Unexpected sensitivity of the annual net ecosystem exchange to the high frequency loss corrections in a grazed grassland site in Belgium

Gembloux Agro-Bio Tech Université de Liège

Objective & Strategy

The impact of the reference cospectrum choice on the annual carbon balance was investigated at the Dorinne Terrestrial Observatory (DTO). To reach this goal, we :

• Compare three high frequency loss correction approaches of CO_2 fluxes, all based on the Monin-Obukhov similarity;

▲ Evaluate them by comparing the nighttime eddy covariance (EC) fluxes, corrected with each approach, with fluxes measured from a 4-month period of soil/grass respiration measurement campaigns at the DTO;

• Quantify the impact of the correction approaches on the annual carbon balance by using 4 years of EC measurements.

The Dorinne Terrestrial Observatory

An intensively grazed experimental grassland site in Belgium ; ◆ EC fluxes measured with a closed-path CO₂/H₂O gas analyzer IRGA (LI-7000) and a sonic anemometer (CSAT3) at rate of 10 Hz since 2010; Soil/grass respiration measured with a dynamic closed soil chamber (Fig. 1)

Method

1^{rst} step : Computation of correction factors

- The general procedure is illustrated in Fig. 2;
- The correction factor was computed as (eq. 1) for each 30 min data;

$$\boldsymbol{\phi} = \frac{\int_0^\infty C_{ws}(f) df}{\int_0^\infty C_{ws}(f) \,\delta(f) df} \tag{1}$$

- where $C_{WS}(f)$ is the undamped cospectral density which can be $C_{WS}(f)$ is the undamped cospectral density which can be either the sensible heat cospectra (Local correction factor, Φ_{I}) or the Kaimal cospectra (K1 and K2 correction factors, Φ_{κ_1} Φ_{κ_2} respectively);
- δ (f) is the transfer function of the EC system calculated as the normalized ratio of CO_2 and the sensible heat cospectral densities. A nonlinear Lorentzian equation (eq. 2) was then fitted on this ratio to estimate the cut-off frequency (f_{co}) .

$$\delta(f) = 1 / (1 + (f/f_{co})^2)$$
 (2)

2nd step : Validation of the correction approaches

- ◆ Calculation of the total chamber based TER estimates (R_{ST}) by summing soil/grass respiration and the averaged cattle respiration estimated as 1.02 µmol m⁻² s⁻¹;
- Statistical analysis based on the comparison of the nighttime EC fluxes (corrected with the local approach (R_{SI}) and both Kaimal approaches (R_{SK1} , R_{SK2})) and the total chamber based respiration measurements (R_{ST});
- ♦ Selection of the most realistic approach to correct the high frequency losses of CO₂ fluxes from this comparison.

EGU 2016, Vienna - Austria, 17-22 April 2016

Ossénatou MAMADOU^{1,2*}, Louis GOURLEZ De La MOTTE¹, Anne De LIGNE¹, Bernard HEINESCH¹ & Marc AUBINET¹ ¹University of Liège – Gembloux Agro-Bio Tech, TERRA, Ecosystems – Atmosphere Exchanges, Gembloux, Belgium. ²University of Porto-Novo, Institute of Mathematics and Physical Sciences, Porto-Novo, Bénin.

*ossenatou.mamadou@gmail.com

