ N∗, then there
exist two constants C1, C2 > 0 such that

C12−jN ≤ σj ≤ C22−j(N−1) ∀j ∈ N0 .

As a consequence, we have

ΛN(Rd) ↪→ Λσ,s(σ−1) ↪→ ΛN−1(Rd).

Proof. The second inequality follows from the de�nition. Let us prove the �rst one. We
have

20σ0 ≤
J∑
j=0

2Njσj ≤ C2NJσJ ∀J ∈ N0 .

The conclusion can be deduced from lemma 96.

As a result, generalized Hölder spaces associated to strong admissible sequences �lie
between� classical Hölder spaces superscripted with two consecutive natural numbers.

Example 99. Let us give two examples of strong admissible sequences.

1. The admissible sequence σj = 2−jα where α ∈]0,+∞[\N0 is strong of order bαc+ 1.

2. If α ∈]0,+∞[\N0 and β ∈ R, the admissible sequence σj = 2−jαjβ is strong of order
bαc+ 1.

Example 100. Let us now give two examples of admissible sequences that are not strong.

1. If α ∈ N∗, then the sequence σj = 2−jα is not strong of order α + 1. It is not even
strong for any order N ∈ N∗. Indeed, in the case where α + 1 ≤ N , we have

+∞∑
j=J

2(N−1)jσj = +∞

and condition (2.7) cannot be satis�ed. If α > N , then

2NJσJ → 0 if J → +∞



CHARACTERIZATION OF Λσ,α(Rd) IN TERMS OF TAYLOR DECOMPOSITION 40

and inequality (2.6) should imply
∑J

j=0 2Njσj → 0 if J → ∞, which is absurd.
Finally, if α = N , we obtain

J∑
j=0

2Njσj = J

so that inequality (2.6) can not be satis�ed.

2. Similarly, one can easily show that the sequence σj = 2−jαjβ with α ∈ N∗ and β ∈ R
is not strong for any natural number N .

Example 101. Let us consider the examples described in section 1.2 in order to determine
if they are strong or not. If the Boyd indices are known, then lemmata 96, 97 and 98 can
be used to give an answer to the question.

1. Let us consider example 18. The sequence ψ = σ−1 converges to 0. Let us prove that
ψ is not strong. If j ∈ N∗, as ψ is constant for all the indices in the intervals of type
[j2n, j2n+1] ∩ N0, we have

inf
k≥0

(
ψk
ψj+k

)
= 1

so that s(ψ−1) = 0. We can easily check that we have

sup
k≥0

(
ψk
ψj+k

)
= 22j

so that s(ψ−1) = 2. Hence the conclusion follows from lemma 96.

2. Let us consider example 19. The sequence ηj = 2−jsψj satis�es

inf
k≥0

(
ηk
ηj+k

)
= 2js inf

k≥0

(
ψk
ψj+k

)
= 2js

and

sup
k≥0

(
ηk
ηj+k

)
= 2js22j.

This implies s(η−1) = s and s(η−1) = s+ 2, which leads to the conclusion.

3. We can modify the previous example in order to construct an admissible sequence
which satis�es the conditions of lemma 97. This example has been published in [80].
Let s0 ≥ 0 and s1 > 0. Let (jn)n∈N0 be de�ned as in example 18. We de�ne σ by
induction in the following way: we put σ0 = 1 and

σj+1 =

{
σj2

s0 if j2n ≤ j < j2n+1,
σj2

s0+s1 if j2n+1 ≤ j < j2n+2.

Let us prove that s(σ) = s0 and s(σ) = s0 +s1. Let us �rst remark that the sequence
can be rewritten as

σj = 2s0jψj
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where ψ is an admissible sequence satisfying

ψj+1 =

{
ψj if j2n ≤ j < j2n+1,
ψj2

s1 if j2n+1 ≤ j < j2n+2.

The following lemma allows to determine the Boyd indices of σ from the ones of ψ.

Lemma 102. Let α ∈ R and σ be an admissible sequence. We have

s(2αjσj) = α + s(σ) and s(2αjσj) = α + s(σ).

Proof. This is an immediate consequence of the de�nition of the Boyd indices.

Let us now determine the Boyd indices of the sequence ψ. Let j ∈ N0; for some
su�ciently large value of n ∈ N0, we have j2n ≤ j2n + j < j2n+1, which implies

ψ
j

= inf
k≥0

ψj+k
ψk

=
ψj2n+j

ψj2n
= 1.

So, we have s(ψ) = 0. Similarly, for a �xed value j ∈ N0, there exists a natural
number n su�ciently large so that j2n+1 ≤ j2n+1 + j < j2n+2, which implies

ψj = sup
k≥0

ψj+k
ψk

=
ψj2n+1+j

ψj2n+1

= 2s1j.

We thus have s(ψ) = s1. The Boyd indices of the sequence σ are therefore s(σ) = s0

and s(σ) = s0 + s1.

An interesting consequence can be deduced from this example: let N ∈ N∗; for any
α, β satisfying N − 1 < α ≤ β < N , we can construct a strong admissible sequence
σ for which s(σ−1) = α and s(σ−1) = β.

Remark 103. The same proof as in proposition 92 applied to strong admissible sequences
of order L ∈ N∗ shows that proposition 92 is still true for L − 1 ≤ s(σ−1) ≤ s(σ−1) ≤ L
(where the limit values are allowed).

Let us generalize theorem 74 to generalized Hölder-Zygmund spaces. We need a lemma
to prove this result.

Lemma 104. Let f ∈ Ck(Rd) where k ∈ N0. We have

f(x+ h) =
∑
|α|≤k

Dαf(x)
hα

|α|!
+Rk(x, h)

|h|k

k!
for all x, h ∈ Rd

where
|Rk(x, h)| ≤

∑
|α|=k

sup
|l|≤|h|

‖∆1
lD

αf‖L∞ .
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Proof. By considering the function g de�ned on R by g : t 7→ f(x + th), we can assume
that d = 1. Using integration by parts, we �nd

f(x+ h)− f(x) =

∫ h

0

Df(x+ t)dt

= Df(x+ t)(t− h)|h0 −
∫ h

0

D2f(x+ t)(t− h)dt

= Df(x)h−
∫ h

0

D2f(x+ t)(t− h)dt

= · · ·

=
k−1∑
j=1

Dj(x)
hj

j!
+ (−1)k−1

∫ h

0

Dkf(x+ t)
(t− h)k−1

(k − 1)!
dt

=
k−1∑
j=1

Dj(x)
hj

j!
+ (−1)k−1

∫ h

0

Dkf(x)
(t− h)k−1

(k − 1)!
dt+

(−1)k−1

∫ h

0

(Dkf(x+ t)−Dkf(x))
(t− h)k−1

(k − 1)!
dt

=
k∑
j=1

Dj(x)
hj

j!
+ (−1)k−1

∫ h

0

(Dkf(x+ t)−Dkf(x))
(t− h)k−1

(k − 1)!
dt,

which leads to the conclusion if we set

Rk(x, h) =
(−1)k−1

∫ h
0

(Dkf(x+ t)−Dkf(x)) (t−h)k−1

(k−1)!
dt∫ h

0
|t−h|k−1

(k−1)!
dt

.

The following result gives the Taylor approximation of elements in Λσ,s(σ−1)(Rd).

Corollary 105. (D.K., S. Nicolay) Let σ be a strong admissible sequence of order
N ∈ N∗. If f ∈ Λσ,s(σ−1)(Rd), then, for all x ∈ Rd, we have

f(x+ h) =
∑

|ν|≤N−1

Dνf(x)
hν

|ν|!
+RN−1(x, h)

|h|N−1

(N − 1)!
, ∀h ∈ Rd

where |RN−1(x, h)| ≤ Cσj2
j(N−1), ∀|h| ≤ 2−j.

Conversely, if f ∈ L∞(Rd) ∩ CN−1(Rd) satis�es

f(x+ h) =
∑

|ν|≤N−1

Dνf(x)
hν

|ν|!
+RN−1(x, h)

|h|N−1

(N − 1)!
∀x, h ∈ Rd (2.8)

with supx,|h|≤2−j |RN−1(x, h)| ≤ Cσj2
j(N−1) ∀j ∈ N∗, then f ∈ Λσ,s(σ−1)(Rd).
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Proof. Let f ∈ Λσ,s(σ−1)(Rd). We know that f ∈ CN−1(Rd). By lemma 104, we get

f(x+ h) =
∑

|ν|≤N−1

Dνf(x)
hν

|ν|!
+RN−1(x, h)

|h|N−1

(N − 1)!
,

where |RN−1(x, h)| ≤ C sup |l|≤|h|
|ν|=N−1

‖∆1
lD

νf‖L∞ . Proposition 92 leads to the conclusion.

The converse result is a consequence of theorem 88.

2.8 A characterization of spaces Λσ,α(Rd) in terms of Littlewood-
Paley decomposition

The goal of this section is to prove a characterization of the generalized Hölder spaces in
terms of the Littlewood-Paley decomposition. The results obtained in this section are a
particular case of theorem 33. However, since they can easily be obtained from the previous
results, they are presented here in order to have a consistent theory without using results
from [97]. Moreover, they allow a better understanding of the hidden mechanisms behind
the theory.

Let us recall the de�nition of Littlewood-Paley decomposition. Let ϕ̂ be a function of
the Schwartz space such that

ϕ̂(ξ) = 1 if |ξ| ≤ 1

2

ϕ̂(ξ) = 0 if |ξ| ≥ 1

and
ψ̂(ξ) := ϕ̂(ξ/2)− ϕ̂(ξ).

We set Sj(f) = F−1(ϕ̂(2−jξ)Ff) and ∆j(f) := Sj+1(f) − Sj(f) = F−1(ψ̂(2−jξ)Ff) for
all f ∈ S ′(Rd). Such a de�nition is motivated by the Bernstein inequalities (see appendix).
It gives the following Littlewood-Paley decomposition2: we have

Id = S0 + ∆0 + ∆1 + . . . ,

with convergence in S ′(Rd).
Since ψ(x) = 2dϕ(2x)− ϕ(x) (x ∈ Rd), the function ψ has a vanishing integral. If the

function f belongs to the space Lp for some p ∈ [1,∞], the functions Sjf and ∆jf can
be interpreted as a convolution product between f and a regular function that belongs to
the Schwartz space. Indeed, one can prove3 that functions Sj(f) and ∆j(f) belong to the
space Lp(Rd) and that

Sj(f) = 2jdϕ(2j·) ? f and ∆j(f) = 2jdψ(2j·) ? f

for all j ∈ Z.
2A proof of this result is given by proposition 191 in the appendix.
3See e.g. lemma 192 for a proof.
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Remark 106. The support of the Fourier transform of Sj(f) is included in the ball B(0,≤
2j) and the support of the Fourier transform of ∆jf is included in the annulus B(0,≤
2j+1)\B(0, < 2j−1). As a consequence, we have the following result: if f ∈ Lp(Rd) (p ∈
[1,+∞]) then the functions Sj(f) and ∆j(f) belong to C∞(Rd) and satisfy

‖DαSj(f)‖Lp ≤ 2j|α|‖Sj(f)‖Lp and ‖Dα∆j(f)‖Lp ≤ 2(j+1)|α|‖∆jf‖Lp ∀α ∈ Nd
0 .

This is a consequence of classical Bernstein's inequalities (see e.g. [93], p.32).

Remark 107. The function ϕ satis�es
∫
Rd ϕ(x)dx > 0 and

∫
Rd x

αϕ(x)dx = 0 for all
α ∈ Nd

0 \{0}. Indeed, as DαFϕ(0) = 0 for α 6= 0, we have

0 = F(xαϕ(x))(0) =

∫
Rd
xαϕ(x)dx.

As ψ(x) = 2dϕ(2x)− ϕ(x), the moments of ψ are vanishing, i.e.∫
Rd
xαψ(x)dx = 0 ∀α ∈ Nd

0 .

For more information about the Littlewood-Paley decomposition, the reader can refer
to [84].

The proof of the following result is essentially inspired from proposition 1.1.4 in [65].

Proposition 108. Let σ = (σj)j∈N0 be a strong admissible sequence of order N ∈ N∗ and
f ∈ L∞(Rd). If

‖∆jf‖L∞ ≤ Cσj ∀j ∈ N0

then f ∈ Λσ,s(σ−1)(Rd).

Proof. By the Bernstein inequalities, we have ∆jf ∈ C∞(Rd) and

‖Dα∆jf‖L∞ ≤ C2|α|jσj, ∀|α| ≤ N,∀j ∈ N0 .

So, S0f +
∑+∞

j=0 ∆jf converges uniformly on Rd. Let x0 ∈ Rd; we set

Pj(x− x0) =
∑

|α|≤N−1

(x− x0)α

|α|!
Dα∆jf(x0) ∀j ∈ N0 ∪{−1} (2.9)

(where ∆−1 = S0) and
P (x− x0) =

∑
j≥−1

Pj(x− x0). (2.10)

Obviously, the assumption on σ implies that those polynomials are well-de�ned and of a
degree less or equal to N − 1. Let x ∈ Rd and j0 ∈ N∗ such that

2−j0 ≤ |x− x0| < 2−j0+1.

4The present proof also corrects some small mistakes found in [65], such as the introduction of polyno-
mials in the integrals.
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We have

|f(x)− P (x− x0)| ≤
∑
j≤j0

|∆jf(x)− Pj(x− x0)|+
∑
j>j0

|∆jf(x)− Pj(x− x0)|.

The Taylor formula gives a bound for the �rst term:∑
j≤j0

|x− x0|N sup
|α|=N

‖Dα∆jf‖L∞

≤ C2−Nj0
∑
j≤j0

2Njσj

≤ Cσj0 .

The second term is bounded by

∑
j>j0

‖∆jf‖L∞ +
∑

|α|≤N−1

|x− x0||α|‖Dα∆jf‖L∞


≤
∑
j>j0

C

σj +
∑

|α|≤N−1

|x− x0||α|2|α|jσj


≤ C2−(N−1)j0

∑
j>j0

2(N−1)jσj

≤ Cσj0 .

The previous result can be improved signi�cantly: the next result shows that we can
get rid of the assumption about the strong admissible sequence.

Proposition 109. Let σ = (σj)j∈N0 be an admissible sequence such that s(σ−1) > 0 and
f ∈ L∞(Rd). If

‖∆jf‖L∞ ≤ Cσj ∀j ∈ N0

then f ∈ Λσ,s(σ−1)(Rd).

Proof. Let M > s(σ−1) be a natural number. We know that s(σ−1) > 0, so that

f = S0(f) +
∑
j∈N0

∆jf uniformly on Rd.

Let x0 ∈ Rd and J ∈ N0; let us set

Pj(x− x0) =
∑

|α|≤M−1

(x− x0)α

|α|!
Dα∆jf(x0) ∀j ∈ N0 ∪{−1} (2.11)
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with ∆−1 = S0 and

Px0,J(x− x0) =
J∑

j=−1

Pj(x− x0). (2.12)

It is a polynomial of degree less or equal toM −1. Let x ∈ Rd be such that |x−x0| ≤ 2−J .
We have

|f(x)−Px0,J(x−x0)| ≤

∣∣∣∣∣∣
J∑

j=−1

∆jf(x)−
∑

|α|≤M−1

(x− x0)α

|α|!
Dα∆jf(x0)

∣∣∣∣∣∣+
∣∣∣∣∣

+∞∑
j=J+1

∆jf(x)

∣∣∣∣∣ .
Since s(σ−1) > 0, the second term is bounded by CσJ . By the Taylor formula, the �rst
term is bounded by

J∑
j=−1

|x− x0|M sup
|α|=M

‖Dα∆jf‖L∞

≤ C2−JM
J∑

j=−1

2jMσj

≤ CσJ ,

thanks to lemma 53, where the constant C is independent of x and J . Theorem 88 allows
to conclude.

Remark 110. The previous proof gives interesting information about the spaces Λσ,s(σ−1)(Rd).
Indeed, equalities (2.11) and (2.12) give the polynomials that can be used in corollary 91.
They are strongly linked to the Littlewood-Paley decomposition. Moreover, when the se-
quence σ is strong of order N ∈ N∗, the polynomial given by (2.9) and (2.10) is independent
of the scale j ∈ N0.

The following result essentially uses ideas exposed in [65].

Proposition 111. Let σ = (σj)j∈N0 be a strong admissible sequence of order N ∈ N∗ and
f ∈ L∞(Rd). If f ∈ Λσ,s(σ−1)(Rd) then

‖∆jf‖L∞ ≤ Cσj ∀j ∈ N0 .
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Proof. By corollary 105 and remark 107, we have

|∆jf(x)| =
∣∣∣∣∫

Rd
f(x+ t)2jdψ(2jt)dt

∣∣∣∣
≤
∫
Rd
|RN−1(x, t)| |t|

N−1

(N − 1)!
2jd|ψ(2jt)|dt

≤ C

∫
Rd

sup
x,|l|≤|t|
|ν|=N−1

‖∆1
lD

νf‖L∞
|t|N−1

(N − 1)!
2jd|ψ(2jt)|dt

≤ C

∫
Rd

sup
x,|l|≤|t|/2j
|ν|=N−1

‖∆1
lD

νf‖L∞2−j(N−1)|t|N−1|ψ(t)|dt.

One has ∫
|t|≤1

sup
x,|l|≤|t|/2j
|ν|=N−1

‖∆1
lD

νf‖L∞2−j(N−1)|t|N−1|ψ(t)|dt ≤ Cσj

and, for m ∈ N0,∫
2m≤|t|≤2m+1

sup
x,|l|≤|t|/2j
|ν|=N−1

‖∆1
lD

νf‖L∞2−j(N−1)|t|N−1|ψ(t)|dt

≤ CM

∫
2m≤|t|≤2m+1

sup
x,|l|≤|t|/2j
|ν|=N−1

‖∆1
lD

νf‖L∞2−j(N−1)|t|N−1 1

(1 + |t|)M
dt

(where M ∈ N∗ can be chosen arbitrarily large)

≤ CM

∫
1
2
≤|t|≤1

sup
|l|≤2m+1−j

|ν|=N−1

‖∆1
lD

νf‖L∞2m(N+d−1)2−j(N−1)2−mMdt

≤ CM2m(N+d)2−j(N−1)2−mM
∫

1
2
≤|t|≤1

sup
|l|≤2−j

|ν|=N−1

‖∆1
lD

νf‖L∞dt

≤ CM2m(N+d−M)σj

(where a classical property of the �nite di�erences has been applied in the last but one
line, see lemma 67). Putting these inequalities together gives the desired result.

The previous proof relies on the Taylor expansion of elements of generalized Hölder
spaces. We now give another proof slightly less intuitive and more technical. It leads to a
more general result.
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Proposition 112. Let N ∈ N0 and σ = (σj)j∈N0 be an admissible sequence such that

N < s(σ−1) ≤ s(σ−1) < N + 2.

If f ∈ Λσ,s(σ−1)(Rd) then
‖∆jf‖L∞ ≤ Cσj ∀j ∈ N0 .

Proof. We can suppose that the function ϕ de�ning the Littlewood-Paley decomposition
is an even function. Indeed, one can easily show that this result does not depend on the
considered function ϕ (one can use the same proof as for the independence of the choice of
the unit partition for the classical Besov spaces, see [118] or [50]). As a consequence, the
function ψ is also even. In proposition 92, we have f ∈ CN(Rd) and

Dαf ∈ L∞(Rd) and sup
|h|≤2−j

‖∆2
hD

αf‖L∞ ≤ Cσj2
jN ∀|α| ≤ N.

We note that

∆jDykf(x) = F−1(iykψ̂(2−jξ)Ff)(x)

= Dyk∆jf(x)

for all k ∈ {1, ..., d}. By induction, we �nd

∆jD
αf(x) = Dα∆jf(x) ∀|α| ≤ N.

Then, we have

∆jD
αf(x) = 2jd

∫
Rd
Dαf(x− y)ψ(2jy)dy

=
2jd

2

∫
Rd

(Dαf(x+ y)− 2Dαf(x) +Dαf(x− y))ψ(2jy)dy

because ψ is even with vanishing integrals. One of the Bernstein's inequalities states that

‖∆jf‖L∞ ≤ C2−jN sup
|α|=N

‖Dα∆jf‖L∞

(see e.g. [84], prop.3.2 p.24), so that

‖∆jf‖L∞ ≤ C2−jN2jd
∫
Rd

sup
|α|=N

‖∆2
yD

αf‖L∞ |ψ(2jy)|dy

≤ C2−jN
∫
Rd

sup
|α|=N

‖∆2
2−jyD

αf‖L∞|ψ(y)|dy.
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On one hand, we have∫
|y|≤1

sup
|α|=N

‖∆2
2−jyD

αf‖L∞|ψ(y)|dy ≤ Cσj2
jN

and, on the other hand, we get∫
2m≤|y|≤2m+1

sup
|α|=N

‖∆2
2−jyD

αf‖L∞ |ψ(y)|dy

≤
∫

2m≤|y|≤2m+1

sup
|α|=N
|h|≤2−j

‖∆2
2m+1hD

αf‖L∞|ψ(y)|dy

≤ C22(m+1)

∫
2m≤|y|≤2m+1

sup
|α|=N
|h|≤2−j

‖∆2
hD

αf‖L∞|ψ(y)|dy

(lemma 67)

≤ CM22m2Njσj

∫
2m≤|y|≤2m+1

1

(1 + |y|)M
dy

≤ CM22m2Njσj2
md2−mM

for M ∈ N0 su�ciently large. Hence the conclusion follows by taking e.g. M = d+ 3.

In particular, we have obtained the following results:

Corollary 113. Let N ∈ N0 and let σ = (σj)j∈N0 be an admissible sequence such that

N < s(σ−1) ≤ s(σ−1) < N + 2.

Let f ∈ L∞(Rd); the following assertions are equivalent:

1. f ∈ Λσ,s(σ−1)(Rd);

2. ∃C > 0 : ‖∆jf‖L∞ ≤ Cσj ∀j ∈ N0.

Corollary 114. Let σ = (σj)j∈N0 be a strong admissible sequence of order N ∈ N∗ and
f ∈ L∞(Rd). The following assertions are equivalent:

1. f ∈ Λσ,s(σ−1)(Rd);

2. ∃C > 0 : ‖∆jf‖L∞ ≤ Cσj ∀j ∈ N0.
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2.9 A characterization of spaces Λσ,α(Rd) in terms of wavelet coef-
�cients

The goal of this section is to generalize theorem 75. Reminders about wavelets are done
in section 5.4.

If we keep the same notations as the ones introduced in section 2.8, we note that
∆jf(x) = 2jd

∫
Rd f(t)ψ(2j(x− t))dt. So,

∆jf(k2−j) = 2jd
∫
Rd
f(t)ψ(k − 2jt)dt

for all k ∈ Zd and j ∈ N0. One can therefore conclude that the Littlewood-Paley decompo-
sition seems to be very similar to a wavelet decomposition. Indeed, the wavelet coe�cients
of f somehow looks like a discretization of the functions ∆j(f) at points k2−j. Since Hölder
spaces can be characterized in terms of the Littlewood-Paley decomposition, it is natural
to ask whether those spaces admit a wavelet characterization as well.

The aim of this section is to obtain a wavelet characterization of the generalized Hölder-
Zygmund spaces. For that purpose, we follow some ideas expressed in [64, 93]. We consider
the Lemarié-Meyer wavelets (where the functions φ and ψi belong to the Schwartz space,
[83]) and the Daubechies wavelets (where the functions φ and ψi are compactly supported
and can be taken arbitrarily regular5, [37]).

Theorem 115. (D.K., S. Nicolay) Let σ be an admissible sequence such that s(σ−1) > 0.

1. Let us consider the Daubechies wavelets. If f ∈ Λσ,s(σ−1)(Rd), then there exists C > 0
such that {

|Ck| ≤ C ∀k ∈ Zd
|cij,k| ≤ Cσj ∀j ∈ N0,∀i ∈ {1, . . . , 2d − 1},∀k ∈ Zd. (2.13)

If the assumption s(σ−1) > 0 is replaced by σ is a strong admissible sequence of order
N ∈ N∗, then this result holds for the Lemarié-Meyer wavelets.

2. Conversely, if f ∈ L∞loc(R
d) and (2.13) holds, then f ∈ Λσ,s(σ−1)(Rd).

Proof. Let f ∈ Λσ,s(σ−1)(Rd) and let us prove that (2.13) holds. Let us consider the
Daubechies wavelets. Let M ∈ N0 and j0 ∈ N0 such that M > s(σ−1) and

suppψi ⊆ B(0,≤ 2j0) ∀i ∈ {1, ..., 2d − 1}.

We have

|Ck| =
∣∣∣∣∫

Rd
f(x)φ(x− k)dx

∣∣∣∣ ≤ C‖f‖L∞ .

5Using the notation of the following, we consider that the multiresolution analysis is at least of regularity
r > s(σ−1).



A CHARACTERIZATION IN TERMS OF WAVELET COEFFICIENTS 51

Using corollary 91, for k ∈ Zd and j ≥ j0, let Pk/2j ,j−j0 be a polynomial of degree less or
equal to M − 1 such that

‖f(·)− Pk/2j ,j−j0(· − k/2j)‖L∞(B(k/2j ,2−(j−j0))) ≤ Cσj−j0 .

One gets

|cij,k| = 2jd
∣∣∣∣∫

Rd
f(x)ψi(2jx− k)dx

∣∣∣∣
= 2jd

∣∣∣∣∣
∫
B(k/2j ,2−(j−j0))

(
f(x)− Pk/2j ,j−j0(x− k/2j)

)
ψi(2jx− k)dx

∣∣∣∣∣
≤ Cσj sup

i∈{1,...,2d−1}
‖ψi‖L1(Rd).

Let us consider the Lemarié-Meyer wavelets and let σ be a strong admissible sequence
of order N ∈ N∗. We have |Ck| ≤ C‖f‖L∞ and

|cij,k| = 2jd
∣∣∣∣∫

Rd
f

(
k

2j
+ (x− k

2j
)

)
ψi(2jx− k)dx

∣∣∣∣
= 2jd

∫
Rd
|RN−1

(
k

2j
, x− k

2j

)
|
|x− k

2j
|N−1

(N − 1)!
|ψi(2jx− k)|dx

= 2jd
∫
Rd
|RN−1

(
k

2j
, y

)
| |y|

N−1

(N − 1)!
|ψi(2jy)|dy

≤ C

∫
Rd

sup
|h|≤|y|/2j
|α|=N−1

‖∆1
hD

αf‖L∞|y|N−12−j(N−1)|ψi(y)|dy

by using the same notations as the ones used in corollary 105. A similar proof as the one
used in proposition 111 allows to conclude.

Now, suppose that we have

|Ck| ≤ C and |cij,k| ≤ Cσj ∀j ∈ N0,∀i ∈ {1, . . . , 2d − 1},∀k ∈ Zd.

We need to check that conditions of proposition 92 are satis�ed. For that purpose, we will
use some of the ideas exposed in [64]. Let N , M ∈ N0 such that

N < s(σ−1) ≤ s(σ−1) < M ≤ r.

Let us denote
f−1(x) =

∑
k∈Zd

Ckφ(x− k)

and

fj(x) =
2d−1∑
i=1

∑
k∈Zd

cij,kψ
i(2jx− k)
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for all j ∈ N0. This last series converges uniformly on every compact set, because of the
wavelet coe�cient assumption and because of the decay of φ and ψ. Indeed, one has

2d−1∑
i=1

∑
|k|≤L

|cij,kψi(2jx− k)| ≤ Cσj
∑
|k|≤L

1

(1 + |2jx− k|)2d+1 ≤ Cσj (∀L > 0),

where the constant C is uniform on x and j. The sequence of functions2d−1∑
i=1

∑
|k|≤L

|cij,kψi(2jx− k)|


L∈N0

is a sequence of continuous functions on Rd, increasing and converging to a continuous
and bounded function on Rd (for the Daubechies wavelets, the continuity comes from the
fact that the series can be reduced to a �nite sum on each ball of Rd; for the Meyer
wavelets, we can check the continuity by using the convergence of the sequences and their
rapidly decreasing properties). By applying a classical theorem of Dini, this series converges
uniformly on every compact set of Rd. So, the limit fj is well-de�ned and has the same
regularity as the wavelets. Let us write

g(x) =
+∞∑
j=−1

fj(x).

For all j ≥ −1, we have
|fj(x)| ≤ Cσj

and the series g converges uniformly on Rd to a function that belongs to L∞(Rd). So, one
gets f = g. Similarly, by using the decay properties of Dβψi and Dβφ, we obtain

|Dβfj(x)| ≤ C2|β|jσj, ∀|β| ≤M.

So, we can di�erentiate the series
∑

j fj term by term up to order N . This proves that
f ∈ CN(Rd) and |Dβf(x)| ≤ C for all |β| ≤ N . Let α ∈ Nd

0 such that |α| = N , and let
h ∈ Rd and j0 ∈ N0 be such that |h| < 2−j0 . We have

‖∆M−N
h Dαf‖L∞

≤
∑
j≤j0

‖∆M−N
h Dαfj‖L∞ +

+∞∑
j=j0+1

2M−N‖Dαfj‖L∞

≤ C
∑
j≤j0

|h|M−N sup
|β|=M−N

‖Dβ+αfj‖L∞ + C
+∞∑

j=j0+1

2Njσj

≤ C|h|M−N2Mj0σj0 + C2N(j0+1)σj0+1

≤ C2Nj0σj0 .
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2.10 Generalized Hölder-Zygmund spaces Λσ,α(Rd) and generalized
(real) interpolation of Sobolev spaces

Several recent results express the generalized Besov spaces as an interpolation of other
spaces. For example, generalized Besov spaces can be obtained through an interpolation
of classical Besov spaces (see [7]). In our framework, this means that generalized Hölder
spaces can be obtained as an interpolation of classical Hölder spaces.

On the other hand, it is well known that classical Besov spaces Bs
p,q (p, q ∈ [1,+∞],

s ∈ R) can be obtained through an interpolation of Sobolev spaces W p
m(Rd) ([3, 84]). A

natural question to ask is whether this result is still true for generalized Hölder spaces.
The goal of this section is to generalize theorem 76.

Classical concepts associated with interpolation spaces as well as the de�nition of
Sobolev spaces are recalled in section 5.5. Let us now introduce some new concepts. In
the sequel, we consider two Banach spaces A0 and A1, which are continuously embedded
in a topological vector space V . So, spaces A0 ∩ A1 and A0 + A1 are well-de�ned Banach
spaces. We recall that the operator J is de�ned for all t > 0 and a ∈ A0 ∩ A1 by

J(t, a) = max{‖a‖A0 , t‖a‖A1}.

Let us give the de�nition of the generalized J-method of interpolation.

De�nition 116. Let σ = (σj)j∈Z and ψ = (ψj)j∈Z be two admissible sequences. We de�ne
the generalized interpolation space [A0, A1]?σ,ψ,J in the following way: we say that a belongs
to [A0, A1]?σ,ψ,J if a can be written as a =

∑
j∈Z uj with convergence in A0 + A1, where

uj ∈ A0 ∩ A1 and (σjJ(ψj, uj))j∈Z ∈ l∞(Z).

We recall that the operator K is de�ned for all t > 0 and a ∈ A0 + A1 by

K(t, a) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1}.

Let us give the de�nition of the generalized K-method of interpolation.

De�nition 117. Let σ = (σj)j∈Z and ψ = (ψj)j∈Z be two admissible sequences. The
generalized interpolation space [A0, A1]?σ,ψ,K is de�ned in the following way: we say that a
belongs to [A0, A1]?σ,ψ,K if a ∈ A0 + A1 and (σjK(ψj, a))j∈Z ∈ l∞(Z).

If σj = 2−jα and ψj = 2j, one recovers the classical real interpolation spaces [A0, A1]α,∞,J
and [A0, A1]α,∞,K .

The next result shows that the generalized J-method of interpolation and the general-
ized K-method of interpolation are equivalent under speci�c conditions.

Proposition 118. Let N , M ∈ N0 and σ be an admissible sequence such that

N < s(σ−1) ≤ s(σ−1) < M.
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If A1 is continuously embedded in A0, one has

[A0, A1]?θ,2j(M−N),J = [A0, A1]?θ,2j(M−N),K

where θ is the admissible sequence de�ned by

θj =

{
2jNσ−1

−j ∀j ∈ −N0

(θ−j)
−1 ∀j ∈ N∗ .

Proof. Let f ∈ [A0, A1]?
θ,2j(M−N),J

. This function can be written as f =
∑

j∈Z fj where the
series converges in A0 and where the functions fj satisfy

‖fj‖A0 + 2j(M−N)‖fj‖A1 ≤ Cθ−1
j ∀j ∈ Z.

Let us set bj =
∑j−1

l=−∞ fl and cj =
∑+∞

l=j fl for all j ∈ Z. We have bj ∈ A0 and cj ∈ A1.
Let us prove that the inequality

θj(‖bj‖A0 + 2j(M−N)‖cj‖A1) ≤ C ∀j ∈ Z

holds.

1. If j < 0, then

‖bj‖A0 ≤
j−1∑
l=−∞

‖fl‖A0

≤ C
+∞∑

l=−j+1

θ−1
−l = C

+∞∑
l=−j+1

2lNσl

≤ C2−jNσ−j = Cθ−1
j ,

and

‖cj‖A1 ≤
+∞∑
l=j

‖fl‖A1

≤ C
+∞∑
l=j

θ−1
l 2−l(M−N)

≤ C

−j∑
l=1

2l(M−N)θ−1
−l + C

+∞∑
l=0

2−l(M−N)θ−1
l

≤ C2−jMσ−j + C ≤ C2−j(M−N)θ−1
j .
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2. If j ≥ 0, then

‖bj‖A0 ≤
0∑

l=−∞

‖fl‖A0 + C

j−1∑
l=1

‖fl‖A1

≤ C + C

j−1∑
l=1

2−lMσ−1
l

≤ C ≤ Cθ−1
j ,

and

‖cj‖A1 ≤
+∞∑
l=j

‖fl‖A1 ≤ C
+∞∑
l=j

2−lMσ−1
l

≤ C2−jMσ−1
j ,

where we have used the relation s(σ−1) < M in the last inequality.

Let f ∈ [A0, A1]?
θ,2j(M−N),K

; for all j ∈ Z, there exist bj ∈ A0 and cj ∈ A1 such that
f = bj + cj and

‖bj‖A0 + 2j(M−N)‖cj‖A1 ≤ Cθ−1
j .

Let us write b0 =
∑−1

j=−∞(bj+1− bj), with convergence in A0. Similarly, let c0 =
∑+∞

j=0(cj−
cj+1), with convergence in A1. Let us set

fj =

{
bj+1 − bj if j ∈ −N∗,
cj − cj+1 if j ∈ N0.

As bj+1 − bj = cj − cj+1 (for all j ∈ Z), we have f =
∑

j∈Z fj in A0, where fj ∈ A1 for all
j ∈ Z. Moreover, we have

‖fj‖A0 = ‖bj+1 − bj‖A0 ≤ Cθ−1
j

and
‖fj‖A1 = ‖cj+1 − cj‖A1 ≤ C2−j(M−N)θ−1

j ,

which leads to the conclusion.

The following theorem is the main result of this section, and show that generalized
Hölder spaces can be obtained through a generalized interpolation of Sobolev spaces. It is
a consequence of the characterization of generalized Hölder spaces by derivatives and by
the Littlewood-Paley decomposition.

Theorem 119. (D.K., S. Nicolay) Let N , M ∈ N0 and σ be an admissible sequence
such that

N < s(σ−1) ≤ s(σ−1) < M.
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We have
Λσ,s(σ−1)(Rd) = [W∞

N ,W
∞
M ]?θ,2j(M−N),J = [W∞

N ,W
∞
M ]?θ,2j(M−N),K

where θ is the admissible sequence de�ned by

θj =

{
2jNσ−1

−j ∀j ∈ −N0

(θ−j)
−1 ∀j ∈ N∗ .

Proof. Let us prove that we have Λσ,s(σ−1)(Rd) = [W∞
N ,W

∞
M ]?

θ,2j(M−N),J
.

Let f ∈ Λσ,s(σ−1)(Rd). We denote

uj =


0 if j ∈ Z, j > 1,
S0(f) if j = 1,
∆−j(f) if j ∈ Z, j < 1.

By Bernstein's inequalities, the series
∑

j∈Z uj converges in W
N
∞ and we have uj ∈ WM

∞ .
Moreover, we have θjJ(2j(M−N), uj) ≤ C by theorem 33.

Let f ∈ [W∞
N ,W

∞
M ]?

θ,2j(M−N),J
. Let us check that the conditions of proposition 92 are

satis�ed. Let (fj)j∈Z be a sequence of functions of W∞
M (Rd) such that

∑
j∈Z fj = f with

convergence in W∞
N (Rd) and such that

θjJ(2j(M−N), fj) ∈ l∞(Z).

By modifying the functions fj on some negligible set, we can suppose that they belong to
the space CM−1(Rd) (see remark 197). Let |α| ≤ N . We have

+∞∑
l=0

‖Dαfl‖L∞ ≤ C
+∞∑
l=0

2−l(M−N)θ−1
l = C

+∞∑
l=0

2−lMσ−1
l

which is bounded because of the inequality s(σ−1) < M . Moreover,

−1∑
l=−∞

‖Dαfl‖L∞ ≤ C
−1∑

l=−∞

θ−1
l = C

+∞∑
l=1

2lNσl.

Putting these inequalities together, we �nd that f ∈ CN(Rd) and Dαf ∈ L∞ ∀|α| ≤ N .
Let h ∈ Rd be such that |h| ≤ 2−j and |α| = N . We note that

∆M−N
h Dαf =

∑
l∈Z

∆M−N
h Dαfl (uniformly).

By successive applications of the mean value theorem and by proposition 198, we have
+∞∑
l=0

‖∆M−N
h Dαfl‖L∞ ≤ C|h|M−N

+∞∑
l=0

‖fl‖W∞M

≤ C2−j(M−N)

+∞∑
l=0

2−l(M−N)θ−1
l

≤ C2−j(M−N) ≤ C2Njσj,
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and
−1∑

l=−∞

‖∆M−N
h Dαfl‖L∞ =

−1∑
l=−j

‖∆M−N
h Dαfl‖L∞ +

−j−1∑
l=−∞

‖∆M−N
h Dαfl‖L∞

≤ C|h|M−N
−1∑
l=−j

‖fl‖W∞M + C

−j−1∑
l=−∞

‖fl‖W∞N

≤ C2−j(M−N)

−1∑
l=−j

2−l(M−N)θ−1
l + C

−j−1∑
l=−∞

θ−1
l

≤ C2−j(M−N)

j∑
l=1

2lMσl + C
+∞∑
l=j+1

2lNσl

≤ C2jNσj.

One can conclude, since we have sup|h|≤2−j ‖∆M−N
h Dαf‖L∞ ≤ C2Njσj.

In particular, the previous result can be applied to strong admissible sequences. The
result can be restated as follows:

Corollary 120. Let σ be a strong admissible sequence of order N ∈ N∗ such that s(σ−1) <
N . We have

Λσ,s(σ−1)(Rd) = [W∞
N−1,W

∞
N ]?θ,2j ,J = [W∞

N−1,W
∞
N ]?θ,2j ,K

where θ is the admissible sequence de�ned by

θj =

{
2j(N−1)σ−1

−j ∀j ∈ −N0,
(θ−j)

−1 ∀j ∈ N∗ .

In this last result, the assumption N − 1 < s(σ−1) is not necessary: inequality (2.7) is
su�cient.

Remark 121. In particular, theorem 119 can be applied to classical Hölder spaces to
obtain theorem 76. For α > 0, letN andM be two natural numbers satisfyingN < α < M .
We have

Λα(Rd) = [W∞
N ,W

∞
M ]?θ,2j(M−N),J = [W∞

N ,W
∞
M ]?θ,2j(M−N),K

where
θj = 2−αj2Nj ∀j ∈ Z.

The following result, which is easy to prove, is taken from [84] (Prop.2.1.(A)).

Lemma 122. Let λ ∈]0, 1[. For all ρ > 1, we have

[A0, A1]?2−jλ,2j ,J = [A0, A1]?ρ−jλ,ρj ,J .

So, if λ satis�es α = (1− λ)N + λM , then

Λα(Rd) = [W∞
N ,W

∞
M ]?2−jλ,2j ,J = [W∞

N ,W
∞
M ]?2−jλ,2j ,K .
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2.11 A weak result of Lions-Peetre type for spaces Λσ,α(Rd)

The results of this section are based on the idea of expressing a given function belonging
to some Hölder-Zygmund space as a weighted sum of a more regular and a less regular
function. This idea is an important concept from the real variables Lions-Peetre method
of interpolation theory. Proof of the next result can be found in [73].

Theorem 123. Let 0 < α1 < α < α2 < +∞. Then, f ∈ Λα(R) if and only if there exists
C > 0 such that for each 0 < λ < 1, there exist F λ

1 ∈ Λα1(R), F λ
2 ∈ Λα2(R) satisfying

f = F λ
1 + F λ

2 and
‖F λ

1 ‖Λα1 (R) ≤ Cλα−α1

‖F λ
2 ‖Λα2 (R) ≤ Cλα−α2 .

The aim of this section is to look how theorem 123 can be transposed in the general
setting. Indeed, we have the following partial result:

Proposition 124. Let m ∈ N∗ \{1}, α > 0 satisfying 1 ≤ α ≤ m, σ = (σj)j∈N0 be an
admissible sequence and f ∈ L∞(R) be a function such that

sup
|h|≤2−j

‖∆m
h f‖L∞ ≤ Cσj ∀j ∈ N0 .

If
+∞∑
j=1

2j(m−α)σj < +∞,

then, for all λ ∈]0, 1[, there exist two functions F λ
1 ∈ Λm−(α−1)(R), F λ

2 ∈ Λm−α(R) such
that f = F λ

1 + F λ
2 and for Kλ = b2log2(1/λ)c+ 1, we have

sup
|h|≤2−l

‖∆m
h F

λ
2 ‖L∞ ≤ C12−l(m−α)

+∞∑
j=Kλ+1

2j(m−α)σj

and

sup
|h|≤2−l

‖∆m
h F

λ
1 ‖L∞ ≤ C22−l(m−α+1)

Kλ∑
j=1

2j(m−α+1)σj

where C1 and C2 are two constants independent of λ.

Proof. Let Φ be the function de�ned by proposition 77 and f1 := f ? Φ2−1 , fj := f ?
(Φ2−j − Φ2−j+1) (j > 1). By proposition 77, we have ||fj||L∞ ≤ Cσj for all j ∈ N∗, where
the constant C does not depend on j. We thus get

k∑
j=1

||fj||L∞ ≤ C

k∑
j=1

σj,
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for all k ∈ N∗, which implies f =
∑+∞

j=1 fj (with uniform convergence). By the mean value
theorem and lemma 78, one has

|∆m
h fj(x)| ≤ C|h|m‖Dmfj‖L∞ ≤ C|h|m2mjσj

and
|∆m

h fj(x)| ≤ 2m‖fj‖L∞ ≤ 2mCσj,

for all j ∈ N∗. This implies

|∆m
h fj(x)| = |∆m

h fj(x)|1−α/m|∆m
h fj(x)|α/m

≤ C|h|m−α2j(m−α)σj

for all 0 ≤ α ≤ m.
Let λ ∈]0, 1[ and M ∈ N∗ satisfying M − 1 ≤ 2log2(1/λ) < M . We set F λ

1 :=
∑M

j=1 fj
and F λ

2 :=
∑+∞

j=M+1 fj. From the previous results, we have

|∆m
h F

λ
2 (x)| ≤ C|h|m−α

+∞∑
j=M+1

2j(m−α)σj

and

|∆m
h F

λ
1 (x)| ≤ C|h|m−α+1

M∑
j=1

2j(m−α+1)σj.

Remark 125. Proposition 124 can easily be adapted to Rd.



Chapter 3

Some applications of the generalized

Hölder-Zygmund spaces

3.1 Generalized Hölder exponents

The main objective of this section is to give some conditions on admissible sequences σ(α)

(α > 0) that lead to embedded generalized Hölder spaces, i.e. spaces such that α < β

implies Λσ(β),β(Rd) ⊆ Λσ(α),α(Rd). For such spaces, we can de�ne a generalized Hölder
exponent of any function f ∈ L∞(Rd) by

Hσ(.)

f = sup{α > 0 : f ∈ Λσ(α),α(Rd)}.

This exponent gives information about the regularity of the function f .

3.1.1 Preliminary results

The two main results of this section are the following. The �rst one is expressed in terms
of d0 and the second one is expressed in terms of d1 (where d0 and d1 come from (1.2)).

Proposition 126. Let p ∈ [1,∞], σ = (σj)j∈N0 be an admissible sequence and f ∈ Lp(Rd)
satisfying

sup
|h|≤2−j

‖∆M
h f‖Lp ≤ Cσj ∀j ∈ N0

with M ∈ N∗ \{1}. We have three di�erent cases:

1. if 1 < 2M−1d0, then we have

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ CσJ + C2−J(M−1) ∀J ∈ N∗, (3.1)

2. if 1 > 2M−1d0, then we have

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ C(2M−1d0)−JσJ + C2−J(M−1) ∀J ∈ N∗, (3.2)

60
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3. if 1 = 2M−1d0 ⇔ d0 = 2−(M−1), then we have

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ CJσJ + C2−J(M−1) ∀J ∈ N∗ . (3.3)

Proposition 127. Let p ∈ [1,∞], σ = (σj)j∈N0 be an admissible sequence and f ∈ Lp(Rd)
satisfying

sup
|h|≤2−j

‖∆M
h f‖Lp ≤ Cσj ∀j ∈ N0

with M ∈ N∗ \{1}. We have three di�erent cases:

1. if 1 < 2M−1d1, then we have

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ CdJ1 + C2−J(M−1) ∀J ∈ N∗, (3.4)

2. if 1 > 2M−1d1, then we have

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ C2−(M−1)j ∀J ∈ N∗, (3.5)

3. if 1 = 2M−1d1 ⇔ d1 = 2−(M−1), then we have

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ CJ2−(M−1)J ∀J ∈ N∗ . (3.6)

The proposition 128 links �nite di�erences of di�erent orders. The proof can be obtained
through an easy adaptation of proposition 69.

Proposition 128. Let m ∈ N∗, p ∈ [1,+∞] and f : Rd → R. We have

‖∆m
h f‖Lp ≤

m

2
‖∆m+1

h f‖Lp +
1

2m
‖∆m

2hf‖Lp

for all h ∈ Rd.

Proof of proposition 126. Let us consider the following sum:

J∑
j=0

2−j(M−1)

(
2M−1 sup

|h|≤2−J
‖∆M−1

2jh
f‖Lp − sup

|h|≤2−J
‖∆M−1

2(2jh)
f‖Lp

)
= 2M−1 sup

|h|≤2−J
‖∆M−1

h f‖Lp − 2−J(M−1) sup
|h|≤2−J

‖∆M−1
2J+1h

f‖Lp , J ∈ N0 .
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For all J ∈ N0, we have

2M−1 sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ C

J∑
j=0

2−j(M−1) sup
|h|≤2−(J−j)

‖∆M
h f‖Lp

+ 2−J(M−1) sup
|h|≤2−J

‖∆M−1
2J+1h

f‖Lp

≤ C

(
J∑
j=0

(2−(M−1)d−1
0 )j

)
σJ + C2−J(M−1),

hence the conclusion.

Proof of proposition 127. We proceed similarly as in the proof of proposition 126. We have

2M−1 sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ C

J∑
j=0

2−j(M−1) sup
|h|≤2−(J−j)

‖∆M
h f‖Lp

+ 2−J(M−1) sup
|h|≤2−J

‖∆M−1
2J+1h

f‖Lp

≤ C

(
J∑
j=0

(2−(M−1)d−1
1 )j

)
dJ1 + C2−J(M−1),

which ends the proof.

Let us note that each right member of inequalities (3.1)-(3.6) are new admissible se-
quences, by lemma 13.

Propositions 126 and 127 can be stated in terms of the Boyd index s(σ−1) instead of
d0 and d1.

Corollary 129. Let p ∈ [1,∞], σ = (σj)j∈N0 be an admissible sequence and f ∈ Lp(Rd)
satisfying

sup
|h|≤2−j

‖∆M
h f‖Lp ≤ Cσj ∀j ∈ N0

with M ∈ N∗ \{1}. We have the two following cases:

1. if s(σ−1) < M − 1, then

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ CσJ + C2−J(M−1) ∀J ∈ N∗,

2. if s(σ−1) ≥M − 1, then

sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ Cε2

J(s(σ−1)+ε−(M−1))σJ + C2−J(M−1) ∀J ∈ N∗,

for all ε > 0.
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Proof. Using (1.3), we have

2M−1 sup
|h|≤2−J

‖∆M−1
h f‖Lp ≤ C

J∑
j=0

2−j(M−1) sup
|h|≤2−(J−j)

‖∆M
h f‖Lp

+ 2−J(M−1) sup
|h|≤2−J

‖∆M−1
2J+1h

f‖Lp

≤ CεσJ

J∑
j=0

2j(s(σ
−1)+ε−(M−1)) + C2−J(M−1)

for all ε > 0, hence the conclusion follows.

Let us mention that corollary 129 expressed in terms of s(σ−1) is a weaker result than
propositions 126 and 127 stated in terms of d0 and d1.

Remark 130. As a consequence, it is equivalent for �nite di�erences in de�nition 40 to
consider any bigger order than bs(σ−1)c+ 1 (we can use (1.3) to prove it). This result can
also be obtained from theorem 33 without assumption s(σ−1) > 0 being necessary.

3.1.2 Decreasing generalized Hölder spaces

The classical Hölder spaces Λα(Rd) are decreasing in the following sense: if α < β, then
Λβ(Rd) ⊂ Λα(Rd). If σ(α) (α > 0) is a family of admissible sequences, let us set

σ(.) : α > 0 7→ σ(α).

The spaces Λσ(α),α are not necessary embedded as the classical Hölder spaces.

De�nition 131. A family of admissible sequence σ(.) is decreasing if α < β implies
Λσ(β),β(Rd) ⊆ Λσ(α),α(Rd).

A natural question arises: under which conditions can we obtain a family of decreasing
admissible sequences? The following result gives an answer to that question:

Proposition 132. (D.K., S. Nicolay) A family of admissible sequences σ(.) is decreasing
if it satis�es the three following conditions:

1. for all m ∈ N0 and α, β > 0 for which m ≤ α < β < m + 1, there exist C, J > 0
such that

σ
(β)
j ≤ Cσ

(α)
j ∀j ≥ J ;

2. for all m ∈ N∗, there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C, J > 0
such that

2−jm ≤ Cσ
(m−ε)
j ∀j ≥ J ;

3. for all m ∈ N∗, at least one of the two following conditions is satis�ed:
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(a) � if 1 < 2md
(m)
1 , there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C,

J > 0 such that

2−jm(2md
(m)
1 )j ≤ Cσ

(m−ε)
j ∀j ≥ J ;

� if 1 > 2md
(m)
1 , there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C,

J > 0 such that
2−jm ≤ Cσ

(m−ε)
j ∀j ≥ J ;

� if 1 = 2md
(m)
1 , there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C,

J > 0 such that
j2−jm ≤ Cσ

(m−ε)
j ∀j ≥ J.

(b) � if 1 < 2md
(m)
0 , there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C,

J > 0 such that
σ

(m)
j ≤ Cσ

(m−ε)
j ∀j ≥ J ;

� if 1 > 2md
(m)
0 , there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C,

J > 0 such that

σ
(m)
j (2md

(m)
0 )−j ≤ Cσ

(m−ε)
j ∀j ≥ J ;

� if 1 = 2md
(m)
0 , there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C,

J > 0 such that
jσ

(m)
j ≤ Cσ

(m−ε)
j ∀j ≥ J.

(where d(m)
0 and d

(m)
1 are some constants satisfying inequalities (1.2) for the

admissible sequence σ(m)).

Proof. It is an immediate consequence of propositions 126 and 127.

Remark 133. In particular, conditions of proposition 132 imply that for all 0 < α < β,
there exist C, J > 0 such that1

σ
(β)
j ≤ Cσ

(α)
j ∀j ≥ J. (3.7)

Moreover, for 0 < α < m, there exists C > 0 such that

2−jm ≤ Cσ
(α)
j ∀j ∈ N0 . (3.8)

It is useless to check whether the conditions of the previous result are satis�ed or not if
the family of admissible sequences does not even satisfy these two simpli�ed conditions.

1This result is a consequence of condition 3 of proposition 132. This is obvious from the inequalities

expressed in terms of d
(m)
0 . For the ones expressed in terms of d

(m)
1 , we proceed case by case, by rewriting

inequalities exclusively in terms of d
(m)
1 , and using relation (1.2).
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Remark 134. At �rst glance, inequality (3.8) can be seen as a strong restriction, but it
is not. Indeed, condition (1.2) in the de�nition of admissible sequences already requires a
similar restriction2. Moreover, the example 135 shows that an admissible sequence with a
high speed of convergence to 0 can lead to useless spaces.

Example 135. Consider the admissible sequences (2−jδα)j of usual Hölder spaces, and let
us set σ(α)

j := 2−jδα with δ > 0 for all j ∈ N0. If δ = 1, we recover the usual Hölder spaces.

If 0 < δ < 1, it is easy to check that Λσ(α),α = Λδα(Rd) (this is a consequence of remark
130, or also of theorem 33). Let us now consider the case δ > 1. The spaces Λσ(α),α do not
satisfy the conditions of proposition 132. It is easy to check that if 1 < δ ≤ 2, then the
generated spaces are not embedded into one another. If δ > 2, then there exists 0 < ε < 1
such that for all α > ε, the space Λσ(α),α is composed of constant functions3.

In particular, this example shows that we can construct admissible sequences such that
condition 2 of proposition 132 is not satis�ed, and such that the associated spaces are
composed of constant functions. Those spaces are embedded (even equal). So, this shows
that proposition 132 only gives su�cient conditions to construct decreasing families of
admissible sequences.

As announced previously, the concept of decreasing families of admissible sequences
allows the de�nition of a notion which characterizes the global regularity of functions.

De�nition 136. Let σ(.) be a decreasing family of admissible sequences. The generalized
Hölder exponent associated with σ(.) of a function f ∈ L∞(Rd) is de�ned by

Hσ(.)

f = sup{α > 0 : f ∈ Λσ(α),α}.

Example 137. Let 0 < a < 1. Let us consider the admissible sequence σ de�ned by

σj =
1

j
for all j ∈ N∗.

It is easy to check that any constants 0 < d0 < 1 and d1 ≥ 1 satisfy inequalities (1.2) for j
su�ciently large. By lemma 14, the family (σα)α>0 is a family of admissible sequences. We
easily check, by using proposition 132, that it is a decreasing family of admissible sequences.
The spaces Λσα,α are made of functions such that their �nite di�erences ∆

bαc+1
h have a slight

decrease in the argument |h|. Moreover, it is easy to check that for all α′, α > 0, we have

Λα(Rd) ⊂ Λσα
′
,α′ . Let us remark that elements of those spaces are continuous.

Example 138. Let us consider a function g : α > 0 7→ g(α) ≥ 0. Let us de�ne the family
of admissible sequences (σ(α))α>0 by σ

(α)
j := 2−jαjg(α) for all j ∈ N∗. Proposition 132 proves

that it is a decreasing family of admissible sequences. Let us notice that the condition 3.(b)
of this result is satis�ed but not the 3.(a) if g > 0.

2It is important to remember that all convergences of exponential types, like (22
j

)j , can not de�ne an
admissible sequence.

3This is proved in remark 85.
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Example 139. Let us de�ne the family of sequences (σ(α))α≥0 in the following way:

• if α ∈ N∗,
σ

(α)
j := 2−jα

1

j
for all j ∈ N∗;

• if α ∈]0,+∞[\N∗, σ(α)
j := 2−jα ∀j ∈ N∗.

It is a family of admissible sequences. Condition 3.(b) of proposition 132 is not satis�ed
contrary to condition 3.(a). It is a decreasing family of admissible sequences.

Remark 140. The two previous examples show that conditions 3.(a) and 3.(b) of propo-
sition 132 are complementary, i.e. one is not the consequence of the other.

Example 141. Proposition 132 gives an idea to construct recursively a decreasing family
of admissible sequences. For all m ∈ N∗, we would like to de�ne

σ
(m+1)
j := σ

(m)
j

(
2m+1d

(m+1)
0

)j
.

Such a de�nition is not complete because it depends on itself through the factor d(m+1)
0 .

We could then ask what are the values of d(m+1)
0 which satisfy (1.2). It is easy to check that

a su�cient condition is given by (d
(m)
0 )−1 ≤ 2m+1 (m ∈ N∗). If we set an initial condition

σ(1) such that (d
(1)
0 )−1 ≤ 22, we can construct a family of admissible sequences by setting

σ
(m)
j = σ

(m−1)
j

(
2md

(m)
0

)j
= σ

(m−2)
j

(
2m−1d

(m−1)
0

)j (
2md

(m)
0

)j
= · · ·

= σ
(1)
j 2j

∑m
n=2 n

(
m∏
n=2

d
(n)
0

)j

.

Let us study the conditions under which this construction leads to a decreasing family
of admissible sequences. By construction, if we consider values of d(m)

0 in the interval
[2−(m+1), 2−m[, condition 3 of proposition 132 is satis�ed. The last condition to check is

2−j(m+1) ≤ Cσ
(m)
j ∀j ∈ N0 .
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To validate such a condition, we choose σ(1) such that 2−2j ≤ Cσ
(1)
j for all j. Then, we �nd

σ
(m)
j = σ

(1)
j 2j

∑m
n=2 n

(
m∏
n=2

d
(n)
0

)j

≥ σ
(1)
j

m∏
n=2

(
d

(n−1)
0

)−j ( m∏
n=2

d
(n)
0

)j

≥ C2−2j

(
d

(m)
0

d
(1)
0

)j

.

So, a su�cient condition to apply proposition 132 is that for all m ≥ 2, there exists C > 0
such that

2−j(m−1) ≤ C

(
d

(m)
0

d
(1)
0

)j

∀j ∈ N0 .

Let us consider the particular case where d(m)
0 := 2m+1 for all m ∈ N∗. We easily check

that the family of sequences (σ(m))m∈N∗ satis�es the previous su�cient conditions. We can
thus apply proposition 132. It is a decreasing family of admissible sequences and we note
that

σ
(m)
j = σ

(1)
j 2−(m−1)j ≥ C2−(m+1)j ∀j ∈ N0 .

3.2 Another de�nition of Hölder-Zygmund spaces

In this section, we prove that de�nition 6 is equivalent to the following one: a function f
de�ned on Rd belongs to the space Λα(Rd) (α > 0) if it is bounded almost everywhere and
satis�es

sup
|h|≤2−j

x∈Rd

|∆bαc+1
h f(x)| ≤ C2−jα ∀j ∈ N0 . (3.9)

This means that the Lebesgue-measurability can be omitted in the de�nition of Hölder
spaces if a slightly more restrictive inequality is imposed.

This is a consequence of the developments discussed in section 3.1. This result is not
obvious at �rst glance as there exist non-measurable functions satisfying inequality (3.9).

Lemma 142. Let α > 0 and m ∈ N∗. If the function f : Rd → R is bounded almost
everywhere and satis�es |∆m

h f(x)| ≤ C|h|α ∀x, h ∈ Rd, then it is bounded.
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Proof. Let us note that

|f(x)| − |
m−1∑
j=0

(−1)j
(
m

j

)
f(x+mh− jh)| ≤

∣∣∣∣∣|f(x)| − |
m−1∑
j=0

(−1)j
(
m

j

)
f(x+mh− jh)|

∣∣∣∣∣
≤ |

m∑
j=0

(−1)j
(
m

j

)
f(x+mh− jh)|

≤ |∆m
h f(x)|

≤ C|h|α,

for all x, h ∈ Rd. Let E ⊆ Rd be a set such that its complement is negligible and such
that |f(y)| ≤ C ′ for all y ∈ E. Let also x ∈ Ec and h ∈ Rd such that |h| ≤ 1 and
|f(x + (m − j)h)| ≤ C ′ for all j ∈ {0, 1, ...,m − 1} (such a real number h exists because
the set E is the complementary of a negligible set). Putting these inequalities together, we
�nd that |f(x)| ≤ C ′′.

Let f be a function de�ned on Rd and satisfying (3.9). Let us prove the result for
α ∈ N∗ and α > 1 (if α < 1, the function is continuous and so measurable). Using results
of section 3.1 (which can easily be adapted to inequality (3.9) thanks to lemma 142), we
have

sup
|h|≤2−j

x∈Rd

|∆α
hf(x)| ≤ Cj2−jα ∀j ∈ N∗ . (3.10)

By induction, we can reduce the order of the �nite di�erence to 1 to �nd that the function
is continuous on Rd, which ends the proof.

Remark 143. The equivalence of de�nitions proved in this section concerns the classical
Hölder-Zygmund spaces. However, the same proof can also be applied to spaces Λσ,α(Rd)
to obtain similar results on generalized Hölder spaces, under some technical conditions on
the sequence σ.

3.3 The uniform irregular Hölder spaces Iα(Rd) expressed as a
particular case of generalized Hölder spaces Λσ,α(Rd)

The irregular Hölder spaces, introduced in [31, 32, 33], allow to study the irregularity of
functions. Roughly speaking, they are the counterpart of Hölder spaces, and are obtained
by reversing the inequality controlling the �nite di�erence.

De�nition 144. Let α > 0 and f ∈ L∞(Rd). A function f belongs to the irregular Hölder
space Iα(Rd) if there exists a constant C > 0 such that

sup
|h|≤2−j

‖∆bαc+1
h f‖L∞ ≥ C2−jα ∀j ∈ N0 . (3.11)
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We can de�ne an Hölder exponent linked to these spaces in the following way.

De�nition 145. The upper global Hölder exponent (or uniform irregularity exponent) of
a function f ∈ L∞(Rd) is de�ned by

Hf = inf{α > 0 : f ∈ Iα(Rd)}.

The aim of this section is to show that these spaces can be expressed in terms of
generalized Hölder spaces. This allows to apply our previous results.

Let us remark that the inequality (3.11) is not equivalent to f /∈ Λα(Rd). Indeed, if
f /∈ Iα(Rd), then for every C > 0, there exists a strictly increasing sequence (jn)n∈N∗ of
integers such that

sup
|h|≤2−jn

‖∆bαc+1
h f‖L∞ ≤ C2−jnα ∀n ∈ N∗ . (3.12)

This inequality is a weaker condition than the one used for usual Hölder spaces. We are
led to the following natural de�nition.

De�nition 146. Let α > 0 and f ∈ L∞(Rd). We say that f belongs to the weak Hölder
space Cα

w(Rd) if f /∈ Iα(Rd).

The sequence (2−jnα)n∈N∗ can be a non-admissible sequence (e.g. if jn is of exponential
type, see section 1.2). Moreover, |h| ≤ 2−jn seems closer to the spaces Λα

σ,N(Rd) with
Nn = 2jn (n ∈ N∗) than the spaces Λσ,α(Rd). Again, the sequenceNj can be non-admissible.
Nevertheless, the following result shows that this can be reduced to a particular case of
generalized Hölder spaces of type Λσ,α(Rd), for some admissible sequence σ.

Proposition 147. Let α > 0, M = bαc + 1 and f ∈ L∞(Rd). We have f ∈ Cα
w(Rd) if

and only if for every C > 0, there exists a strictly increasing sequence (jn)n∈N∗ of integers
(depending on C) such that f ∈ Λσ((jn)n),α(Rd) where σ((jn)n) is the admissible sequence
de�ned by

σ((jn)n)j = inf{2−αjn ; 2(M−α)jn+12−jM} ∀j ∈ {jn, ..., jn+1 − 1}, ∀n ∈ N∗ .

Proof. 1. Let C > 0 and (jn)n the sequence associated to C such that

sup
|h|≤2−jn

‖∆bαc+1
h f‖L∞ ≤ C2−jnα ∀n ∈ N∗ .

Let us prove that we have

sup
|h|≤2−j

‖∆bαc+1
h f‖L∞ ≤ Cσ((jn)n)j ∀j ∈ N∗ .

Let n ∈ N∗ and j ∈ {jn, ..., jn+1 − 1}. We have

sup
|h|≤2−j

‖∆bαc+1
h f‖L∞ ≤ sup

|h|≤2−jn
‖∆bαc+1

h f‖L∞ ≤ C2−αjn .
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We note that4

sup
|h|≤2r

‖∆bαc+1
h f‖L∞ ≤ 2M sup

|h|≤r
‖∆bαc+1

h f‖L∞ ∀r > 0.

Using this result, we �nd

sup
|h|≤2−jn+12(jn+1−j)

‖∆bαc+1
h f‖L∞ ≤ 2(jn+1−j)M sup

|h|≤2−jn+1

‖∆bαc+1
h f‖L∞

≤ C2(M−α)jn+12−jM .

2. Let us prove that (σ((jn)n)j)j∈N∗ is an admissible sequence with associated constants
d0 = 2−M and d1 = 1 (these constants are optimal without any additional assump-
tions on the sequence (jn)n), i.e. we have

2−Mσ((jn)n)j ≤ σ((jn)n)j+1 ≤ σ((jn)n)j ∀j ∈ N∗ .

Let n ∈ N∗. The result is immediate for j ∈ {jn, ..., jn+1−2}. Let us prove the result
for j = jn+1 − 1. In order to simplify the notations, let us denote σ((jn)n)j by σj.
We consider the following di�erent cases:

(a) if σjn+1−1 = 2−αjn and σjn+1 = 2−αjn+1 , we have σjn+1 < σjn+1−1 and

σjn+1−1 ≤ 2(M−α)jn+12−(jn+1−1)M = 2−αjn+12M = σjn+12
M ,

(b) if σjn+1−1 = 2−αjn and σjn+1 = 2(M−α)jn+22−jn+1M , we have

σjn+1 ≤ 2−αjn+1 ≤ 2−αjn = σjn+1−1

and

σjn+1−1 ≤ 2−αjn+12M

= σjn+12
(M−α)(jn+1−jn+2)2M

≤ 2Mσjn+1 ,

(c) if σjn+1−1 = 2−αjn+12M and σjn+1 = 2−αjn+1 , we have σjn+1−1 = σjn+12
M ,

(d) if σjn+1−1 = 2−αjn+12M and σjn+1 = 2(M−α)jn+22−jn+1M , we have

σjn+1−1 = 2(M−α)jn+12−jn+1M2M

≤ 2(M−α)jn+22−jn+1M2M = σjn+12
M

and
σjn+1 ≤ 2−αjn+1 = σjn+1−12−M .

This ends the proof.

Remark 148. We proved that d1 = 1 in proposition 147. The sequence σ((jn)n) is thus
non-increasing.

4This is a consequence of lemma 67.
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3.4 Application to �nancial models

Example 149. Let us set σj := (2−j)
1
2 |log|log(2−j)|| 12 for all j ∈ N∗. This is a strong ad-

missible sequence of order 1. A. Khintchine proved in [72] that the trajectories of Brownian
motions belong almost surely to Λσ,α(R) (where 0 < α < 1). So, its wavelet coe�cients
satisfy {

|Ck| ≤ C ∀k ∈ Zd
|cij,k| ≤ Cσj ∀j ∈ N0,∀i ∈ {1, . . . , 2d − 1}, ∀k ∈ Zd.

It is known that the trajectories of a Brownian motion do not belong to Λ1/2(R) ([98, 102]).
This example is a typical case where the generalized Hölder-Zygmund spaces give more
information than what is given by classical Hölder spaces. Let us note that, in the classical
case, even if the Brownian motion does not belong to Λ1/2(R), the usual Hölder exponent
is still 1/2, which demonstrates the lack of accuracy of the classical Hölder spaces in this
particular case.

Example 150. Let us consider the geometric Brownian motion. This stochastic process is
a basic example used in �nancial models of stock indices, and is used in the famous Black
and Scholes model ([62]). It is given by the following stochastic di�erential equation:

dS(t) = µS(t)dt+ σS(t)dW (t)

where (W (t))t≥0 is a Brownian motion, µ ∈ R is a real number determining the mean
value of the stock and σ represents the volatility of the stock index. A solution of this
stochastic equation is given by

S(t) = S(0)e(µ−σ2/2)t+σW (t), t ≥ 0,

where S(0) > 0 is a constant. Let us remark that we can rewrite this process as

S(t) = f(W (t))

where f is an in�nitely continuously di�erentiable function on R. So, we have

|f(W (t))− f(W (s))| ≤ max
z∈K
|f ′(z)||W (t)−W (s)|

by the mean value theorem for some compact set K. We can conclude from example 149
that the trajectories of S(t) belong almost surely to Λσ,α(R) (where σ is the sequence
de�ned in example 149). Moreover, the trajectories do not belong to Λ1/2(R) (otherwise
we could apply the mean value theorem to the logarithm of S(t) in order to prove that the
trajectories of the Brownian motion also belong to Λ1/2(R)).

Example 151. Let us consider the Hull and White one-factor model. This model was
introduced in 1990 by John C. Hull and Alan White to model interest rates, and is popular
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Figure 3.1: Simulations of trajectories of the stochastic process S, with µ = 0, 49% and
σ = 19, 7%. The estimation of parameters µ and σ is based on observed values of Eurostoxx
50 during the year 2011 (these observed values are represented in grey in this graphic).

among �nancial market and actuarial �elds ([23]). It is expressed by the following stochastic
di�erential equation:

dr(t) = a(θ(t)− r(t))dt+ σdW (t).

In this equation, the stochastic process r(t) should be understood as a short rate model
and (W (t))t≥0 is a Brownian motion. All other factors are deterministic: the function
θ(t) is the asymptotic interest rate (which can vary over time because of macroeconomical
changes in the future), a > 0 represents the attractive force towards which the interest
rate converges to θ(t), and σ represents the volatility of the interest rate. The solution of
this stochastic equation is given by

r(t) = r(0)e−at + e−ata

∫ t

0

θ(s)easds+ σe−at
∫ t

0

easdW (s),
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where r(0) > 0 represents the initial observed value of the interest rate. When θ is
a constant function, then the model is more commonly called the Ornstein-Uhlenbeck
stochastic process or the Vasicek model. Under the Hull and White model, the price
at time t of a zero-coupon bond that gives one unit of monetary at time T (T > t) can be
written as

P (t, T ) = eA(t,T )−B(t,T )r(t),

where A(t, T ) and B(t, T ) are two regular deterministic functions. This expression can be
used to �t the model to the observed initial yield curve and to predict values of bonds.
More information about those models can be found in [23]. In practice, it is common to
use the Nelson-Siegel or Svensson model to describe the behaviour of θ. These models
write the function θ as exponential polynomials, and are used to calibrate the model to
market data (see e.g. [75]). So, the function θ can be assumed to be in�nitely continuously
di�erentiable. Let us set

g(t) := r(0)e−at + e−ata

∫ t

0

θ(s)easds ∈ C∞(R).

By the mean value theorem, we �nd

|∆1
hg(t)| ≤ |h| sup

K
|g′|

where t, t+ h ∈ K for some compact set K. Let us de�ne the stochastic process Y by

Y (t) =

∫ t

0

easdW (s) (t ≥ 0).

Let us remark that

Y (t) = eatW (t)− a
∫ t

0

easW (s)ds

by the integration by parts theorem for stochastic integrals (this classical result is a con-
sequence of Ito's formula). Using the Leibniz formula for �nite di�erence, we have

∆1
h(e

atW (t)) = ∆1
h(e

at)W (t+ h) + eat∆1
h(W (t)).

By example 149, we have t 7→ eatW (t) ∈ Λσ,α(R) with σj := (2−j)
1
2 |log|log(2−j)|| 12 (j ∈ N∗)

and 0 < α < 1. Therefore, by proposition 92, we get t 7→
∫ t

0
easW (s)ds ∈ Λ2−jσj ,1+α (in

the sense that its trajectories belong almost surely to this space). Through the Leibniz
formula and linearity of �nite di�erence, one �nally gets that r ∈ Λσ,α. The trajectories of
r do not belong to Λ1/2. Otherwise, we could prove that the trajectories of the Brownian
motion

W (t) = e−at(Y (t) + a

∫ t

0

easW (s)ds)

also belong to this space, which is in contradiction with the results stated in example 149.
We thus get that the trajectories of t 7→ P (t, T ) (with T > t) belong almost surely to
Λσ,α and do not belong to Λ1/2 (the same ideas as the ones exposed in example 150 can be
applied).
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Figure 3.2: Simulations of trajectories of the stochastic process r, with a = 9, 46% and
σ = 0, 21%. The estimation of parameters a and σ is based on observed values of Euribor
1 Week of year 2011.

Example 152. Let us de�ne the stochastic process (X(t))t≥0 by

X(t) =

∫ t

0

W (s)ds.

This stochastic process is a Gaussian process and a martingale. It represents the area
between a Brownian motion and the horizontal axis. Using the same arguments as the
ones exposed in example 151, we easily check that the trajectories of X belong almost
surely to Λσ,1+α with σj := (2−j)

3
2 |log|log(2−j)|| 12 (j ∈ N∗) and 0 < α < 1.

The reader should note that all ideas expressed in this section could be used to deter-
mine the generalized Hölder exponent of most stochastic processes which are derived from
stochastic integration.



Chapter 4

Characterizations and properties of

pointwise generalized Hölder-Zygmund

spaces

The study of global regularity of a function can be made through the use of generalized
Hölder-Zygmund spaces. For many functions used as models for signals, however, the
regularity can change drastically from one point to another. It is therefore natural to
de�ne a notion of pointwise regularity. For example, the function f(x) = xm+1 sin(x−m)
(m ∈ N0) is clearly irregular at x = 0 although it admits a continuous extension on R by
f(0) = 0. This function is represented in �gure 4.1 for m = 2. This function is clearly
in�nitely continuously di�erentiable on R0 (but is not continuously di�erentiable on R).
It could be interesting in this case to determine �how much� the function is irregular at
x = 0. Another example is given by the Takagi function. We treat this case in section 4.6.

For those purposes, we introduce in this section pointwise Hölder spaces and their
generalized versions. Later on, we also look at some characterizations of these spaces.
Their properties are very similar to their global versions, although these spaces can not be
manipulated in the same way.

In the sequel, the notation ‖f‖E stands for ‖f‖E = supx∈E |f(x)|.

4.1 De�nition of pointwise generalized Hölder-Zygmund spaces
ΛM
σ,N(x0) and Λσ,M(x0)

Let us recall the de�nition of classical pointwise Hölder spaces, which are denoted by Λα(x0)
(α > 0, x0 ∈ Rd).

De�nition 153. Let α > 0 and x0 ∈ Rd. We say that a function f ∈ L∞loc(R
d) belongs to

75
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Figure 4.1: Graphic of the function f(x) = x3 sin(x−2). The red dot represents the contin-
uous extension at x = 0 of the function f .

the space Λα(x0) if there exist two constants C, J > 0 such that1

inf
P∈Pbαc

‖f − P‖B(x0,2−j) ≤ C2−jα ∀j ≥ J.

By analogy with the global Hölder-Zygmund spaces, we generalize this de�nition as
follows.

De�nition 154. Let M ∈ N0, σ and N be two admissible sequences, and x0 ∈ Rd. We
say that a function f ∈ L∞loc(R

d) belongs to the space ΛM
σ,N(x0) if there exist two constants

C, J > 0 such that
inf
P∈PM

‖f − P‖B(x0,N
−1
j ) ≤ Cσj ∀j ≥ J.

In the case Nj = 2j (j ∈ N0), we denote these spaces by Λσ,M(x0) = ΛM
σ,N(x0).

Remark 155. 1. The previous de�nition can be rewritten in the following way. A
function f ∈ L∞loc(R

d) belongs to the space ΛM
σ,N(x0) if there exist two constants

1We remind the reader that the notation PM refers to the set of polynomials de�ned on Rd of degree
less or equal to M .
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C, J > 0 such that for all j ≥ J , there exists a polynomial Px0,j of degree less or
equal to M which satis�es

sup
|h|≤N−1

j

|f(x0 + h)− Px0,j(h)| ≤ Cσj. (4.1)

2. Let σ be an admissible sequence such that s(σ−1) > 0. If a function f belongs to
a generalized Hölder space Λσ,M(Rd), then it belongs in particular to the pointwise
space Λσ,M(x0) for all x0 ∈ Rd. The converse is not true: if a function f ∈ L∞(Rd)
belongs to Λσ,M(x0) for all x0 ∈ Rd, then it doesn't necessary belong2 to Λσ,M(Rd)
(the constant C depends on x0).

Remark 156. We have introduced a generalization of global and pointwise Hölder-Zygmund
spaces in terms of admissible sequences. Thus, it is natural to complete our study of Hölder-
Zygmund spaces with the local point of view of these spaces. We propose a de�nition of
local Hölder spaces that can be considered as a particular case of the global spaces. This
means that all of our results which are true for the global case can be transposed to the
local case.

De�nition 157. Let α > 0, σ be an admissible sequence and x0 ∈ Rd. A function
f ∈ L∞loc(R

d) belongs to the space Λσ,α
loc (x0) if there exists a function g ∈ Λσ,α(Rd) such that

f = g on a neighbourhood of x0, i.e. there exists C > 0 such that

sup
|h|≤2−j

‖∆bαc+1
h g‖L∞(Rd) ≤ Cσj ∀j ∈ N0 .

In particular, there exists a neighbourhood ν of x0 such that

sup
|h|≤2−j

‖∆bαc+1
h f‖L∞(ν) ≤ Cσj ∀j ∈ N0 .

4.2 A characterization of pointwise generalized Hölder-Zygmund
spaces in terms of �nite di�erences

The de�nition of generalized pointwise Hölder spaces is expressed in terms of polynomials.
Because of the analogy between pointwise Hölder spaces and global Hölder spaces, it is
natural to wonder whether these spaces can be expressed in terms of �nite di�erences. The
result here below provides the answer.

Proposition 158. (D.K., S. Nicolay) LetM ∈ N0, σ andN be two admissible sequences
such that Nj → +∞. If f ∈ L∞loc(R

d) is a function which is continuous in a neighbourhood
of x0 ∈ Rd, then the following conditions are equivalent:

2Such an example is given in remark 164.
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1. f ∈ ΛM
σ,N(x0),

2. there exist C > 0 and J > 0 such that

sup
|h|≤N−1

j

‖∆M+1
h f‖Bh(x0,N

−1
j ) ≤ Cσj ∀j ≥ J.

Proof. Let us prove that 2. ⇒ 1. Let r > 0 such that f is continuous in B(x0, r) and
J ′ ≥ J such that N−1

j ≤ r for all j ≥ J ′. Because f is bounded on B(x0, r), using Whitney
theorem ([24], theorem 1'), we have

inf
P∈PM

‖f − P‖B(x0,N
−1
j ) ≤ C sup

|h|≤N−1
j

‖∆M+1
h f‖Bh(x0,N

−1
j ) ∀j ≥ J ′.

Let us prove that 1.⇒ 2. By assumption, there exists J ∈ N0 such that, for all j ≥ J ,
there exists a polynomial Px0,j of degree less or equal to M satisfying

sup
|h|≤N−1

j

|f(x0 + h)− Px0,j(h)| ≤ Cσj.

Let j ≥ J , x, h ∈ Rd such that [x, x + (M + 1)h] ⊆ B(x0, N
−1
j ) and let us set Qx0,j(.) =

Px0,j(.− x0). We have

|∆M+1
h f(x)| = |∆M+1

h (f −Qx0,j)(x)|
≤ 2M+1 sup

y∈B(x0,N
−1
j )

|f(y)−Qx0,j(y)|.

So, we �nd
sup
|h|≤N−1

j

‖∆M+1
h f‖Bh(x0,N

−1
j ) ≤ 2M+1Cσj.

Remark 159. Proposition 158 is the pointwise version of theorem 88.

4.3 A characterization of pointwise generalized Hölder-Zygmund
spaces in terms of Taylor decomposition

In section 2.7, we have seen that, under some assumptions on σ, generalized Hölder-
Zygmund spaces admit a Taylor decomposition of their elements (see corollary 105). The
goal of this section is to prove a similar property for pointwise spaces.

Let us recall the following multidimensional Markov inequality: let p ∈]0,+∞], i ∈
{1, ..., d} and S ⊂ Rd be a bounded convex set with non-empty interior; we have

‖DiP‖Lp(S) ≤ Cn2‖P‖Lp(S)
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for every polynomials of degree less or equal to n − 1, where the constant C > 0 only
depends on S and p, and does not depend on the polynomial P or n (see [44], theorem
4.1.). We deduce the following inequality: if x0 ∈ Rd, then we have

‖DiP‖L∞(B(x0,R)) ≤ CR−1n2‖P‖L∞(B(x0,R)) (4.2)

for all R > 0 and for all polynomials of degree less or equal to n− 1.
We need a lemma to prove the main result of this section.

Lemma 160. LetM ∈ N0, σ and N be two admissible sequences such thatM < s(σ−1)s(N)−1

and N1 ≥ 1. If f ∈ ΛM
σ,N(x0), then the sequence (Px0,j)j∈N0 composed of polynomials satis-

fying (4.1) veri�es

|DβPx0,l(x0)−DβPx0,j(x0)| ≤ CN
|β|
j σj ∀j ≤ l,∀|β| ≤M.

Proof. Using Markov's inequality (4.2), we have

‖Dβ(Px0,j − Px0,j+1)‖B(x0,N
−1
j+1)

≤ CN
|β|
j ‖Px0,j − Px0,j+1‖B(x0,N

−1
j+1)

≤ CN
|β|
j

(
‖Px0,j − f‖B(x0,N

−1
j ) + ‖Px0,j+1 − f‖B(x0,N

−1
j+1)

)
≤ CN

|β|
j (σj + σj+1)

≤ CN
|β|
j σj

for all |β| ≤M and j ∈ N0. If j ≤ l, we �nd

‖Dβ(Px0,j − Px0,l)‖B(x0,N
−1
l )

≤
l−1∑
k=j

‖Dβ(Px0,k − Px0,k+1)‖B(x0,N
−1
l )

≤
l−1∑
k=j

‖Dβ(Px0,k − Px0,k+1)‖B(x0,N
−1
k+1)

≤ C
l−1∑
k=j

N
|β|
k σk

≤ CN
|β|
j σj.

Remark 161. Under the assumption of lemma 160, the sequence (DβPx0,j(x0))j∈N0 (|β| ≤
M) is a Cauchy sequence. Let Dβf(x0) denote its limit. Its value is called the β-th Peano's
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derivative of f at x0 (see [42]), and is also called the β-th �De la Vallée-Poussin� derivative
of f at x0. It does not depend on the chosen polynomial sequence (DβPx0,j(x0))j∈N0

satisfying (4.1). If (DβP ′x0,j(x0))j∈N0 is another polynomial sequence satisfying (4.1), then
we have

|DβP ′x0,j(x0)−Dβf(x0)|
≤ |DβP ′x0,j(x0)−DβPx0,j(x0)|+ |DβPx0,j(x0)−Dβf(x0)|.

Using Markov's inequality, we obtain

‖Dβ(Px0,j − P ′x0,j)‖B(x0,N
−1
j )

≤ CN
|β|
j ‖Px0,j − P ′x0,j‖B(x0,N

−1
j )

≤ CN
|β|
j

(
‖Px0,j − f‖B(x0,N

−1
j ) + ‖P ′x0,j − f‖B(x0,N

−1
j )

)
≤ CN

|β|
j σj → 0 if j → +∞,

so the conclusion. The proof of the next result justi�es its name as �derivative�.

Theorem 162. (D.K., S. Nicolay) Let M ∈ N0, σ and N be two admissible sequences
such that M < s(σ−1)s(N)−1 and N1 > 1. The following assertions are equivalent:

1. f ∈ ΛM
σ,N(x0),

2. there exist a positive constant C and a polynomial Px0 of degree less or equal to M
such that

sup
|h|≤N−1

j

|f(x0 + h)− Px0(h)| ≤ Cσj ∀j ∈ N0 .

Proof. The proof of 2 ⇒ 1 is immediate. Let us prove that 1 ⇒ 2. Let (Px0,j)j∈N0 be a
sequence of polynomials of degree less or equal to M satisfying (4.1). We set

Px0(x) =
∑
|β|≤M

Dβf(x0)
(x− x0)β

|β|!

for x ∈ B(x0, N
−1
0 ). We have

‖Px0 − Px0,j‖B(x0,N
−1
j ) =

∥∥∥∥∥∥
∑
|β|≤M

(
Dβf(x0)−DβPx0,j(x0)

) (x− x0)β

|β|!

∥∥∥∥∥∥
B(x0,N

−1
j )

≤
∑
|β|≤M

|Dβf(x0)−DβPx0,j(x0)|N−|β|j .
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Using lemma 160, we have

|DβPx0,l(x0)−DβPx0,j(x0)| ≤ CN
|β|
j σj ∀j ≤ l,

and, by taking l→ +∞, we �nd

|Dβf(x0)−DβPx0,j(x0)| ≤ CN
|β|
j σj.

So, we obtain
‖Px0 − Px0,j‖B(x0,N

−1
j ) ≤ Cσj ∀j ∈ N0 .

The conclusion follows immediately from

‖f − Px0‖B(x0,N
−1
j ) ≤ ‖f − Px0,j‖B(x0,N

−1
j ) + ‖Px0j − Px0‖B(x0,N

−1
j )

≤ Cσj

for all j ∈ N0.

Remark 163. Under the assumptions of theorem 162, a function f of ΛM
σ,N(x0) admits a

Taylor decomposition around the point x0, expressed in terms of its Peano derivatives at
x0: for x in a neighbourhood of x0, we have

f(x) =
∑
|β|≤M

Dβf(x0)
(x− x0)β

|β|!
+R(x− x0),

where sup|h|≤N−1
j
|R(h)| ≤ Cσj for j su�ciently large. Under the assumptions of theorem

162, if f is M -times continuously di�erentiable around x0, then the Peano derivatives at
x0 (up to the order M) coincide with classical derivatives. This justi�es their name.

Remark 164. We conclude this section by a general remark concerning Peano derivatives.
There exist functions which are not di�erentiable but admit Peano derivatives. Here is a
basic example.

Let m > 1 and f : R → R be the function de�ned by f(x) = xm+1 sin(x−m) at x 6= 0
and f(0) = 0. We can check that f admits Peano derivatives up to the order m in all
points of R but its �rst derivative is not continuous at 0. Moreover, Peano derivatives of
f at 0 are equal to 0 up to the order m, so f ∈ Λ(2−j(m+1))j ,m(0) by theorem 162. This
space is not equal to any classical pointwise Hölder spaces. In particular, we �nd that
f ∈ Λα(0) for all α < m+ 1, but f /∈ Λ1+ε(R) for all ε > 0 (otherwise the function f would
be continuously di�erentiable according to proposition 92).
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4.4 A characterization of pointwise generalized Hölder-Zygmund
spaces in terms of wavelet coe�cients

We proved in section 2.9 that generalized global Hölder-Zygmund spaces can be charac-
terized in terms of wavelet coe�cients. The goal of this section is to prove a similar result
for pointwise Hölder spaces.

We consider Daubechies wavelets in the sequel. Moreover we suppose that such wavelets
are su�ciently regular and have su�ciently many vanishing moments3. We let j0 denote a
natural number satisfying

suppψi ⊆ B(0,≤ 2j0) ∀i ∈ {1, ..., 2d − 1}.

First, let us introduce some notations. A dyadic cube of scale j ∈ N0 is a cube that
can be written as

λ =
d∏
i=1

[
ki
2j
,
ki + 1

2j

[
where k = (k1, ..., kd) ∈ Zd. We consider the indices i ∈ {1, ..., 2d − 1}, j ∈ Z, k ∈ Zd
which characterize the wavelet coe�cients cij,k. We can suppose that i takes its value in the

set {0, 1}d\(0, ..., 0) without loss of generality. We let λ = λ(i, j, k) = k
2j

+ i
2j+1 +

[
0, 1

2j+1

)d
denote the dyadic cube associated with the wavelet coe�cient cλ = cij,k.

De�nition 165. The wavelet leaders are de�ned by

dλ = sup
λ′⊆λ
|cλ′|.

If f ∈ L∞(Rd), the wavelet leaders are �nite because

|cλ| ≤ 2dj
∫
Rd
|f(x)||ψλ(x)|dx ≤ C‖f‖L∞(Rd).

De�nition 166. Two dyadic cubes λ1 and λ2 are said to be adjacent if they have the same
scale and if dist(λ1, λ2) = 0 (so, a dyadic cube is adjacent to itself). Let λj(x0) denote the
dyadic cube of side 2−j containing x0 and 3λ denote the set of the 3d dyadic cubes which
are adjacent to λ; then

dj(x0) = sup
λ′∈3λj(x0))

dλ′ .

The characterization of generalized pointwise Hölder spaces is expressed in terms of
dj(x0) (j ∈ N). The factor 3 in the de�nition of dj(x0) is needed for technical requirements,
so that the characterization remains true even for limit cases.

The wavelet characterization needs an assumption on the global regularity of the con-
sidered functions. This assumption is a little more restrictive than continuity on Rd. It is
expressed by the following de�nition.

3Using the notations from the sequel, we suppose that the wavelets belong to the space CM+1(Rd) and
have M + 1 vanishing moments.
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De�nition 167. A function f is said to be uniformly Hölder if there exists ε > 0 such
that f ∈ Λε(Rd).

Remark 168. One can easily check that a function f is uniformly Hölder if and only if
there exists an admissible sequence σ such that s(σ−1) > 0 and f ∈ Λσ,M(Rd) for a certain
natural number M .

Theorem 169. (D.K., S. Nicolay) Let M ∈ N0, x0 ∈ Rd and σ be an admissible
sequence. If f ∈ Λσ,M(x0), then there exist C > 0 and J ∈ N0 such that

dj(x0) ≤ Cσj ∀j ≥ J. (4.3)

Conversely, let us suppose that σj → 0 if j → +∞. If f is uniformly Hölder and if
(4.3) is satis�ed, then f ∈ Λσ′,M(x0) where σ′ is a new admissible sequence de�ned by
σ′j = σj|log2(σj)| (j ∈ N0) and M is a natural number satisfying M + 1 > s(σ−1).

Proof. Let us suppose that f ∈ Λσ,M(x0), k0 ∈ N0 be such that 2max(j0;d)+3 + 4d ≤ 2k0 and
let also j ≥ k0 + 1 and λ = λ(i, j′, k′) ⊂ 3λj(x0) (in particular we have j′ ≥ j− 2). We �nd

|cλ| =
∣∣∣∣2dj′ ∫

Rd
f(x)ψi(2j

′
x− k′)dx

∣∣∣∣
=

∣∣∣∣2dj′ ∫
Rd

(f(x)− Px0,j−k0(x))ψi(2j
′
x− k′)dx

∣∣∣∣
=

∣∣∣∣∣2dj′
∫
B( k

′

2j
′ ,2

j0−j′ )

(f(x)− Px0,j−k0(x))ψi(2j
′
x− k′)dx

∣∣∣∣∣
≤ 2dj

′
∫
B(x0,2−(j−k0))

|f(x)− Px0,j−k0(x)||ψi(2j′x− k′)|dx

≤ Cσj−k02
dj′
∫
Rd
|ψi(2j′x− k′)|dx ≤ Cσj.

Conversely, let us suppose that the wavelet coe�cients satisfy (4.3) and that there
exists ε > 0 such that f ∈ Λε(Rd). We proved in theorem 115 that the functions fj
(j ∈ N0 ∪{−1}) have the same regularity as wavelets and that f =

∑+∞
j=−1 fj uniformly on

Rd. Let us set

Px0,J(x− x0) :=
∑
|β|≤M

(x− x0)β

|β|!

J∑
j=−1

Dβfj(x0).

This is a polynomial of degree less or equal to M . Let nd be a natural number such that,
for each dyadic number k

2j
(k ∈ Zd, j ∈ N0), for each R ≥ 2−j and x ∈ Rd such that

k
2j
∈ B(x,R), the dyadic cube k

2j
+ i

2j+1 + [0, 1
2j

[d is included in the ball B(x, 2ndR). Let
md be a natural number such that each ball B(x, 2−j) (x ∈ Rd, j ∈ N0) is included in a
dyadic cube (whose vertices have dyadic coordinates) with a side length 2md2−j. Finally,
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let J ≥ sup{J ′, j0 + nd + md + 1}, where J ′ ∈ N0 is such that σj < 1 for all j ≥ J ′. We
have

‖f − Px0,J‖B(x0,2−J )

≤
J∑

j=−1

‖fj(x)−
∑
|β|≤M

(x− x0)β

|β|!
Dβfj(x0)‖B(x0,2−J ) +

+∞∑
j=J+1

‖fj‖B(x0,2−J ).

Let J1 ∈ N0 denote the unique natural number satisfying 2−εJ1 ≤ σJ < 2−ε(J1−1).

1. Firstly, we study the term

J∑
j=−1

‖fj(x)−
∑
|β|≤M

(x− x0)β

|β|!
Dβfj(x0)‖B(x0,2−J ).

Let j ≤ J . By the Taylor decomposition, we �nd

‖fj(x)−
∑
|β|≤M

(x− x0)β

|β|!
Dβfj(x0)‖B(x0,2−J )

≤ C2−J(M+1) sup
|β|=M+1

‖Dβfj‖B(x0,2−J ).

If |β| = M + 1, we prove that we have

‖Dβfj‖B(x0,2−J ) ≤ Cσj2
j(M+1) sup

i
‖
∑
k∈Zd

Dβψi(2jx− k)‖B(x0,2−J ).

Indeed, if x ∈ B(x0, 2
−J), we have

|Dβfj(x)| ≤
∑
i

∑
k∈Zd
|cij,k|2j(M+1)|Dβψi(2jx− k)|

=
∑
i

∑
k∈Zd

k2−j∈B(x,2−(j−j0))

|cij,k|2j(M+1)|Dβψi(2jx− k)|.

Each wavelet coe�cient cij,k = cλ in the last sum is such that the associated dyadic
cube is included in B(x, 2−(j−j0−nd)). If j ≥ j0 + nd +md + 1, then we have

|cij,k| ≤ Cσj−j0−nd−md−1 ≤ Cσj.

Otherwise, we have |cij,k| ≤ C ≤ C ′σj because the function f is uniformly Hölder,
where C ′ = sup{C/σj : j ∈ {0, ..., j0 + nd + md}}. This proves the announced
inequality. This also implies

‖Dβfj‖B(x0,2−J ) ≤ Cσj2
j(M+1),
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because Dβψi has compact support and is continuous on Rd. We obtain

J∑
j=−1

‖fj(x)−
∑
|β|≤M

(x− x0)β

|β|!
Dβfj(x0)‖B(x0,2−J ) ≤ C2−J(M+1)

J∑
j=−1

σj2
j(M+1)

≤ CσJ .

2. We consider the term
+∞∑

j=J1+1

‖fj‖B(x0,2−J ).

Using the proof of theorem 115, we have

+∞∑
j=J1+1

‖fj‖B(x0,2−J ) ≤
+∞∑

j=J1+1

‖fj‖Rd

≤ C
+∞∑

j=J1+1

2−εj

≤ C2−εJ1

≤ CσJ .

3. Let us consider the term given by

J1∑
j=J+1

‖fj‖B(x0,2−J ).

Let j ∈ {J + 1, ..., J1} and x ∈ B(x0, 2
−J). We have

|fj(x)| ≤
∑
i

∑
k∈Zd

k2−j∈B(x,2−(j−j0))

|cij,kψi(2jx− k)|. (4.4)

If j ≥ J + j0 + nd, then the wavelet coe�cients in (4.4) are such that the associated
dyadic cubes satisfy

λ = λ(i, j, k) ⊆ B(x, 2−(j−j0−nd)) ⊆ B(x0, 2
−(J−1))

and
|cij,k| = |cλ| ≤ CσJ−md−1 ≤ CσJ .

If j < J + j0 + nd, then we have

λ(i, j, k) ⊆ B(x, 2−(j−j0−nd)) ⊆ B(x0, 2
−(j−j0−nd−1)),
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which implies
|cij,k| = |cλ| ≤ Cσj−j0−nd−md−1 ≤ Cσj ≤ CσJ .

Finally, we �nd

J1∑
j=J+1

‖fj‖B(x0,2−J ) ≤ CJ1σJ

≤ C|log2(σJ)|σJ ,

which proves the result.

Remark 170. Because σ′j → 0 if σj → 0, the previous result always gives information on
the pointwise regularity of f at x0 (under the assumptions of the previous theorem).

4.5 A characterization of pointwise generalized Hölder-Zygmund
spaces in terms of the convolution product

We have seen in section 2.4 that global generalized Hölder-Zygmund spaces can be charac-
terized through approximations with a convolution product of their own elements with a
smooth function. The aim of this section is to prove a similar characterization for pointwise
spaces.

We have the following result, using the same proof as in lemma 78.

Lemma 171. Let N ∈ N0, ρ ∈ D(Rd), σ = (σj)j∈N∗ be an admissible sequence and
f ∈ L1

loc(R
d) be a function satisfying

sup
k≥j
‖f ? ρ2−k − f‖L∞(B(x0,2−j)) ≤ Cσj ∀j ∈ N0 .

For all β ∈ Nd
0 such that |β| ≤ N , we have

‖Dβ (f ? ρ2−j − f ? ρ2−(j−1)) ‖B(x0,2−j) ≤ C2jNσj ∀j ∈ N∗ .

The characterization of pointwise Hölder spaces in terms of the convolution product
can be written in the following way (the notation Φj refers to Φ2−j).

Theorem 172. (D.K., S. Nicolay) Let M ∈ N0 and σ be an admissible sequence. If
f ∈ Λσ,M(x0), then there exists a function Φ ∈ D(Rd) such that

sup
k≥j
‖f − f ? Φk‖B(x0,2−j) ≤ Cσj, ∀j ∈ N0 . (4.5)
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Conversely, let us suppose that σ → 0. If the function f ∈ L∞(Rd) satis�es (4.5) and

sup
j∈N0

(
2αj sup

k≥j
‖f ? Φk − f‖L∞

)
< +∞

for a certain α > 0, then f ∈ Λσ,M(x0) for all natural number M ∈ N0 such that M + 1 >
s(σ−1).

Proof. Let f ∈ Λσ,M(x0) and Φ be the function de�ned in section 2.2. Using a similar
proof as in proposition 77, we �nd

f ? Φk(x)− f(x) = C

∫
∆M ′+1

2−kt
f(x)ρ(t)dt, ∀x ∈ Rd,

for a natural number M ′ ≥M . This proves equality (4.5). Let us prove the converse part.
By assumption, there exists α < 1 such that f ∈ Λα(Rd). If (fj)j denotes the sequence of
functions which are de�ned in proposition 80, we have

f =
+∞∑
j=1

fj uniformly on Rd,

because f is uniformly Hölder. So, we also have

∆M+1
h f =

+∞∑
j=1

∆M+1
h fj uniformly on Rd, for all h ∈ Rd.

Let n0 ∈ N0 such that M + 1 ≤ 2n0 , h ∈ Rd such that |h| ≤ 2−(j+n0), and j0 ∈ N0 such
that 2−(j0+1)α ≤ σj < 2−j0α. We have

‖∆M+1
h f‖B(x0,2−j) ≤

j−1∑
k=1

‖∆M+1
h fk‖B(x0,2−j) + ‖

j0∑
k=j

∆M+1
h fk‖B(x0,2−j)

+
+∞∑

k=j0+1

‖∆M+1
h fk‖B(x0,2−j).

1. We �nd
j−1∑
k=1

‖∆M+1
h fk‖B(x0,2−j) ≤

j−1∑
k=1

C|h|M+1 sup
|β|=M+1

‖Dβfk‖B(x0,2−(j−1))

≤ C2−j(M+1)

j−1∑
k=1

2k(M+1)σk

≤ Cσj,

using the mean value theorem for the �rst inequality, lemma 171 for the second one,
and the assumption M + 1 > s(σ−1) in the last one.
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2. We have

‖
j0∑
k=j

∆M+1
h fk‖B(x0,2−j) = ‖∆M+1

h (f ? Φj0 − f ? Φj−1)‖B(x0,2−j)

≤ C‖f ? Φj0 − f ? Φj−1)‖B(x0,2−(j−1))

≤ C
(
‖f ? Φj0 − f‖Rd + ‖f − f ? Φj−1)‖B(x0,2−(j−1))

)
≤ C(2−j0α + σj−1) ≤ Cσj.

3. Finally, as f ∈ Λα(Rd), we have

+∞∑
k=j0+1

‖∆M+1
h fk‖B(x0,2−j) ≤ C

+∞∑
k=j0+1

‖fk‖Rd

≤ C
+∞∑

k=j0+1

2−kα

≤ C2−j0α ≤ Cσj.

The conclusion follows from

sup
|h|≤2−(j+n0)

‖∆M+1
h f‖B(x0,2−(j+n0)) ≤ sup

|h|≤2−(j+n0)

‖∆M+1
h f‖B(x0,2−j) ≤ Cσj ≤ Cσj+n0 .

Remark 173. The two following results, which are slight modi�cations of lemma 171 and
theorem 172, can be proved similarly.

Lemma 174. Let N ∈ N0, ρ ∈ D(Rd) be a function such that its support is included in
the ball B(0, 1/4), σ = (σj)j∈N∗ be an admissible sequence and f ∈ L1

loc(R
d) be a function

satisfying
‖f ? ρ2−j − f‖L∞(B(x0,2−j)) ≤ Cσj ∀j ∈ N∗ .

Then, for all β ∈ Nd
0 such that |β| ≤ N , we have

‖Dβ (f ? ρ2−j − f ? ρ2−(j−1)) ‖B(x0,2−(j+1)) ≤ C2jNσj ∀j ∈ N∗ .

Theorem 175. Let M ∈ N0 and σ be an admissible sequence. If f ∈ Λσ,M(x0), then there
exists a function Φ ∈ D(Rd) whose support is included in the ball B(0, 1/4) and such that

‖f − f ? Φj‖B(x0,2−j) ≤ Cσj, ∀j ∈ N0 . (4.6)

Conversely, let us suppose that σ → 0. If the function f ∈ L∞(Rd) satis�es (4.6) and

sup
j∈N0

(
2αj sup

k≥j
‖f ? Φk − f‖L∞

)
< +∞

for some α > 0 (for some function Φ ∈ D(Rd) with compact support included in the ball
B(0, 1/4)), then f ∈ Λσ,M(x0) for all M ∈ N0 such that M + 1 > s(σ−1).
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4.6 An application of generalized Hölder-Zygmund spaces: the
Takagi function

In 1903, T. Takagi published an example of a continuous but nowhere di�erentiable function
([115]). Other authors rediscovered this function later under di�erent forms, which inspired
and fascinated many mathematicians (this is still the case nowadays). This function has
many singular properties. As the Weierstrass function, the Takagi function is continuous
but nowhere di�erentiable. It is used as a tool in many mathematical areas, such as classical
real analysis, multifractal analysis, combinatorics and number theory. For example, let us
cite its use in the characterization of zero sets of continuous nowhere di�erentiable functions
([87, 107]) and its use as a key element for solving the binary digital sum problem ([38, 123]).

Let us recall its formal de�nition.

De�nition 176. The Takagi function is de�ned by

T (x) =
+∞∑
n=0

1

2n
φ(2nx), x ∈ [0, 1],

where φ(x) = dist(x,Z). Figure 4.2 represents the graphic of T .

The goal of this section is to determine the global and the pointwise regularity of the
Takagi function.

 0
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Figure 4.2: Graphic of the Takagi function T de�ned on [0, 1].
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It is known that4 T ∈ Λα(R) for α ∈]0, 1[ but T /∈ Λα,(2−j)j(R) because T is not
Lipschitz ([110]). However, there exist some points x ∈ [0, 1] called slow points such that
T ∈ Λα,(2−j)j(x) for α ∈]0, 1[ ([1]). In [10], it is shown that T ∈ Λα,σ(R) where σj = 2−jj
(j ∈ N∗) and T /∈ Λ1(R) for α ∈]0, 1[. Moreover, the sequence σ is the best estimate for T
to be an element of a generalized Hölder-Zygmund space.

This example shows that generalized Hölder-Zygmund spaces can provide interesting
additional information besides classical Hölder-Zygmund spaces. It also shows that point-
wise generalized Hölder-Zygmund spaces complete the study of the global regularity in
some cases.

A global survey about the Takagi function is done in [5].

4.7 Generalized pointwise Hölder exponent

The goal of this section is to give some conditions on admissible sequences that lead to
embedded generalized pointwise Hölder spaces. If we have embedded pointwise spaces,
we can de�ne an Hölder exponent which gives information on the pointwise regularity at
x0. Our aim is to prove an analogous result to proposition 132 obtained in section 3.1.
However, we need to completely change the ideas behind the proofs.

Notation 177. Let M ∈ N0. Let P (M) denote the part of degree less or equal to M of a
polynomial P .

First, let us consider the following result.

Proposition 178. Let M ∈ N∗ and σ be an admissible sequence such that s(σ−1) > M .
We have

Λσ,M(x0) ⊆ Λ(2−jM )j ,M−1(x0).

Proof. Let Px0 be the polynomial given by theorem 162. It is given by

Px0(x) =
∑
|β|≤M

Dβf(x0)
(x− x0)β

|β|!
.

Let us note that∣∣∣∣∣∣f(x0 + h)−
∑

|β|≤M−1

Dβf(x0)
hβ

|β|!

∣∣∣∣∣∣ ≤ Cσj +

∣∣∣∣∣∣
∑
|β|=M

Dβf(x0)
hβ

|β|!

∣∣∣∣∣∣
for all |h| ≤ 2−j. We have

inf
P∈PM−1

‖f − P‖B(x0,2−j) ≤ ‖f − P (M−1)
x0

‖B(x0,2−j) ≤ C(σj + 2−jM) ≤ C ′2−jM ,

because 2jMσj → 0.

4We can consider that the Takagi function is de�ned on R by multiplying it with an adequate regular
function with compact support. For example, one can use ρ ∈ D(R) such that ρ = 1 on [ε, 1 − ε] (where
ε > 0 is su�ciently small) and equal to 0 outside of ]0, 1[).
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This result is interesting but does not give enough accurate information. This is a
consequence of the assumption expressed in terms of Boyd indices among other things5.
The two following results give more information than proposition 178.

Proposition 179. Let f ∈ Λσ,M(x0) and (Px0,j)j∈N0 be a sequence of polynomials associated
with the function f (given by the de�nition of the space Λσ,M(x0)).

1. If 2Md1 < 1, then

‖f − P (M−1)
x0,j

‖B(x0,2−j) ≤ C
(
σj + 2−jM

)
∀j ∈ N0 .

2. If 2Md1 > 1, then

‖f − P (M−1)
x0,j

‖B(x0,2−j) ≤ C
(
σj + 2−jM(2Md1)j

)
∀j ∈ N0 .

3. If 2Md1 = 1, then

‖f − P (M−1)
x0,j

‖B(x0,2−j) ≤ C
(
σj + 2−jMj

)
∀j ∈ N0 .

Proposition 180. Let f ∈ Λσ,M(x0) and (Px0,j)j∈N0 be a sequence of polynomials associated
to the function f (given by the de�nition of the space Λσ,M(x0)).

1. If 2Md0 < 1, then

‖f − P (M−1)
x0,j

‖B(x0,2−j) ≤ C
(
σj(2

Md0)−j + 2−jM
)
∀j ∈ N0 .

2. If 2Md0 > 1, then

‖f − P (M−1)
x0,j

‖B(x0,2−j) ≤ C
(
σj + 2−jM

)
∀j ∈ N0 .

3. If 2Md0 = 1, then

‖f − P (M−1)
x0,j

‖B(x0,2−j) ≤ C
(
σjj + 2−jM

)
∀j ∈ N0 .

These two results are mainly a consequence of the following lemma:

Lemma 181. Let f ∈ Λσ,M(x0) and (Px0,j)j∈N0 be the sequence of polynomials associated
to the function f . If aβx0,j denotes the β

th coe�cient of the polynomial Px0,j, then we have

sup
|β|=M

|aβx0,j| ≤ C

(
j−1∑
k=1

(2Md1)k + 1

)
, ∀j ∈ N0,

and

sup
|β|=M

|aβx0,j| ≤ C

(
σjd

−j
0

j−1∑
k=1

(2Md0)k + 1

)
, ∀j ∈ N0 .

5Let us remind that in section 3.1, we obtained two types of results for global spaces: the �rst one is
expressed in terms of Boyd indices and the second one is expressed in terms of the factors d0 and d1 (given
by de�nition of admissible sequences). The �rst one is a weaker result.



GENERALIZED POINTWISE HÖLDER EXPONENT 92

Proof of lemma 181. For all |β| ≤M , we have, using Markov's inequality (4.2),

‖Dβ(Px0,j − Px0,j+1)‖B(x0,2−(j+1))

≤ C2jM‖Px0,j − Px0,j+1‖B(x0,2−(j+1))

≤ C2jM
(
‖Px0,j − f‖B(x0,2−j) + ‖Px0,j+1 − f‖B(x0,2−(j+1))

)
≤ C2jMσj,

which implies

‖Dβ(Px0,1 − Px0,j)‖B(x0,2−j)

≤
j−1∑
k=1

‖Dβ(Px0,k − Px0,k+1)‖B(x0,2−j)

≤
j−1∑
k=1

‖Dβ(Px0,k − Px0,k+1)‖B(x0,2−(k+1))

≤ C

j−1∑
k=1

2kMσk ≤ Cσ0

j−1∑
k=1

(2Md1)k,

for all j ∈ N0. Let β ∈ Nd
0 such that |β| = M . We have

‖Dβ(Px0,j − Px0,1)‖B(x0,2−j) = β!|aβx0,j − a
β
x0,1
|

≥ |aβx0,j|β!− |aβx0,1|β!.

We thus get the �rst inequality of the result. To prove the second inequality, we notice
that

‖Dβ(Px0,1 − Px0,j)‖B(x0,2−j) ≤ C

j−1∑
k=1

2kMσk ≤ Cσjd
−j
0

j−1∑
k=1

(2Md0)k.

Proposition 179 is a consequence of the �rst inequality of lemma 181. Proposition 180
is a consequence of the second inequality of lemma 181.

De�nition 182. Let x0 ∈ Rd. A family of admissible sequences σ(.) is said to be x0-
decreasing if α < β implies Λσ(β),bβc(x0) ⊆ Λσ(α),bαc(x0).

Corollary 183. (D.K., S. Nicolay) A family of admissible sequences σ(.) is x0-decreasing
if it satis�es the following conditions:

1. if m ≤ α < β < m+ 1 for some natural number m, there exist C, J > 0 such that

σ
(β)
j ≤ Cσ

(α)
j ∀j ≥ J,
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2. for all m ∈ N∗, at least one of the two following conditions is satis�ed:

(a) � there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C, J > 0 such
that

σ
(m)
j ≤ Cσ

(m−ε)
j ∀j ≥ J,

� if 1 < 2md
(m)
1 , then there exists ε0 > 0 such that for all ε ∈]0, ε0[, there

exist C, J > 0 such that

2−jm(2md
(m)
1 )j ≤ Cσ

(m−ε)
j ∀j ≥ J,

� if 1 > 2md
(m)
1 , then there exists ε0 > 0 such that for all ε ∈]0, ε0[, there

exist C, J > 0 such that

2−jm ≤ Cσ
(m−ε)
j ∀j ≥ J,

� if 1 = 2md
(m)
1 , then there exists ε0 > 0 such that for all ε ∈]0, ε0[, there

exist C, J > 0 such that

j2−jm ≤ Cσ
(m−ε)
j ∀j ≥ J,

(b) � there exists ε0 > 0 such that for all ε ∈]0, ε0[, there exist C, J > 0 such
that

2−jm ≤ Cσ
(m−ε)
j ∀j ≥ J,

� if 1 < 2md
(m)
0 , then there exists ε0 > 0 such that for all ε ∈]0, ε0[, there

exist C, J > 0 such that

σ
(m)
j ≤ Cσ

(m−ε)
j ∀j ≥ J,

� if 1 > 2md
(m)
0 , then there exists ε0 > 0 such that for all ε ∈]0, ε0[, there

exist C, J > 0 such that

σ
(m)
j (2md

(m)
0 )−j ≤ Cσ

(m−ε)
j ∀j ≥ J,

� if 1 = 2md
(m)
0 , then there exists ε0 > 0 such that for all ε ∈]0, ε0[, there

exist C, J > 0 such that

jσ
(m)
j ≤ Cσ

(m−ε)
j ∀j ≥ J,

(where we let d(m)
0 and d(m)

1 denote some constants satisfying the inequality (1.2)
associated to σ(m)).
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Remark 184. The conditions of corollary 183 imply that, for all m ∈ N∗, there exists
ε0 > 0 such that for all ε ∈]0, ε0[, we have

2−jm ≤ Cεσ
(m−ε)
j and σ

(m)
j ≤ Cεσ

(m−ε)
j ∀j,

for some constant Cε > 0. If the family of sequences does not even satisfy these two
simpli�ed conditions, then it is not worthwhile checking whether the conditions of the
corollary are satis�ed.

Remark 185. One can easily check that the su�cient conditions described in corollary
183 are equivalent to the ones obtained in proposition 132. It is remarkable that pointwise
spaces maintain all main properties of global spaces, even though the proofs need to be
completely adapted. One main di�erence is that we do not have classical derivatives as a
tool in the pointwise case.

Example 186. In particular, corollary 183 can be used to prove that classical pointwise
Hölder spaces are embedded: if 0 < α < β, we have

Λβ(x0) = Λ(2−jβ)j ,bβc(x0) ⊆ Λα(x0) = Λ(2−jα)j ,bαc(x0).

As announced in the introduction, the concept of x0-decreasing family of admissible
sequences leads to the concept of generalized Hölder exponent at x0.

De�nition 187. Let σ(.) be a x0-decreasing family of admissible sequences. The generalized
Hölder exponent at x0 associated with σ(.) of a function f ∈ L∞loc(R

d) is de�ned by

hσ
(.)

f (x0) = sup{α > 0 : f ∈ Λσ(α),bαc(x0)}.



Chapter 5

Appendix

5.1 About subadditive sequences

De�nition 188. A sequence (an)n∈N∗ of real numbers is said to be subadditive if it satis�es
the inequality

an+m ≤ an + am ∀n,m ∈ N∗ .

The following lemma is attributed to M. Fekete ([52]). We show a proof that is relatively
simple here below.

Lemma 189 (Fekete (1923)). For every subadditive sequence (an)n∈N∗, the limit limn→+∞
an
n

exists and is equal to infn∈N∗
an
n
(the limit can be equal to −∞).

Proof. We set γ = inf
(
an
n

)
. Let us at �rst suppose that γ > −∞ (so γ is a real number).

For all ε > 0, there exists k ∈ N0 such that ak ≤ (γ + ε)k. We also have

anl ≤ nal ∀n, l ∈ N∗

by subadditivity, which implies

anl
nl
≤ al

l
∀n, l ∈ N∗ .

For all n ∈ N∗, if l ∈ N0 is such that n < lk, then we have

inf
m≥n

am
m
≤ alk

lk
≤ γ + ε

which implies γ = lim inf an
n
.

For all m ∈ N0, we write m = kn+ j where 0 ≤ j < k so that

am = ank+j ≤ akn + aj ≤ (γ + ε)kn+ aj

which implies
am
m
≤ (γ + ε)

kn

m
+ sup

0≤j<k

aj
m
.

95



ABOUT SUBADDITIVE SEQUENCES 96

So, we �nd

sup
m≥n′

am
m
≤ sup

m≥n′

(
(γ + ε)

kn

m

)
+ sup

m≥n′
sup

0≤j<k

aj
m
≤ sup

m≥n′

(
(γ + ε)

kn

m

)
+ sup

m≥n′
sup

0≤j<k

ja1

m
.

Let us prove that limn′→+∞ supm≥n′ sup0≤j<k
ja1
m
≤ 0. If a1 ≤ 0, the result is obvious and

if a1 > 0, this results from

sup
0≤j<k

ja1

m
≤ k

nk
a1 =

a1

n
→ 0 if n′ → +∞.

Moreover, we have

lim
n′→+∞

sup
m≥n′

(
(γ + ε)

kn

m

)
≤ γ + ε.

Indeed, if γ + ε > 0, this results immediately from kn
m
≤ 1. If γ + ε < 0, this results from

(γ + ε)
kn

m
≤ (γ + ε)

kn

k(n+ 1)
= (γ + ε)

n

(n+ 1)
→ (γ + ε) if n′ → +∞.

We have proved that
lim sup

am
m
≤ γ + ε = lim inf

am
m

+ ε.

Now, let us consider the case γ = −∞. Let us prove that

lim sup
an
n

= −∞.

For all N > 0, there exists k ∈ N0 such that ak
k
≤ −N . Applying the same logic as the

ideas developed in the �rst part of the proof, we have

akn
kn
≤ ak

k
≤ −N

and if we keep the notation of the decomposition m = kn+ j where 0 ≤ j < k, we have

sup
m≥n′

am
m
≤ sup

m≥n′
(
ank
m

) + sup
m≥n′

(
aj
m

)

≤ sup
m≥n′

(
−Nkn
m

) + sup
m≥n′

(j
a1

m
)

≤ sup
m≥n′

(
−Nn
n+ 1

) + sup
m≥n′

(j
a1

m
).

If we separate the case a1 ≥ 0 from the case a1 < 0, we conclude that the second term of
this last inequality converges to 0 if n′ goes to in�nity. Hence the conclusion follows.

An analogous result to this lemma is true for the superadditives sequences, i.e. the
sequences satisfying an+m ≥ an + am ∀m,n ∈ N∗.
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5.2 Some inequalities from S. Bernstein

Proposition 190. Let k ∈ N0 and R1, R2 ∈ R such that 0 < R1 < R2. There exists a
positive constant C (which only depends on R1, R2, k and d) such that for every function
u ∈ L∞(Rd), we have

suppFu ⊆ B(0, R1λ)⇒ sup
|α|=k
‖Dαu‖L∞ ≤ Cλk‖u‖L∞ , (5.1)

suppFu ⊆ B(0,≤ R2λ)\B(0, R1λ)⇒ C−1λk‖u‖L∞ ≤ sup
|α|=k
‖Dαu‖L∞ ≤ Cλk‖u‖L∞ . (5.2)

5.3 About the Littlewood-Paley decomposition

The aim of this section is to prove certain results presented in section 2.8.

Proposition 191. We have

Id = S0 + ∆0 + ∆1 + . . . ,

with convergence in S ′(Rd).

Proof. Let u ∈ S ′(Rd) and f ∈ S(Rd). We have

(S0u+
N∑
j=0

∆ju)(f) = SN+1u(f)

= F−1(ϕ̂(2−(N+1)ξ)Fu)(f)

= u(F(ϕ̂(2−(N+1)ξ)F−1f))

= u(F−1(ϕ̂(−2−(N+1)ξ)Ff)).

Let us prove that we have

F−1(ϕ̂(−2−(N+1)ξ)Ff)→ f in S(Rd)

which is equivalent to
ϕ̂(−2−(N+1)ξ)Ff → Ff in S(Rd).

Let k, M ∈ N0. It is su�cient to prove that

sup
x∈Rd

(1 + |x|)M |Dα
(
(ϕ̂(−2−(N+1)x)− 1)Ff

)
(x)| −→ 0

for all |α| = k. Let 0 6= β ≤ α. We have

sup
x∈Rd

(1 + |x|)M |Dβ(ϕ̂(−2−(N+1)x)− 1)Dα−βFf(x)|

= sup
x∈Rd

(1 + |x|)M |Dβϕ̂(−2−(N+1)x)2−(N+1)|β|Dα−βFf(x)|

≤C2−(N+1)|β| sup
x∈Rd

(1 + |x|)M |Dα−βFf(x)|.
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Moreover,

sup
x∈Rd

(1 + |x|)M |(ϕ̂(−2−(N+1)x)− 1)DαFf(x)|

≤C sup
|x|≥2N

(1 + |x|)M |DαFf(x)| −→ 0 as N → +∞.

By using the Leibniz formula, we obtain the desired result.

Lemma 192. If f ∈ Lp(Rd) where p ∈ [1,+∞], then the functions Sj(f) and ∆j(f) belong
to the space Lp(Rd) and

Sj(f) = 2jdϕ(2j·) ? f and ∆j(f) = 2jdψ(2j·) ? f

for all j ∈ Z.

Proof. Let us prove the result for Sj(f) (the proof can easily be adapted to ∆j(f)). Since
the function 2jdϕ(2j·) belongs to the Schwartz space, it belongs in particular to the spaces
Lq(Rd) for all q ∈ [1,+∞]. Using Hausdor�-Young inequalities, the function de�ned by
2jdϕ(2j·)?f exists, belongs to Lp(Rd) and, by a classical property of the Fourier transform
of tempered distributions, it satis�es

F(2jdϕ(2j·) ? f) = F(2jdϕ(2j·))Ff = ϕ̂(2−jξ)Ff.

5.4 Some reminders about wavelets

In this section, we recall the concept of wavelets as well as some of their basic properties.
The wavelet bases in L2(Rd) can be obtained from a function φ and from 2d−1 functions

ψ1, ..., ψ2d−1, which are all assumed to be su�ciently regular. The function φ is often called
the scaling function or �father� wavelet, and the functions ψi are often called the �mother�
wavelets. We de�ne the following functions by translations and dilatations of functions φ
and ψi:

φk(x) = φ(x− k), ψij,k(x) = ψi(2jx− k)

for all i ∈ {1, ..., 2d − 1}, j ∈ N0, k ∈ Zd.
Under some conditions, the set {φk} ∪ {2jd/2ψij,k}i,j,k de�nes an orthonormal basis of

L2(Rd) and forms what is called a multiresolution analysis or a multiresolution approxima-
tion ([37, 93]). We recall this concept here below:

De�nition 193. A sequence (Vj)j∈Z of closed linear subspaces of L2(Rd) is a multiresolu-
tion analysis if the six following properties are satis�ed:

1. the space Vj is invariant by translation proportional to the scale 2−j: for all j ∈ Z,
k ∈ Zd, the function f belongs to the space Vj if and only if f(.− 2−jk) also belongs
to the space Vj;
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2. for all j ∈ Z, we have Vj ⊂ Vj+1;

3. for all j ∈ Z, the function f belongs to the space Vj+1 if and only if f(./2) belongs
to the space Vj;

4. we have
+∞⋂
j=−∞

Vj = {0};

5. we have
+∞⋃
j=−∞

Vj = L2(Rd);

6. there exists a function θ such that the sequence {θ(.− k)}k∈Zd is a Riesz basis of the
space V0, i.e. it is a sequence of elements of V0 such that there exist C1, C2 > 0 such
that, for every sequence of scalars (αk)k∈Zd ∈ l2(Z), we have

C1

(∑
k

|αk|2
)1/2

≤ ‖
∑
k

αkθ(.− k)‖L2(Rd) ≤ C2

(∑
k

|αk|2
)1/2

, (5.3)

and the vector space of �nite sums
∑

k αkθ(. − k) (on which the inequality (5.3) is
tested) is dense in V0.

If the functions φ and ψi, which constitute the multiresolution analysis, belong to
Cr(Rd) and if the derivatives of order less or equal to r are rapidly decreasing, we say that
the multiresolution analysis is of regularity r ([64]). We de�ne the wavelet coe�cients of
a function f of L2(Rd) by

Ck =

∫
Rd
f(x)φk(x)dx, cij,k = 2jd

∫
Rd
f(x)ψij,k(x)dx (5.4)

for all j ∈ N0, i ∈ {1, ..., 2d − 1}, k ∈ Zd.
Hence, any function f of L2(Rd) can be decomposed in the basis in the following way:

f =
∑
k∈Zd

Ckφk +
2d−1∑
i=1

∑
j∈N0

∑
k∈Zd

cij,kψ
i
j,k. (5.5)

For more information concerning the multiresolution analysis and the wavelet decomposi-
tion, the reader can refer to [37, 89, 93].

Under some classical regularity conditions on the multiresolution analysis, the formulae
(5.4) and (5.5) are still true in a more general framework than L2(Rd) ([93]). The formulae
should be understood as a dual product between su�ciently regular functions (the wavelets)
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and distributions (f in our case). Let us recall that if the multiresolution analysis is of
regularity r, the wavelets have a corresponding number of vanishing moments ([93]):

if |α| < r, we have
∫
Rd
ψi(x)xαdx = 0.

Therefore, if the wavelets belong to the Schwartz class, all their moments vanish.

5.5 Some reminders about the interpolation theory

In this section, we recall some of the classical concepts of the interpolation theory.
In the sequel, we consider two Banach spaces A0 and A1, which are continuously em-

bedded in a topological vector space V , so that spaces A0∩A1 and A0 +A1 are well-de�ned
Banach spaces. Let us de�ne the operator J for all t > 0 and a ∈ A0 ∩ A1 by

J(t, a) = max{‖a‖A0 , t‖a‖A1}.

Let us give the de�nition of the J-method of interpolation.

De�nition 194. Let 0 < θ < 1 and 1 ≤ q ≤ +∞. We de�ne the interpolation space
[A0, A1]θ,q,J in the following way: we say that a belongs to [A0, A1]θ,q,J if a can be written as
a =

∑
j∈Z uj with convergence in A0+A1, where uj ∈ A0∩A1 and (2−jθJ(2j, uj))j∈Z ∈ lq(Z).

Let us de�ne the operator K for all t > 0 and a ∈ A0 + A1 by

K(t, a) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1}.

Let us give the de�nition of the K-method of interpolation.

De�nition 195. Let 0 < θ < 1 and 1 ≤ q ≤ +∞. The interpolation space [A0, A1]θ,q,K
is de�ned in the following way: we say that a belongs to [A0, A1]θ,q,K if a ∈ A0 + A1 and
(2−jθK(2j, a))j∈Z ∈ lq(Z).

Let us recall the de�nition of the Sobolev spaces.

De�nition 196. Let p ∈ [1,+∞] and m ∈ N0. The Sobolev space W p
m(Rd) is de�ned by

W p
m(Rd) = {f ∈ Lp(Rd) : Dαf ∈ Lp(Rd) ∀|α| ≤ m}.

We de�ne a norm on this space by

‖f‖W p
m

=
∑
|α|≤m

‖Dαf‖Lp .

The derivatives in this de�nition should be understood in a weak sense.
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Remark 197. Even if the Sobolev spaces are de�ned in terms of derivatives in the weak
sense, it is still possible to link them with the classical concept of derivatives up to a certain
order. Indeed, the result below links Sobolev spaces and classical Hölder spaces together,
and is generally attributed to Morrey ([114, 116]).

Proposition 198. Let p ∈]d,+∞]; we have W p
1 (Rd) ⊂ Λγ(Rd) where γ = 1− d

p
, and

|f(x)− f(y)| ≤ C|x− y|γ‖f‖W p
1

∀f ∈ W p
1 (Rd).

As a consequence, if f ∈ W∞
m (Rd), then the function f can be modi�ed on a negligible

set so that it belongs to the space Cm−1(Rd), and its derivatives Dαf for |α| = m− 1 are
di�erentiable almost everywhere on Rd. Moreover, proposition 198 gives a result similar
to the mean value theorem for these almost everywhere di�erentiable functions.

For more information about the classical theory of interpolation spaces, the reader can
refer to [17, 86].
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