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ABSTRACT

Hydrogeophysics has become a major field of research in the
past two decades, and time-lapse electrical resistivity tomogra-
phy (ERT) is one of the most popular techniques to monitor pas-
sive and active processes in shallow subsurface reservoirs.
Time-lapse inversion schemes have been developed to refine in-
version results, but they mostly still rely on a spatial regulari-
zation procedure based on the standard smoothness constraint.
We have applied a covariance-based regularization operator to
the time-lapse ERT inverse problem. We first evaluated the
method for surface and crosshole ERT with two synthetic cases
and compared the results with the smoothness-constrained

inversion (SCI). These tests showed that the covariance-con-
strained inversion (CCI) better images the target in terms of
shape and amplitude. Although more important in low-sensitiv-
ity zones, we have observed improvements everywhere in the
tomograms. Those synthetic examples also show that an error
made in the range or in the type of the variogram model had a
limited impact on the resulting image, which still remained bet-
ter than SCI. We then applied the method to cross-borehole ERT
field data from a heat-tracing experiment, in which the compari-
son with direct measurements showed a strong improvement of
the breakthrough curves retrieved from ERT. This method could
be extended to the time dimension, which would allow the use
of CCI in 4D inversion schemes.

INTRODUCTION

Hydrogeophysics has become a major field of research in the past
two decades, and time-lapse monitoring is now commonly applied
to study the dynamic changes of subsurface reservoirs (Binley et al.,
2015). Among the available geophysical techniques, time-lapse
electrical resistivity tomography (ERT) is one of the most popular
methods (Singha et al., 2015). Given its sensitivity to numerous
soil/rock properties, ERT has been applied in various contexts, such
as salt-tracer experiments (Doetsch et al., 2012b; Robert et al.,
2012), dynamics of infiltration and saturation in the vadose zone
(Binley et al., 2002; Koestel et al., 2008), monitoring of permafrost
(Krautblatter et al., 2010; Supper et al., 2014), interaction between
surface and groundwater (Coscia et al., 2011), and more recently to
CO;, sequestration (Carrigan et al., 2013) and heat-tracing experi-
ments (Hermans et al., 2014; Arato et al., 2015).

In contrast to static ERT where spatial variations of bulk electrical
resistivity are related to several specific properties (saturation, salin-

ity, soil/rock type, temperature, etc.), temporal electrical resistivity
changes can generally be linked to only one of these parameters or
states (e.g., temperature in heat-tracing experiments). Consequently,
the results may be directly related to the phenomenon of interest. In
addition, time-lapse inversion schemes have been developed to re-
fine inversion results. The different inversion scheme takes advan-
tage of the repetition of measurements over time to eliminate the
systematic error component of the data (LaBrecque and Yang,
2001; Kemna et al., 2002). The 4D inversion scheme (Kim et al.,
2009; Karaoulis et al., 2011) inverts multiple data sets simultane-
ously including the time dimension in the inversion process. How-
ever, deterministic time-lapse inversion schemes still remain
dependent on the spatial or spatiotemporal regularization procedure
required to overcome the ill-posedness of the ERT inverse problem.

The standard spatial regularization method is the application of a
smoothness constraint (de Groot-Hedlin and Constable, 1990).
However, such a constraint is often not coherent with the geology.
Thus, many alternatives have been developed in static imaging,
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such as blocky inversion (Farquharson and Oldenburg, 1998),
structural inversion (Kaipio et al., 1999; Doetsch et al., 2012a), min-
imum support (MS) and gradient support functionals (Portnaguine
and Zhdanov, 1999; Blaschek et al., 2008), or other prior informa-
tion incorporation methods (Caterina et al., 2014).

Despite the fact that regularization in a time-lapse mode is similar
to a static mode, very few studies have investigated the use of alter-
native spatial regularization operators in time-lapse studies more
adapted to the physics of the process (Ajo-Franklin et al., 2007;
Doetsch et al., 2010; Fiandaca et al., 2015; Nguyen et al., 2016).
Coupled hydrogeophysical inversion schemes are promising. They
are directly expressed in terms of process physics and therefore
do not require any regularization. However, the complexity of
the subsurface, the dependence on the hydrogeological conceptual
model, and the uncertainty of the involved petrophysical relation-
ships may limit their use to homogeneous or simple cases (Hinnel
et al.,, 2011) or be computationally demanding (Irving and Sin-
gha, 2010).

Therefore, the need for regularization functionals coherent with
the process of interest is as important in time lapse as it is in static
inversion. Very recently, Fiandaca et al. (2015) and Nguyen et al.
(2016) apply the MS and minimum gradient-support (MGS) func-
tionals to time-lapse ERT inversion to produce focused time-lapse
changes. This is of particular interest to image preferential flow
paths in fractured aquifers or preferential infiltration processes.
The MGS and smoothness constraints can be seen as two end mem-
bers from very sharp to very smooth constraints. However, even for
dispersed processes, such as solute transport in tracer experiments,
the smoothness constraint may be too extreme to produce reliable
changes, generally leading to an underestimation of the maximum
resistivity variation, whereas MS approaches require determining
the desired value of the MS parameter. In such contexts, the appli-
cation of a specific correlation length through covariance-based
constraints may be useful (Yeh and Liu, 2000; Holliger et al.,
2008). Some authors have also proposed building physically based
regularization operators based on training data sets (Oware et al.,
2013) or running several inversions with varying inversion param-
eters (Audebert et al., 2014) to better identify the zones affected by
resistivity changes.

Model parameter covariance matrices used for geophysical inver-
sion are introduced by Franklin (1970) and Tarantola and Valette
(1982). Maurer et al. (1998) generalize the approach for 2D inver-
sion and compare it with the smooth-model operator. They show
that the method tends to favor a zero-structure model. This approach
is later applied by several authors for static ERT (Linde et al., 2006;
Hermans et al., 2012). Johnson et al. (2007) develop an alternative
regularization to ensure that variogram statistics are imposed during
the inversion by explicitly calculating the variogram of the model.
They apply the approach to cross-borehole GPR data and later to
ERT data (Johnson et al., 2012). Their method is truly stochastic
because they generate an ensemble of solutions.

In time-lapse studies, Day-Lewis et al. (2002) develop an inver-
sion procedure based on a spatiotemporal parameter covariance ma-
trix to invert crosswell GPR data and test it on a synthetic case.
Their procedure enables taking into account the data acquisition
time in the inversion. They impose spatial and temporal correlation
lengths in the inversion. Similarly, Rosas Carbajal et al. (2012) ap-
ply the algorithm of Linde et al. (2006) to synthetic time-lapse mag-
netotelluric data using various norms to produce more or less sharp

models. Doetsch et al. (2010) also use the algorithm of Linde et al.
(2006) to jointly invert time-lapse GPR and ERT field data. How-
ever, these studies did not systematically investigate the role of the
imposed correlation length, nor quantified the improvement brought
by the technique compared with standard inversions.

In this paper, we propose to apply a covariance-based constraint
as regularization operator to the time-lapse ERT inverse problem,
termed covariance-constrained inversion (CCI) hereafter. We first
discuss the details of the implementation. Then, we illustrate the
method with two synthetic examples. The first example uses surface
ERT, in which we compare the results with the standard smooth-
ness-constrained inversion (SCI). We analyze the role of the
imposed correlation length and the varying resolution in the tomo-
grams. Then, we apply the methodology to a cross-borehole ERT
example to illustrate the role of the sill and type of the covariance
model. Finally, we apply the technique in a field case study in which
a heat-tracing experiment was monitored (Hermans et al., 2015b).
We use direct measurements by several control piezometers to com-
pare the results and assess their quality. The paper ends with dis-
cussion and conclusion.

TIME-LAPSE COVARIANCE-BASED INVERSION

Our methodology is based on the inversion procedure presented
in Hermans et al. (2012) combined with the difference inversion
scheme presented in Kemna et al. (2002), both implemented in
the 2.5D ERT inversion code CRTomo (Kemna, 2000).

Model parameter covariance matrix

In the inversion procedure, the roughness matrix commonly used
in SCI for regularization is replaced by the model parameter covari-
ance matrix C,,. This matrix describes how model parameters are
correlated according to their distance from each other. For station-
ary processes, it is linked to the variogram

Y(h) = Cm(o) - Cm(h)7 (1

where C,,(0) is the sill of the variogram, equal to the variance of the
parameter, and / is the lag, i.e., the distance between parameters.
The variogram can be computed using experimental data and then
modeled using standard approaches, such as the Gaussian, exponen-
tial, or spherical models (for a description of geostatistical concepts,
see Isaaks and Srivastava, 1989). In the case of anisotropy, two (or
three) main ranges (e.g., horizontal and vertical ranges) can be used
to model the generalized range in every direction assuming an el-
lipsoidal distribution of ranges (Chasseriau and Chouteau, 2003).
The generalized range can be subsequently used to compute the
value of the covariance (equation 1) for any combination of model
parameters in the grid and build the parameter covariance matrix
used during the inversion process.

Applications for static conditions (Linde et al., 2006; Hermans
et al., 2012; Caterina et al., 2014) have shown that the use of a
CCI has generally led to a strong improvement of the resulting im-
age compared with SCI. This operator also smooths the distribution
of model parameters through the covariance matrix, but to a level
that can be controlled by the correlation length.
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Difference inversion scheme

In the difference inversion scheme, data and model parameters
are expressed in terms of differences compared with an initial state
called the background:

Am=m-m, Ad=d-d,, 2)

where, in this work, m and m are the log electrical resistivity of the
current model and the background, respectively, and d and d, are
the corresponding log resistance data. To be consistent with the for-
mulation of the difference inversion scheme, the model parameter
covariance matrix must also be expressed in terms of model
differences Am. From now on, we will refer to it as the model differ-
ence covariance matrix Cyp,.

Geostatistical concepts are often used in geophysics to describe
subsurface parameter distributions. The use of geostatistical tools
such as the variogram theoretically requires the assumption of sta-
tionarity (Isaaks and Srivastava, 1989). Even if stationarity cannot
be demonstrated, it is generally accepted for structural hetero-
geneity (i.e., for the absolute value distribution of a given param-
eter). In time-lapse applications, however, parameter changes are
associated with changing variables of a process, which differs from
a structural property (Michalak and Shlomi, 2007). The rigorous
application of geostatistical approaches would therefore require first
validating the proposed model difference covariance. In the present
application, we are instead interested in the ability of the covariance
matrix to regulate the correlation length of the sought model
changes (Hermans et al., 2012). We thus accept using the concept
in situations, in which theoretical statistical assumptions are not
strictly verified (Day-Lewis et al., 2002; Doetsch et al., 2010; Rosas
Carbajal et al., 2012).

The objective function of the inverse problem can be expressed as

bairr(Am) = [[C5°[Ad — (f(m) — f(my))][13
+ 2] C05Am|2, 3)

where C,gq is the data “noise” difference covariance matrix deter-
mined from error estimates, and f is the forward operator mapping
the model parameters to the data. The parameter A is the regulari-
zation parameter that balances between the data misfit and the
model functional. In CRTomo, 4 is optimized at each iteration
through a line search to get the minimum root-mean-square value
of the error-weighted data misfit (¢,,,;) for the maximum possible
value of 1. The line search step is reduced as the inversion converges
(for technical details, see Kemna, 2000). When erms becomes
smaller than one, 4 is increased to get the solution that fits the data
to the assumed error level (g, = 1) (de Groot-Hedlin and Consta-
ble, 1990; Kemna, 2000). We applied this criterion for all inversions
presented in this paper; i.e., all inversions for SCI and CCI are fitted
to the same error level with the same optimization of A, ensuring a
fair comparison between results.

In the cases presented in this study, we use a constant value of
Canm(0) for all parameters. In consequence, this parameter only acts
as a multiplication constant of C,y, in the inversion process and its
effect is overcome by the optimization made on the regularization
parameter A (equation 3). This is also observed by Hermans et al.
(2012) and Rosas Carbajal et al. (2012) and will be illustrated for
the second synthetic case. We invert for model parameter changes

that can explain the variations observed in the data. It means that all
inversions are relative to the background model m, that must be
obtained previously by a static inversion. The data difference
covariance matrix C,q is computed using an assessment of the data
error. For field data, we use reciprocal measurements to compute a
linear model of the resistance error given the measured resistance
(Slater et al., 2000)

le] = b+ cR, )

where e is the reciprocal error, b is an absolute resistance error com-
ponent, c is a relative resistance error component, and R is the mean
measured resistance.

SYNTHETIC STUDIES
Surface synthetic case
Background model

The first synthetic benchmark is based on surface ERT measure-
ments inspired by a field case (Hermans et al., 2015a). The back-
ground model mimics a heterogeneous alluvial aquifer with a
distribution of electrical resistivity ranging from 50 Qm in loam
and clay, located mainly in the upper part of the model, to more
than 300 Qm in sand and gravel located in the bottom part of
the aquifer. The alluvial deposits lie on a more resistive bedrock.

The simulated electrode array consists of 64 electrodes with 2 m
spacing (total length of 126 m). The simulated data correspond to a
dipole-dipole protocol with the dipole length less than or equal to
nine electrode spacings and the dipole spacing less than or equal to
six. This leads, for background and time-lapse data sets, to 1015
resistance data.

Figure la shows the anisotropic SCI of the background.
Although leading to slightly different inversion results, other back-
ground inversions (such as CCI) have a negligible influence on the
time-lapse inversion results. For the sake of conciseness, we limit
ourselves to the use of the model presented in Figure la as back-
ground model m, for subsequent time-lapse inversions.

Time-lapse model

The time-lapse model used in this example is displayed in Fig-
ure 1b, it is defined in terms of percentage change of resistivity with
respect to the background shown in Figure la:

Am% — PTL,i — PBG,i % 100, (5)
PBG,i

where prp; and pgg; are, respectively, the resistivity of the ith
model parameter of the time-lapse and background models. The
time-lapse model represents a confined horizontal anomaly located
in the center of the model. Its extension is 25 m in its upper and
bottom parts and 33 m in the middle. The maximum change is lo-
cated at 6.25 m depth and corresponds to a change of resistivity of
50%. The change of resistivity decreases linearly from —50% to 0%
for the five adjacent layers (0.5 m thick), upward and downward.
Thus, the total thickness of the anomaly is 4.5 m. Note that the for-
ward and inversion grids with regular blocks were extended later-
ally and at depth to limit the effect of boundary conditions.
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This model was built as an alternative to the classical block
model, for which smoothing constraints are obviously inappropri-
ate. Here, the model displays gradual changes so that sharp or
blocky models are not desirable. We computed the vertical and hori-
zontal variograms for this time-lapse model using the spatial distri-
bution of time-lapse changes in the logarithm of electrical
resistivity. The calculated horizontal and vertical ranges with the
Gaussian variogram model are, respectively, 32 and 3.2 m (Figure 2a
and 2b).

Noise was added to the data with two random components: an
absolute resistance component uniformly distributed between
—0.0005 and 0.0005 Q and a relative resistance component uni-
formly distributed between —0.25% and 0.25% of the resistance
(equation 4). This relatively low noise level was chosen considering
that lower noise levels are expected for time-lapse studies using the
difference inversion because any systematic error component is sup-
pressed (equation 2). The choice of two uniformly distributed noise
components is made to better mimic the noise observed on real data
sets. However, it has to be noted that a uniform distribution is in-
consistent with the choice of an /,-norm for the calculation of the
data misfit, which assumes a Gaussian distribution of the error. Still,
this is often neglected in practice (Pidlisecky et al., 2007). In this
case, the effect is expected to be similar for SCI and CCI.

In addition to visual comparison, we will compare the inversions
based on their normalized time-lapse model misfit (M My ). It is cal-
culated based on the change in logarithm of resistivity in the inversion
results compared with the corresponding change in the true model:

" 2
n PrLi _ PrLi
R (loga k’gpgﬁ,)

MMO n

MMy, =

where * makes reference to the inverted models in comparison with
the true models and #n is the number of cells in the grid. The MM,

corresponds to the value of the square root in equation 6 for an
inverted time-lapse model with no change (ppg,; = pi ;> but
PBG,i # P1Li)- Because ppg; might differ from pgg;, equation 6
tends to penalize relative changes different from the ones observed
in the true time-lapse model. A model retrieving perfectly the model
changes would have a MMt of zero, whereas a model with no
changes at all would have a MMy, equal to one. A value more than
1 would correspond to a model with an unacceptable level of arti-
facts. The MMy is a global measure of performance averaging
the result on the whole inversion section. Larger or smaller dif-
ferences can be observed locally.

Comparison with standard inversion

Figure 1 shows the comparison of the time-lapse results obtained
with SCI and CCIL Two different cases are presented corresponding
to isotropic and anisotropic constraints. For isotropic CCI, the
model parameter covariance matrix is built using a unique range
of 3.2 m, corresponding to the vertical correlation. This case intends
to assess the behavior of the method when only the vertical range
can be assessed, as it can be the case in practice through vertical
boreholes. For the anisotropic SCI, an anisotropy ratio of 10 is used,
corresponding to the ratio in CCI for vertical and horizontal ranges
equal to 3.2 and 32 m.

As can be expected for the isotropic SCI in time lapse (Figure 1c¢),
the anomaly is spread almost over the whole thickness of the aqui-
fer. The maximum change is only —20% compared with the —50%
of the true time-lapse model. The maximum change is not detected
at the correct position but approximately 1 m deeper. The top and
lateral extension of the anomaly are relatively well-imaged. The
anisotropic SCI performs slightly better with a maximum change
of —21.7% and a decrease of smoothing at depth.

The CCI results are better than SCI results. In the isotropic case,
the maximum change is —22.3%, a slight improvement; the depth of
the anomaly is correctly located, and its thickness better retrieved.

It is spread to the bottom of the aquifer, but
here a clear decrease of the amplitude of the
anomaly is visible. The top and lateral extensions

a) log p P) % Ap of the anomaly are well-imaged, similar to the
€ 0 2.4 or 0 SCI inversion results. For the anisotropic CCI,
% 5 5 5 — -20 the amplitude of the anomaly is better estimated
3 10 10 -40 (_28%)
e o 50 100 1.6 0 50 The observations abov.e are 'conﬁrmed by the
<) % Ap d) % Ap value of MM, for those inversions (Table 1) and
~ 0 0 0 0 by the variograms computed on the inverted to-
% 5 20 5 _o0 mograms for the anisotropic case (Figure 2c—2f).
‘% 10 . 40 10 . _40 The MMy, value for the anisotropic SCl is 0.73,
o whereas it decreases to 0.59 for the CCI, which is
0 50 100 o 0 50 % A a substantial improvement (24%). The values for
e) 0 % A% Do ° % the isotropic cases are degraded to 0.78 for SCI
B _ ) and 0.66 for CCI. The ranges of the variograms
:g/ ]- -20 5 - 20 for CCI (4.5 and 42 m for vertical and horizontal
é% 10 -40 10 -40 range values, respectively) are closer to those of
0 50 100 0 50 the synthetic time-lapse model (3.2 and 32 m, re-
X (m) X (m) spectively), which were used to compute the

Figure 1. (a) The SCI of the background, (b) true time-lapse model, (c) time-lapse iso-
tropic SCI, (d) time-lapse anisotropic SCI, (e) time-lapse isotropic CCI, and (f) time-
lapse anisotropic CCI. The CCI inversions better image the anomaly even if the hori-
zontal range is unknown. Adding the correct anisotropy ratio slightly improves the re-

sults for SCI and CCIL.

model difference covariance matrix. The SCI
renders an even more overestimated vertical
range (5.5 m), whereas the horizontal range is
42 m, too. Even though CCI does not ensure re-
cover of the imposed correlation length, it allows
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the computing of a solution, whose vertical range is in better agree-
ment with the true model. This reflects the fact that vertical varia-
tions in the tomograms are less controlled by the data than
horizontal variations, in agreement with the well-known sensitiv-
ity/resolution characteristics of ERT surface arrays. The higher
ranges in the inversion results are probably related to the general
limitations of surface ERT to image an anomaly located at this
depth. The differences in the sill value are related to the maximum
change obtained in the tomograms.

Sensitivity to the ranges

In this section, we modify the model difference covariance matrix
by dividing or multiplying horizontal and vertical ranges by two.
This gives us four new inversion results to compare with the sol-
ution using the standard range from the previous section. The results
are presented in Figure 3.

When the ranges are divided by two, the solutions are very close
to the reference one for the standard ranges (Figure 3b). For the
vertical range (Figure 3d), the anomaly is slightly thinner, but this
is counterbalanced by small artifacts (increase in resistivity) near the
surface that are not directly visible in the figure due to the color
scale. The reason for such small changes is probably that a poorly
chosen range can still be counterbalanced by information contained
in the data. It means that the inversion cannot find a solution with
such a small range in acceptable agreement with the data. This is
also illustrated in the model misfit, which is equal to 0.61, similar to
the standard case. For the smaller horizontal range (Figure 3c), the
increase in MMy is slightly larger and the amplitude of the maxi-
mum change in resistivity is smaller.

a) 408 b) 10®
4 3
_ 2
< 2 o,
> 1 o
0 0
0 50 0 5
¢ 107 d) gt
2 4
S 2
o>~
0 0
0 50 0 5
T B 10
1 2 -
=
S 05 1
0 0
0 50 0 5
h (m) h (m)

Figure 2. Experimental (circle) and modeled (line) variogram for
the time-lapse synthetic model (a = horizontal and b = vertical),
for the SCI tomogram (¢ = horizontal and d = vertical), and for
the CCI tomogram (e = horizontal and f = vertical) of Figure 1d
and 1f. The CCI renders a variogram closer to the imposed ones.

For ranges multiplied by two, the degradation of the solution
compared with that for the standard ranges is more visible. A larger
horizontal range (Figure 3e) tends to spread the anomaly horizon-
tally along with a decrease of the maximum amplitude of the
anomaly. This is an undesirable effect because the anomaly was
initially well-constrained laterally. When the vertical range is in-
creased (Figure 3f), the anomaly is spread over an increased thick-
ness and the position of the maximum resistivity change is now
located deeper below the true one. Both model misfits are degraded.

The reason for the observed behavior probably lies in the reso-
lution/sensitivity pattern of a surface ERT survey. The regulariza-
tion operator has a strong influence in zones of low sensitivity and
will impact primarily the resistivity variations in these zones. An
increase in the range value will thus tend to increase smoothness
in the bottom part of the model, either vertically or horizontally.
However, as can be seen from Figure le, the horizontal correlation
length seems to have less influence on the results.

As expected, the best solution is obtained for the correct ranges.
However, the degradation of the results when using different ranges
remains relatively small compared with the improvement brought
by CCI. The four inversion results using an underestimated or over-
estimated range, in the horizontal and vertical directions, still per-
form better than SCI. This behavior has already been observed in
similar studies using a model parameter covariance matrix in in-
verse problems (Yeh and Liu, 2000; Hansen et al., 2006; Hermans
et al., 2012). It means that if one does not have access to the ranges
through direct data, using a first guess of the ranges and an isotropic
inversion could still be useful and yield a better result than SCI. In
general, the maximum value of the range that should be considered
is half of the size of the model grid in the respective direction.

Sensitivity to the depth of the anomaly

In this section, we investigate how CCI acts when the target is
placed in different parts of the tomograms with various resolutions.

Table 1. Comparison of the time-lapse model misfit (MMy,)
for the inversions of the surface synthetic benchmark.

Case Anomaly Inversion a, (m) a; (m) MMy,
1 Middle SCliso — — 0.78
2 Middle SClanis 0.1 X ay, — 0.73
3 Middle CCI 3.2 3.2 0.66
4 Middle CCI 3.2 32 0.59
5 Middle CCI 3.2 16 0.63
6 Middle CCI 3.2 64 0.66
7 Middle CCI 1.6 32 0.61
8 Middle CCI 6.4 32 0.64
9 Top SClanis 0.1 xay, — 0.42
10 Top CCI 3.2 32 0.34
11 Bottom SClanis 0.1 X ay — 0.79
12 Bottom CCI 3.2 32 0.80




Downloaded 07/28/16 to 171.64.169.40. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

E316 Hermans et al.

In the reference case (Figure 1), the anomaly is located in the middle
of the section. The size and amplitude of the anomaly as well as the
ranges remain the same.

An anomaly located in the upper part of the model corresponds to
a best case scenario (Figure 4a). Sensitivity and resolution are more
favorable, and the decrease in resistivity should be better imaged.
This is what is observed, with SCI (Figure 4b) and CCI (Figure 4c).
The anomaly is correctly located vertically and horizontally. The
amplitude of the anomaly is also better quantified than in the stan-

Figure 3. (a) True time-lapse model, (b) time-lapse
CCI with standard ranges and inversion results with
modified ranges: (c) horizontal range divided by
two, (d) vertical range divided by two, (e) horizontal
range multiplied by two, and (f) vertical range

o

Depth (m) &
o

dard case. However, the improvements observed in the reference
case for CCI seem to be confirmed in this case too: the vertical cor-
relation length controls the smoothing of the anomaly with depth,
which yields a less spread out anomaly, and the maximum ampli-
tude of the anomaly is closer to the true one (—41% for CCI and
—39% for SCI). These observations are confirmed in terms of time-
lapse model misfits, which are equal to 0.42 and 0.34 for SCI and
CClI, respectively. The relative improvement is similar to the refer-
ence case. We also computed the ranges for the inverted tomograms.
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Figure 4. (a) True time-lapse model with the @) 0 b) 0
anomaly in the upper part of the model, (b) SCI, = =
and (¢) CCI results for the model in (a); (d) — '-' -
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In this case, both regularizations yield a horizontal range of 35 m,
relatively close to the reference used to compute the model differ-
ence covariance matrix (32 m). The vertical range for the aniso-
tropic SCI is slightly overestimated to 3.5 m, whereas CCI
manages to preserve the vertical range (3.1 m).

An anomaly located at larger depth is more challenging to image
(Figure 4d). The sensitivity of surface ERT decreases with depth, so
resistance data are less influenced by resistivity changes located in
this part of the model. This is clear from Figure 4e and 4f, where the
anomaly is detected, but its maximum change for both constraints is
only approximately 10%. A larger spacing between electrodes
would have to be used to increase the depth of investigation and
correctly image the anomaly in this case.

Cross-borehole synthetic case

The cross-borehole synthetic benchmark is inspired by the field
case. It is a 4.5 m wide panel with 13 electrodes in each borehole
equally spaced between 3.5 and 9.5 m depth. Data were simulated
for a mix of bipole-bipole and dipole-dipole measurement configu-
rations (same protocol as the field case). The true time-lapse model
corresponds to an anomaly with a maximum change in resistivity of
28.7%, decreasing to zero to all sides. The anomaly has the same
extension in the vertical and horizontal directions, and it is best
modeled with a spherical variogram with a range equal to 2.2 m.
It is located in the bottom left corner of the ERT panel (Figure 5a).
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Figure 5. (a) True time-lapse model, (b) SCI, (c¢) CCI with spherical
variogram model, (d) CCI with doubled sill, () CCI with exponen-
tial variogram model, and (f) CCI with Gaussian variogram model.

Data were simulated and contaminated by Gaussian noise with a
standard deviation 0.5%.

Figure 5b and 5c shows the results of SCI and CClI, respectively.
The latter performs better by reducing the smoothing effect toward
the right and bottom parts of the section. This is confirmed by the
MMy values (Table 2), with a decrease from 0.51 to 0.38.

This example also illustrates how the regularization parameter
scales the sill value used to calculate the covariance matrix. A sol-
ution with a value of the sill doubled (Figure 4d) renders almost
identical results with a value of 1 doubled, too. Small discrepancies
between the solutions arise from the line search to optimize 4, which
starts from the same value for both inversions. Figure Se and 5f
shows the effect of the choice of the variogram model (exponential
and Gaussian model, respectively) used to compute the covariance
matrix. In practice, the choice of the variogram should be based on
the available data. The Gaussian model yields results very similar to
the spherical model (Figure 5c) with MM equal to 0.39. With the
exponential model, a degradation is observed (0.45) due to the
lower maximum change in the inversion result. All solutions per-
form better than SCI, with reduced smoothing in low-sensitivity
zones (middle of the section).

Summary of the synthetic studies

In the synthetic benchmarks, we have compared SCI with our
implementation of CCI for surface and crosshole time-lapse
ERT. In the reference cases, where the ranges and the variogram
model corresponding to the true models were used, CCI is slightly
more efficient than SCI. This behavior persists when the target
anomaly is located in different zones of the tomograms with suffi-
cient sensitivity. Although the improvement observed for CCI is
limited, it remains significant for a quantitative interpretation of
time-lapse ERT.

For anomalies located in high-sensitivity zones, CCI seems to be
able to impose the correlation length to the solution. For lower sen-
sitivity zones, the correlation length used for regularization is not
conserved in the inversion result, but an imaging improvement
through reduced smoothing is still observed.

The use of CCI requires the introduction of two additional param-
eters in the inversion: the vertical and horizontal ranges. A sensi-
tivity analysis on the influence of their value has shown that an error
of 100% on the range value was not resulting in considerable
changes of the inversion results, which remained superior to SCL

Table 2. Comparison of the time-lapse model misfit (MM;)
for the inversions of the cross-borehole synthetic benchmark.

Case Constraint Vario model MM
1 SCI — 0.51
2 CCI Spherical 0.38
3 CCI Spherical, sill X 2 0.37
4 CCI Exponential 0.45
5 CCI Gaussian 0.38
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In our implementation, the role of the sill is counterbalanced by
the regularization parameter. The variance in the computed solution
is thus only dependent on the data and the assumed noise level.

The type of variogram model used to compute the covariance
matrix influences the solution. However, the degradation observed
for inappropriate models is limited compared with the benefits of
reduced smoothing effects. In this specific study, spherical and
Gaussian models yield similar results. We recommend using the
type of variogram model best fitting the experimental variogram.

FIELD EXPERIMENT

CCI is now tested on a field cross-borehole ERT example. The
data sets were collected during a heat-tracing experiment carried out
in an alluvial aquifer. We refer readers to Hermans et al. (2015b) and
Wildemeersch et al. (2014) for a detailed description of the exper-
imental setup and the results.

3 m¥h

f 38°C
@ 24h
Injection well

Figure 6. Experimental set-up of the heat-tracing experiment.

Experimental setup

The experimental site is located in the alluvial plain of the Meuse
River in Belgium. The alluvial deposits are 10 m thick and the water
level lies 3 m below the surface. The saturated deposits can be dis-
tinguished in two main layers: a sandy gravel layer from 3 to 7 m
depth and a coarse gravel layer from 7 m depth down to the bedrock.
The heat-tracing experiment (Figure 6) took place between an
injection well and a pumping well, 20 m apart and parallel to
the direction of groundwater flow. Water was continuously ex-
tracted from the pumping well at 30 m?/h. During the first 24 h
of the experiment, 3 m®/h were heated using a mobile water heater
and reinjected in the injection well with a difference in temperature
of 25°C.
At 8 m distance from the injection well, a 4.5 m wide panel of
piezometers crosses the direction of flow. The outer piezometers are
screened over the whole thickness of the aquifer and were equipped
during the experiment with fiber optic distributed temperature sens-
ing (DTS, e.g., Hermans et al., 2014) and with borehole electrode
cables. The 13 electrodes, spaced every 50 cm, were located in the
saturated zone from 3.5 to 9.5 m depth. In addition, piezometers
located in the middle of the panel were equipped with temperature
loggers to provide direct temperature measurements (Figure 6).
Resistance data were acquired using a combination of bipole-bi-
pole and cross-borehole dipole-dipole configurations (Zhou and
Greenhalgh, 2000) for a total of 969 measurements. We estimated
the error level at each time step using reciprocal measurements and
derived a common linear error model with a mixture of a two Gaus-
sian distribution: (1) an absolute resistance error with a standard
deviation of 0.002 €, and (2) a relative resistance error with a stan-
dard deviation of 0.5%.
In this specific case, we used the spatially distributed temperature
measurements from the DTS in one of the boreholes to derive the
vertical correlation length of temperature changes (spatial resolu-
tion of 25 cm). We assume that the correlation length for resistivity
changes is similar given the direct relationship between temperature
and electrical resistivity (Hermans et al., 2014) and valid in the en-
tire image plane. Due to the absence of more data, we assume an
isotropic constraint, i.e., equal vertical and horizontal ranges.
From the temperature distribution, we compute the variogram for
each time step. An example is given in Figure 7a for the time step
30 h after injection. The experimental variogram is fitted using a
Gaussian model with a sill equal to 4.6 K? (re-
lated to the variance of temperature changes) and
arange of 1.6 m. The sill is changing with time,
and it is increasing with the amplitude of the
anomaly; however, it has little influence on the
CCl results because it is balanced by the regulari-

. zation factor A (see equation 3). Similarly, the
range is varying with time (Figure 7b). We see
that it lies between 0.9 m for late time steps
and 1.9 m approximately 25 h after the beginning
of the experiment.
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Results

The data for each time step were inverted with

Figure 7. (a) The experimental variogram for the time step 30 h after beginning of in-
jection and its description by a Gaussian model with a range equal to 1.6 m. (b) The
range of the fitted variogram model evolves with time, with a minimum range of 0.9 m
and a maximum range of 1.9 m.

the difference inversion scheme using SCI and
CCL. For the latter, the corresponding range ob-
tained from the independent temperature data
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was used (Figure 7b). A data set acquired before injection was used
as the background for all subsequent time steps. The background
model was obtained with SCI (Figure 5 in Hermans et al., 2015b).

Figure 8 shows six selected time steps comparing the two regu-
larization methods. Qualitatively, we see that the results are coher-
ent for both methods. The anomaly is first growing in amplitude; it
reaches a maximum and decreases slowly toward its initial state.
Although the heated water was injected over the whole thickness
of the aquifer, it preferentially flows in the deeper part of the aquifer.
This can be explained by the contrast in hydraulic conductivity be-
tween the sandy gravel and the coarse gravel layers, which is ap-
proximately two orders of magnitude.

The anomaly is divided laterally into two different parts. The one
with higher contrast is located near the first ERT borehole, and the
second one is closer to the second borehole. Thus, we have a de-
crease in the resistivity anomaly (and in temperature) in the middle
of the bottom part of the section, where the sensitivity is lowest
(Figure 6 in Hermans et al. [2015b] for the specific sensitivity pat-

tern of the experiment). This shape of the anomaly is necessary to
explain the data, and it is confirmed by direct temperature measure-
ments in control piezometers between ERT boreholes (Wildemeersch
et al., 2014; Hermans et al., 2015b). It is probably related to a low
hydraulic conductivity (clay lens) zone between the injection well
and the ERT panel.

In the zones of lower sensitivity, more significant differences can
be observed between the inversion results. We clearly see that SCI
tends to produce a very smooth image with resistivity changes
spreading laterally and in depth, as it was observed in the synthetic
case. Although showing a minimum laterally, the two zones of
maximum resistivity changes tend to be connected in the middle
of the section. Similarly, the anomaly is spread toward the bottom
of the aquifer. This is less the case for CCIL, in which the resistivity
changes are more concentrated in two anomalies with slightly larger
amplitudes in terms of percentage changes.

The comparison with direct measurements available during the
experiment confirms that the two solutions differ mainly in the

SCl CCl SCl CCl Figure 8. Comparison of SCI and CCI results for
18h 44h various time steps during the heat-tracing experi-
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Figure 9. Comparison of SCI and CCI results with DTS measure-
ments in the second ERT borehole 30 h after the beginning of in-
jection. The inversion results are relatively similar because the
borehole is located in a high-sensitivity zone of the tomogram.

lower sensitivity zone. For this comparison, resistivity changes were
converted into temperature variations using a calibrated relationship
(Hermans et al., 2015b). Figure 9 shows the comparison of DTS
measurements with the ERT inversion results in the second bore-
hole. The sensitivity of crosshole ERT is highest in the vicinity
of the boreholes, and we see that here the inversion results are rel-
atively similar for both constraints.

Two temperature loggers are available in the bottom part of the
aquifer (Figures 6 and 8). They are located at different positions
between the ERT boreholes. We extracted the ERT-derived temper-
atures at the position of these loggers to compare them with the
breakthrough curves measured directly (Figure 10). For D1, which
is only 1 m from one of the boreholes, the two ERT curves are rel-
atively similar. They recover fairly well the maximum of the curve
but overestimate the tailing part. This can be related to oversmooth-
ing or 3D effects (Hermans et al., 2015b). However, in this part, the
temperature obtained from CCI is closer to the one measured di-
rectly in the borehole.

The second temperature logger D2 is located almost in the middle
of the panel, where the sensitivity is very low. This means that the
regularization is dominant in this zone. Here, the improvement
brought by CCl is clear. The temperatures of the CCI breakthrough
curve are almost identical to the direct measurements for the tailing
part of the curve. In addition, the amplitude of the maximum change
is better retrieved, with temperatures only slightly underestimated.
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Figure 10. Comparison of SCI and CClI results with direct measure-
ments of the temperature loggers at the locations (a) D1 and (b) D2
(see Figures 6 and 8). The tailing parts of the breakthrough curves
are better imaged with CCI, mainly in zones of low sensitivity (D2).

The overestimation of temperature in this part of the aquifer with
SCI is related to over-smoothing of the anomaly. These observa-
tions are coherent with the results of the synthetic benchmark,
which stressed that low-sensitivity zones are more impacted by
the choice of the regularization. This example illustrates how slight
changes in the recovered resistivity change distribution might sig-
nificantly improve quantitative interpretation.

CONCLUSIONS

Recent advances in geophysical imaging have broadened the
range of applications and scales to which time-lapse ERT can be
successfully applied. We can therefore expect in the near future
a relatively high growth rate for time-lapse ERT applications, in re-
search and in the industry. Many tasks remain to be done to improve
the imaging capabilities of ERT in those contexts regarding noise
analysis, data integration, and regularization.

For now, most studies have focused on the time aspect of the
time-lapse inverse problem, trying to simultaneously invert all data
sets in a true 4D model parameter space, or on model functionals
leading to sharp contrasts, such as the minimum-gradient support.
In this study, we instead focused on the spatial regularization of
individual steps of the time-lapse ERT inverse problem. We propose
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to use a covariance-based constraint of model differences to replace
the standard smoothness constraint operator in the difference inver-
sion scheme.

For surface ERT, we have shown with a synthetic benchmark that
this kind of regularization was more successful than the smoothness
constraint to image the gradual changes in resistivity of our refer-
ence model. The covariance-based regularization performed better
than the smoothness constraint in high- and low-sensitivity/resolu-
tion parts of the tomogram. The center of the mass of the anomaly
was systematically better retrieved, and the smoothing effect of the
inversion was reduced to more acceptable levels. The ranges com-
puted from the inverted tomograms are more in agreement with the
true model.

Our implementation is based on the introduction of two addi-
tional parameters: the vertical and horizontal ranges of the model
difference covariance matrix. However, a sensitivity analysis has
shown that uncertainty in the computation of the ranges does not
have a significant influence on the inversion results. A small deg-
radation was observed, but the global results remained better than
the standard smoothness-constrained solution. This means that if
few data are available and the uncertainty on the ranges is high,
it may still be worth using a CCI instead of the SCIL

The methodology was also applied to crosshole ERT data for a
synthetic and a field case, where a heat-tracing experiment was
monitored. The synthetic benchmark has shown the robustness
of the method regarding the type of variogram model and the value
of the sill. The observations made for the synthetic benchmark were
confirmed by the comparison of the inversion results of the field
case with independent direct measurements. Except for the first time
step for which the smoothness constraint might be locally more ac-
curate, the CCI globally yields more consistent results. Most sig-
nificant imaging improvements were observed in the zone of
lowest sensitivity of the tomograms, where the use of the CCI en-
abled retrieving the breakthrough curve more accurately measured
with a temperature logger. This improvement is due to the reduction
of the smoothing effect in the inversion process. In highly sensitive
zones, both inversions yield relatively similar results.

Standard SCI can be improved by imposing an adequate aniso-
tropic smoothing. However, when sufficient data are available, we
recommend using the CCI to improve imaging results. The latter
acts as a smoothing operator but its correlation length can be con-
trolled and based on independent data, such as direct measurements
in boreholes. Even in the absence of sufficient spatially distributed
data, a trial and error approach can be used to optimize the ranges
used in the inversion by comparing the results with local observa-
tions. Although improvement might remain relatively limited, it
might still be significant for a quantitative interpretation of time-
lapse ERT.

The CCI applied here in the spatial dimensions can be extended
to the time dimension using a combined spatio-temporal variogram
model. This would open up the use of covariance-based constraints
in 4D inversion schemes addressing the issue of combined spatial
and temporal regularizations. This should be investigated in fu-
ture work.
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