8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation

Advanced 3D Documentation, Modelling and Reconstruction of Cultural Heritage, Monuments and Sites

PROCEEDINGS / ACTAS

5 - 7 September 2016
Campus de Vera
Universitat Politècnica de València
Valencia. Spain
Congress UPV

Proceedings of the ARQUEOLÓGICA 2.0 - 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation

Lemma: Advanced 3D documentation, modelling and reconstruction of cultural heritage objects, monuments and sites.

ARQUEOLÓGICA 2.0 - 8º Congreso Internacional de Arqueología e Informática Gráfica, Patrimonio e Innovación

Lema: Documentación 3D avanzada, modelado y reconstrucción de objetos patrimoniales, monumentos y sitios.

The contents of this publication have been evaluated by the Scientific Committee which it relates and the procedure set out
http://ocs.editorial.upv.es/index.php/arqueologica20/arqueologica8/about/organizingTeam

Scientific Editors

J. L. Lerma
M. Cabrelles

© of the texts: authors

© 2016, Editorial Universitat Politècnica de València

www.lalibreria.upv.es / Ref.: 6283_01_01_01

Print on-demand

DOI: http://dx.doi.org/10.4995/arqueologica8.2016.4479

This book is licensed under a Creative Commons Attribution-NonCommercial-NonDetivates-4.0 International license

Editorial Universitat Politècnica de València
http://ocs.editorial.upv.es/index.php/arqueologica20/arqueologica8
Conference Committee

Congress director:
✓ José Luis Lerma

Organising Committee:
✓ Ana Belén Anquela ✓ José Luis Lerma
✓ Matilde Balaguer ✓ Víctor Manuel López-MenChero
✓ Miriam Cabrelles ✓ Ángel Marqués-Mateu
✓ Lourdes García-Cerezuela ✓ Jorge Padín
✓ Alfredo Grande ✓ Matthew Vincent
✓ Ángeles Hernández-Barahona

Scientific committee:
✓ Ester Alba Spain ✓ Thomas E. Levy USA
✓ Ana Almagro Spain ✓ Minna Lonnqvist Finland
✓ Arivaldo Leao de Amorim Brazil ✓ Víctor Manuel López-MenChero Spain
✓ Matilde Balaguer Spain ✓ Ángel Marqués-Mateu Spain
✓ Juan Antonio Barceló Spain ✓ Jorge Onrubia Spain
✓ Frank Boochs Germany ✓ Petros Patias Greece
✓ Miriam Cabrelles Spain ✓ Robert Sablatnig Austria
✓ José Juan De Sanjosé Spain ✓ Mario Santana Canada
✓ Michael Doneus Austria ✓ Sebastián Ramallo Spain
✓ Rand Eppich USA ✓ José Ignacio Rojas-Sola Spain
✓ Mercedes Farjas Spain ✓ Efstratios Stylianidis Greece
✓ Andreas Georgopoulos Greece ✓ Jin Shang China
✓ Diego González-Aguilera Spain ✓ Clifford Leslie Ogleby Australia
✓ Alfredo Grande Spain ✓ Daniel Pletinckx Belgium
✓ Pierre Grussenmeyer France ✓ Fulvio Rinaudo Italy
✓ Marinos Ioannides Cyprus ✓ Fabio Remondino Italy
✓ José Luis Jiménez Spain ✓ Pablo Rodríguez-Navarro Spain
✓ Klaus Hanke Austria ✓ Grazia Tucci Italy
✓ Raphaële Heno France ✓ Geert Verhoeven Austria
✓ Luis Hernández Spain ✓ Matthew Vincent USA
✓ David Hernández-López Spain ✓ Alex Yen China
✓ José Luis Lerma Spain
Supporters:

✓ Universitat Politècnica de València
✓ Spanish Society of Virtual Archaeology (SEAV)
✓ Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana (AORG/2016/062)

Collaborators:

✓ CIPA Heritage Documentation
✓ Virtual Archaeology International Network (INNOVA)
✓ Virtual Archaeology Review (VAR)
✓ School of Engineering in Geodesy, Cartography and Surveying
✓ Dept. of Cartographic Engineering, Geodesy and Photogrammetry
✓ Photogrammetry & Laser Scanning Research Group (GIFLE)
✓ COST European Cooperation in Science and Technology
✓ COSCH Colour and Space In Cultural Heritage
Preface

This book comprises the proceedings of ARQUEOLÓGICA 2.0 – 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation at the Universitat Politècnica de València (UPV), Valencia, Spain, on 5-7 September, 2016. ARQUEOLÓGICA 2.0 discusses both the present and future of documentation, reconstruction and computer aided rendering techniques, applied to the field of Cultural Heritage. ARQUEOLÓGICA 2.0 – 8th invited authors to submit original and unpublished work in applied and innovative digital heritage areas such as documentation of cultural heritage, high-end digitisation and 3D modelling of objects, monuments and sites, virtual conservation/restoration, virtual archaeology, virtual museums, virtual exhibitions, cultural heritage gaming, collaborative environments and internet technologies and social media in archaeology. The main aim was to offer an updated overview about the Heritage of the 21st century applying new and innovative techniques and methodologies. The lemma of the present edition was: Advanced 3D documentation, modelling and reconstruction of cultural heritage objects, monuments and sites. The Scientific Committee carried out a great peer-reviewing task selecting the papers that are presented in the form of long scientific papers and works in progress (short papers). The former constitute the first part of the book; the latter the second part. Some selected contributions from both the long and the short scientific papers are in the process of being published in the Virtual Archaeology Review (VAR).

ARQUEOLÓGICA 2.0 – 8th International Congress was organised by the Spanish Society of Virtual Archaeology (SEAV), the Virtual Archaeology International Network (INNOVA), and the Universitat Politècnica de València (School of Engineering in Geodesy, Cartography and Surveying, ETSIGCT; Dept. of Cartographic Engineering, Geodesy and Photogrammetry, DICGF; Photogrammetry & Laser Scanning Research Group, GIFLE) in cooperation with CIPA Heritage Documentation, European Cooperation in Science and Technology (COST) and COST-Action TD 1201: Colour and Space in Cultural Heritage (COSCH).

Let me thank, on behalf of the Organising Committee, to all the contributors, collaborators (namely the Scientific Committee and anonymous reviewers) and sponsors/media partners. The sponsorship of the Conselleria d’Educació, Investigació, Cultura i Esport, Generalitat Valenciana, to the grant AORG/2016/062 is highly appreciated.

Prof. José Luis Lerma
Congress Director
ARQUEOLÓGICA 2.0 – 8th International Congress
Contents

Long scientific papers

COMPARISON OF 3D REALITY CAPTURE TECHNOLOGIES FOR THE SURVEY OF STONE WALLS .. 14
E. Valero, A. Forster, F. Bosché, L. Wilson, A. Leslie

RECUPERACIÓN GRÁFICA DE LA MÁQUINA EÓLICA PARA DESAGUAR TERRENOS PANTANOSOS DE AGUSTÍN DE BETANCOURT Y MOLINA: MODELADO TRIDIMENSIONAL Y DOCUMENTACIÓN GEOMÉTRICA CON SOLID EDGE ... 24
J.I. Rojas-Sola, L. García-Ruesgas, J. Porras-Galán

APLICACIÓN DE TÉCNICAS DE INGENIERÍA INVERSA PARA LA DOCUMENTACIÓN GRÁFICA Y GEOMÉTRICA DEL PATRIMONIO EN UN PROYECTO DE REALIDAD AUMENTADA: UN PRODUCTOMUSEOGRAFICO PARA LA CATEDRAL DE LA SEO DE ZARAGOZA .. 32
J. Monzón

DIGITAL RECONSTRUCTIONS - A METHODOLOGY FOR THE STUDY, PRESERVATION AND DISSEMINATION OF ARCHITECTURAL HERITAGE .. 44
A. Gil

DOCUMENTACIÓN Y ANÁLISIS DE PIEZAS ARQUEOLÓGICAS DEL MUSEO DE BURRIANA MEDIANTE EL USO DE RX DIGITAL .. 56
J.A. Madrid, J.M. Melchor

DOCUMENTACION DIGITAL APLICADA A LA VILLA ROMANA DE SANT GREGORI (BURRIANA, ESPAÑA) 64
J.M. Melchor, J. Benedito, J.J. Ferrer, J. Ricart, R. Ayora

3D DIGITAL TECHNOLOGIES TO RECORD EXCAVATION DATA: THE CASE OF THE CATACOMBS OF ST. LUCY (SIRACUSA, SICILY) .. 71
I. Gradante, M. Sgarlata, D. Tanasi

LA VIRTUALIZACIÓN EN EL MUSEO ARQUEOLÓGICO DE BURRIANA (CASTELLÓN – ESPAÑA) 78
J.M. Melchor, J. Martínez, C. Bonafe, A. Cabrera

DIGITAL DOCUMENTATION OF INDUSTRIAL HERITAGE AT RISK: THE CASE OF PALATAKI AND THE OLD MINING COMPLEX AT LIMENARIA OF THASSOS (GREECE) ... 84
N. Lianos, A. Stammas

A RECORDING AND DOCUMENTATION SYSTEM OF BUILDING STOCK: THE CASE OF PENTALOFOS SETTLEMENT IN KOZANI (GREECE) .. 89
N. Lianos, A. Stammas

PHOTOGRAMMETRIC SURVEY AND 3D MODELING OF THE FUNERARY URN DEPICTING THE MYTH OF OENOMAUS, FOUND INSIDE THE TOMB OF THE ETRUSCAN FAMILY OF CACNI IN PERUGIA (III–I CENTURY BC) .. 95
D. Calisi
PARAMETERIZATION OF COMPLEX CULTURAL HERITAGE SHAPES FOR ONLINE VIEWING AND INTERACTIVE PRESENTATION AND PROCESSING ... 105

M. Ćurković, D. Vučina

MÉTODOLOGÍA Y APLICACIÓN PRÁCTICA PARA LA DIGITALIZACIÓN DE PATRIMONIO COFRÁDE MEDIANTE LA FUSIÓN DE DATOS DE LÁSER ESCANNER Y FOTOGRAFÍSTICOS .. 110

C. Colomo, J.L. Pérez, J.M. Gómez, F.J. Rosales

TRATAMIENTO DE DATOS TLS MEDIANTE EL EMPLEO DE IMÁGENES ESFÉRICAS: APLICACIÓN A LA DOCUMENTACIÓN DE LA SALA CAPITULAR DE LA CATEDRAL DE JAÉN .. 118

J.M. Gómez-López, J.L. Pérez-García, C. Colomo, J. Cardenal, E. Mata

PROPUESTA DE REUBICACIÓN MEDIANTE RECONSTRUCCIÓN VIRTUAL. CASO DE ESTUDIO: RETABLO MAYOR DE SAN FRANCISCO DE SAN ESTEBAN DE GORMAZ (SORIA) .. 125

M. Sánchez

SELF-EXPLAINING VIDEOS FOR THE MUSEO EGIZIO IN TURIN .. 132

F. Gabellone, I. Ferrari, F. Giuri, M. Chiffi

DEVELOPMENT OF AN EFFICIENT APPROACH OF ARCHAEOLOGIC HERITAGE IN THE INTERTIDAL ZONE OF THE BELGIAN NORTH SEA .. 138

M. Decock, C. Stal, S. Van Ackere, A. Vandenbulcke, P. De Maeyer, A. De Wulf

INTEGRATED METHODOLOGIES FOR A NEW RECONSTRUCTIVE PROPOSAL OF THE AMPHITHEATRE OF CATANIA ... 146

CRITICAL READING OF SURVIVING STRUCTURES STARTING FROM OLD STUDIES FOR NEW RECONSTRUCTIVE PROPOSAL OF THE ROMAN THEATRE OF CATANIA .. 155

D. Malfitana, F. Gabellone, G. Cacciaguerra, I. Ferrari, F. Giuri, C. Pantellaro

THE SURVEY, THE REPRESENTATION AND THE STRUCTURAL MODELING OF A DATED BRIDGE ... 162

S. Artese, J.L. Lerma, G. Zagari, R. Zinno

DIGITAL IMAGE ANALYSIS OF THE VISIBLE REGION THROUGH SIMULATION OF ROCK ART PAINTINGS ... 169

B. Carrión-Ruiz, S. Blanco-Pons, J.L. Lerma

REVIEW OF AUGMENTED REALITY AND VIRTUAL REALITY TECHNIQUES IN ROCK ART ... 176

S. Blanco-Pons, B. Carrión-Ruiz, J.L. Lerma

MODELIZACIÓN Y SIMULACIÓN DE LAS POSIBLES POSICIONES DE LAS ATALAYAS DE LA FORTALEZA DE LA MOTA EN ALCALA LA REAL, MEDIANTE TECNICAS DE ANALISIS VISUAL .. 184

F.J. Rosales, J.L. Pérez-García, C. Colomo, J.M. Gómez-López, M.A. Ureña

SIMULACIÓN 3D CON INTERFACES HÁPTICAS PARA LA RECUPERACION DEL PATRIMONIO CULTURAL DEL TREN EN RIOBAMBA .. 191

M. Duque, F. Proaño, R. Santos

EXPLOTACIONES MINERAS EN PATRIMONIO INDUSTRIAL: UN CASO DE USO DE DOCUMENTACIÓN Y SIMULACIÓN ... 197

D. Marcos, J. Martínez, F.J. Delgado, J. Finat
KUÉLAP VIRTUAL: VIRTUALIZACIÓN DE UNA CIUDADELA PREINCA EN LOS ANDES AMAZÔNICOS DEL PERÚ MEDIANTE FOTOGRAFÍA ESFÉRICA, MODELADO 3D E IMPRESIÓN 3D ... 205
E. Ribera

CONSERVATION MODEL FOR BASILICA OF SMYRNA AS AN THEORETICAL INTENTION .. 215
T. Saricaoglu

LA APLICACIÓN DE NUEVAS TECNOLOGÍAS EN LA DOCUMENTACIÓN ARQUEOLÓGICA DE LA VILLA ROMANA DE NOHEDA Y SU PROYECCIÓN TURÍSTICA DIGITAL ... 220
M.Á. Valero, N. Huete

VIRTUAL RECONSTRUCTION APPLIED TO THE RECOVERY AND HERITAGE DISCLOSURE OF THE OLD VILLAGE OF BELCHITE ... 231
A. Alfaro, M.P. Biel, D. Gutiérrez

BIG DATA IN LANDSCAPE ARCHAEOLOGICAL PROSPECTION .. 238
J. Torrejón, M. Wallner, I. Trinks, M. Kucera, N. Luznik, K. Löcker, W. Neubauer

CASTLE4D: AN ARCHAEOLOGICAL INFORMATION SYSTEM BASED ON 3D POINT CLOUDS .. 247
A. Luczfalvy, B. Jonlet, P. Hallot, F. Poux, P. Hoffsummer, R. Billen

Works in progress

BETWEEN LANDSCAPE AND ARCHITECTURE: ENVISIONING CAPPADOCIAN RUPESTRIAN MONASTERY
THROUGH COLORFUL CONTOUR LINES ... 254
F. Colonnese, M. Carpiceci, C. Inglese

MODELADO TRIDIMENSIONAL DE LA PALEOTOGRAFÍA DE CARTAGENA ... 257
J. García-León, M.M. Ros, A. García, M. Torres, F. Cerezo, S.F. Ramallo

RECUPERACIÓN GRÁFICA DE LA MÁQUINA PARA CORTAR LA HIERBA DE LOS CANALES NAVEGABLES
DE AGUSTÍN DE BETANCOURT Y MOLINA: MODELADO TRIDIMENSIONAL Y DOCUMENTACIÓN
GÉOMÉTRICA CON SOLID EDGE .. 261
J.I. Rojas-Sola, J. Porras-Galán, L. García-Ruesgas

A PERSPECTIVE ON PROCEDURAL MODELING BASED ON STRUCTURAL ANALYSIS .. 264
J.L. Fita, G. Besuievsky, G.A. Patow

3D VISIBILITY ANALYSIS AS A MEAN TO VALIDATE ANCIENT THEATRE’S RECONSTRUCTIONS 267
Maria Cristina Manzetti

ALGUNOS APUNTES SOBRE LA DIGITALIZACIÓN Y LA RECONSTRUCCIÓN VIRTUAL DEL CASTRO DE SAN CHUIS (ALLANDE, ASTURIAS, ESPAÑA) ... 270
J. Molina, J.F. Jordá

ESQUINA MULTIMEDIA – MUSEUM EXHIBITION FOR THE VISUALIZATION OF CHAN CHAN
ARCHAEOLOGICAL SITE .. 274
R. Pierdicca, E. S. Malinverni, E. Frontoni, F. Colosi, R. Orazi

3D GIS TOOLS FOR SUBSOIL MANAGEMENT .. 277
M. Herrador, A. Graciano, F.R. Feito, L. Ortega
VIRTUAL TOURS OF HISTORICAL AND ARTISTIC HERITAGE IN THE PROVINCE OF CACERES ... 281
J.M. Naranjo, M.A. Parrilla, M. Sanchez

NATURAL GESTURE INTERACTION IN ARCHAEOLOGICAL VIRTUAL ENVIRONMENTS: WORK IN PROGRESS .. 284
N. Albertini, A. Brogni, B. Caramiaux, M. Gillies, R. Olivito, E. Taccola

HISTORICAL TRACES’ INTERPRETATION AND VIRTUAL RECONSTRUCTION - THE CASE OF ACROCORINTH CASTLE ... 288
D. Athanasoulis, X. Simou, T. Zirogianni

THE DOCUMENTATION OF CULTURAL HERITAGE WITH BIM OPEN SOURCE SOFTWARE ... 291
S. Logothetis, E. Stylianidis

UNVEILING DAMNATIO MEMORIAE. THE USE OF 3D DIGITAL TECHNOLOGIES FOR THE VIRTUAL RECONSTRUCTION OF ARCHAEOLOGICAL FINDS AND ARTEFACTS .. 295
A.M. Manferdini, S. Gasperoni, F. Guidi, M. Marchesi

THE ROLE OF VIRTUAL ARCHITECTURE: PHENOMENOLOGICAL PERSPECTIVE ... 298
H.J. Lee

REGISTRO TRIDIMENSIONAL DEL EDIFICIO “E” DEL SITIO ARQUEOLÓGICO EL HUARCO-CERRO AZUL, CAÑETE, PERÚ ... 302
G.M. Quiroga, G. Marcone

UN REGRESO VIRTUAL: RECREACIÓN DE LA APARIENCIA ORIGINAL DEL CORO DEL CONVENTO DE SANTA CLARA DE TORO (ZAMORA) CON SUS PINTURAS MURALES MEDIEVALES, EN LA ACTUALIDAD ARRANCADAS Y DESPLAZADAS ... 305
F. Gutiérrez, F.M. Morillo, J.I. San José, J.J. Fernández

PROSPECCIÓN GEOFÍSICA EN EL SECTOR PÚBLICO CENTRAL DEL SITIO ARQUEOLÓGICO EL HUARCO – CERRO AZUL 2016 ... 308
G.M. Quiroga, G. Marcone, N.M. Castillo

UN PROCEDIMIENTO DE SEGMENTACIÓN DE MALLAS 3D DE EDIFICIOS HISTÓRICOS ... 311
B.J. Herráez, E. Vendrell

ARCHAEOBIM: AN INNOVATIVE METHOD FOR ARCHAEOLOGICAL ANALYSIS OF AN ETRUSCAN TEMPLE IN MARZABOTTO ... 314
S. Garagnani, A. Gaucci, B. Gruška

VIRTUAL PALMYRA: 3D RECONSTRUCTION OF THE LOST REALITY OF “THE BRIDE OF THE DESERT” .. 318
A. Denker

LA HISTORIA EN EL PAISAJE: DIFERENTES LUGARES Y ANÁLOGAS REPRESENTACIONES. ANÁLISIS E INTERPRETACIÓN CON LAS NUEVAS TECNOLOGÍAS DE MODELIZACIÓN VIRTUAL ... 321
X. Otero, M. Farjas, M. Santos

DOCUMENTACIÓN GEOMÉTRICA DE LA TORRE VALLFEROSA DE TORÀ ... 324
CATÁLOGACIÓN DIGITAL 3D DE MACROÚTILES LÍTICOS PROCEDENTES DE COVES DE SANTA MAIRA Y CUEVA DE NERJA
R. Tortosa, J. Blasco, O.A. González, L. Gimeno, A. Vilaplana, J.E. Aura

RESTAURACIÓN DE VIDRIO ARQUEOLÓGICO: RECONSTRUCCIÓN DE, FRAGMENTOS FALTANTES
C. Diaz-Marín, E. Aura-Castro

DEVELOPMENT OF A GEOREFERENCED ARCHAEOLOGICAL INFORMATION DATA BASE FOR ELEUTHERNA IN CRETE
S. Tapinaki, A. Georgopoulos, C. Ioannidis, E. Frentzos, N. Stampolidis, N. Maragoudakis

A NEW METHODOLOGY FOR THE 3D PHOTOREALISTIC VIRTUAL RECONSTRUCTION OF THE ARCHAEOLOGICAL SITE “CASTELLET DE BERNABÉ” (LLÍRIA, SPAIN)
C. Portalés, P. Alonso-Monasterio, M.J. Viñals

DIFUSIÓN DE PROYECTOS DE PATRIMONIO CULTURAL EN ENTORNOS WEB. PRIMERAS EXPERIENCIAS
J. Palomar-Vázquez, M.J. Viñals-Blasco

PRELIMINARY EVALUATION OF HDR TONE MAPPING OPERATORS FOR CULTURAL HERITAGE
R. Suma, G. Stavropoulou, E.K. Stathopoulou, L. van Gool, A. Georgopoulos, A. Chalmers

3D MODELLING FROM UAV DATA IN HIERAPOLIS OF PHRIGIA (TK)
F. Chiabrando, F. D’Andria, G. Sammartano, A. Spanò

UAV OBLIQUE DATA AND LASER SCANNING IN AN EXCAVATED AREA
F. Chiabrando, A. Spanò, G. Sammartano, L. Teppati

REPORT ON THE DIGITAL RECONSTRUCTION OF THE 4TH CENTURY SUSA (WORK IN PROGRESS)
F. Chiabrando, L. Dezzani, A. Prencipe, A. Spanò

UN NUEVO ESPACIO TERMAL DE ÉPOCA ROMANA ANEXO A LA VILLA DEL CASALE (PIAZZA ARMERINA, SICILIA): PROPUESTA DE RECONSTRUCCIÓN VIRTUAL DE SUS AMBIENTES FRÍOS A LA LUZ DE LOS HALLAZGOS ARQUEOLÓGICOS
J. Atienza

GEORRADAR Y TOMOGRAFÍA ELÉCTRICA PARA LA CARACTERIZACIÓN DE UN YACIMIENTO ARQUEOLÓGICO MEDIEVAL, (CONJUNTO ARQUEOLÓGICO CASTILLO DE LA ESTRELLA, MONTIEL)

PRIMEROS RESULTADOS DE LA RECONSTRUCCIÓN VIRTUAL DEL CASTILLO DE TURÍS (TURÍS, VALENCIA, ESPAÑA)
J.L. Jiménez, E. Díes, J. Tierno

COMUNICACIÓN ESTRATÉGICA APLICADA AL DESTINO TURÍSTICO-CULTURAL DE CARTAGENA (MURCIA-ESPAÑA)
M.D. Teruel-Serrano, M.J. Viñals-Blasco
RAPID MAPPING AND VISUAL NOISE: RECORDING FOR THE VISITOR, RESIDENT, PILGRIM AND TOURIST; AJMER, INDIA (WORK IN, PROGRESS) ... 372
O. Prizeman, A. Hardy

EDETA 360º: VIRTUAL TOUR FOR VISITING THE HERITAGE OF LLÍRIA, (SPAIN).. 376
J.M. Maícas, M.J. Viñals

PROPUESTA DE PROTOCOLO GIS Y DE UTILIZACIÓN DE UN, ENTORNO 3D PARA LA INTERVENCIÓN ARQUEOLÓGICA 2015 EN,CUEVA DE LA COCINA (DOS AGUAS, VALENCIA) ... 379
A. Díez, A. Cortell, O. García, P. Escribà

IMAGING AND VISUALIZING MAYA CAVE SHRINES IN NORTHERN, QUINTANA ROO, MEXICO ... 382

DEL REGISTRO MANUAL AL DIGITAL: APLICACIÓN DE GRÁFICOS, VECTORIALES EN ESTUDIOS ARQUEOLÓGICOS ... 385
A. Papú, L.M. Berisso, D. Bozzuto

FOTOGRAFIRÍA AÉREA Y TERRESTRE PARA LA DOCUMENTACIÓN, 3D DEL CASTILLO DE BARXELL (ALCOI, ALICANTE, ESPAÑA) ... 388
N. Segura, E.A. Paredes, J.D. Busquier

3D IMAGING ANALYSIS AND DIGITAL STORYTELLING FOR, PROMOTION OF CULTURAL HERITAGE: THE SCHOOL OUTREACH,PROJECT OF REALMONTE ... 392
E. Bonacini, D. Gullì, D. Tanasi

RECONSTRUCCIÓN FOTOGRAFÍRICA DE LA TORRE GÓTICA DE LA, IGLESIA DE SANTA MARIA DE ALCAÑIZ ... 396
L. Agustín, A. Fernández-Morales

BUILDING A VIRTUAL TIME MACHINE FOR THE ANCIENT RUINS OF, JIAOHE ... 400
B. Lonneville, N. Vanhaeren, A. Vandenbulcke, A. De Wulf, P. De Maeyer

PIXEL-LEVEL IMAGE FUSION FOR ARCHAEOLOGICAL, INTERPRETATIVE MAPPING ... 404
G. Verhoeven, M. Nowak, R. Nowak

USING 3D MODELLING IN THE VALLEY OF TURU ALTY (SIBERIA, RUSSIA) FOR RESEARCH AND CONSERVATIONAL PURPOSES ... 408
A. Vandenbulcke, C. Stal, B. Lonneville, J. Bourgeois, A. De Wulf

LA PUNTA DEL ICEBERG: ARQUEOLOGIA ANTÁRTICA EN LA ERA, DIGITAL ... 412
F. Codevilla, J. Cruz, G. Radicchi, A. Zarankin

RECUPERANDO EL PALACIO VISIGODO DE PLA DE NADAL (RIBAROJA, DE TÚRIA, VALENCIA) ... 416

PHOTOGRAMMETRIC SURVEY IN THE LATRINES OF CHAMBORD ... 419
P. Antoine, S. Bryant
SITUACIÓN EN EL ESPACIO E INVERSIÓN DE TRABAJO DE LAS CONSTRUCCIONES MEGALÍTICAS A PARTIR DE LOS SISTEMAS 3D, IMÁGENES PANORÁMICAS Y 360º... 423
E. López

COMPLEX 3D HERITAGE ARCHITECTURES ACCESSIBLE ON THE WEB .. 426

A PILOT PROJECT AERIAL STREET VIEW TOUR AT THE VALLEY OF THE TEMPLES (AGRIGENTO)........... 430
E. Bonacini

COMMUNICATING THE CULTURAL HERITAGE THROUGH THE USE OF DRONES, 3D MODELS AND APP.
CASE OF STUDY: “FERRAN3DINA” .. 435
A. Pecci

3D DIGITISATION AND RECONSTRUCTION OF A CAPITAL IN NORTHWESTERN GAUL: INTERIM RESULTS ON THE CITY OF ALET .. 438
Y. Bernard, J.B. Barreau, C. Bizien-Jaglin, L. Quesnel, L. Langouët, M.Y. Daire

THE ROLE OF TANGIBLE INTERACTION FOR COMMUNICATING, QUALITATIVE INFORMATION OF BUILT HERITAGE .. 441
E. Nofal, V. Boschloos, H. Hameeuw, A. Vande Moere

TRAZANDO RUTAS EN LA EDAD DEL BRONCE TUROLENSE: PERSPECTIVAS DE TRABAJO 445
J. Jiménez, T. Orozco, A. Diez

PUTTING 3D MODELS INTO CONTEXT – THE SCHACHERMEYR, POTTERY COLLECTION AND THE DEFC APP .. 449
S. Štuhec, E. Aspöck, A. Masur, P. Andorfer, K. Zaytseva

PORTUS LUPIAE. 3D MODELING AND VISUAL NARRATIVE FOR, RECONSTRUCTING A LONG MARITIME HISTORY .. 452
I. Ferrari, A. Quarta, M. Sammarco, A. Carpentieri, A. Di Tondo, R. Leone

3D MODELING AND VIRTUAL APPLICATIONS FOR THE VALORIZATION, OF HISTORICAL HERITAGE 456
E. Farella, F. Menna, F. Remondino, M. Campi

TRABAJOS 3D REALIZADOS EN LA PUERTA 1 DEL COMPLEJO ARQUEOLÓGICO DE PERDIGÕES (PORTUGAL): ESTADO DE LA CUESTIÓN .. 460
J.L. Caro

3D SURVEY AND HBIM FOR THE KNOWLEDGE AND VALORIZATION OF, ARCHEOLOGICAL HERITAGE. THE CASE STUDIES OF THE CAPUA, AND TELESIA AMPHITHEATRES .. 464
D. Iovane, V. Cera

NUEVAS PUERTAS VIRTUALES AL MUNDO DE LA PRESERVACIÓN Y DIFUSIÓN DEL PATRIMONIO HISTÓRICO MILITAR. UN COMPROMISO POR EL FUTURO DE LA INVESTIGACIÓN Y EL CONOCIMIENTO ... 468
M. Gil-Melitón, J.L. Lerma
PHILANTHROPIC FOUNTAIN OF KORNAROU SQUARE: USING SFM TO CALCULATE THE FOUNTAIN’S GEOMETRIC CHARACTERISTICS IN ORDER TO DETERMINE ITS INELASTIC DYNAMIC RESPONSE 472
A. Lyratzakis, P. Parthenios, M. Stavroulaki

COMBINING STRUCTURE FROM MOTION TECHNIQUES WITH LOW COST EQUIPMENT FOR A COMPLETE 3D RECONSTRUCTION OF A 13TH CENTURY CHURCH .. 476
P. Parthenios, T. Androulaki, E. Gereoudaki, G. Vidalis

THE SOUTH AFRICAN HERITAGE RESOURCES INFORMATION SYSTEM (SAHRIS): DEVELOPMENT AND CHALLENGES THROUGH MANAGEMENT OF CULTURAL HERITAGE RESOURCES THROUGH AN INTEGRATED WEB-BASED PLATFORM .. 480
C. Jackson, R. Redelstorf

AUTHENTICITIES AND VIRTUAL REALITY THE CASE STUDIES JUPITER COLUMN AND KALEIDOPHONIC DOG ... 484
J. Muñoz, F. Schaaf, R.H. Schneider, C.Y. Robertson-von Trotha

SURVEYING DAMAGE TO HISTORIC BUILDINGS IN MEINONG EARTHQUAKE .. 488
R.Z. Wang, H.C. Chang, M.C. Lee

ESTRATEGIAS PASIVAS EN EDIFICIOS ECLESIÁSTICOS CANARIOS CONSTRUIDOS ENTRE LOS SIGLOS XV Y XVI ... 492
S. Pérez

DISCRETE AND CONTINUOUS MONITORING TO CHARACTERISED THE THERMO-HYGROMETRIC STATE OF WALL-BUILDING MATERIALS IN OSTIA ANTICA ARCHEOLOGICAL SITE ... 496
F.J. García-Diego, C. Scatigno, P. Merello

VIRTUAL CITIES INHABITED BY AUTONOMOUS CHARACTERS: A PIPELINE FOR THEIR PRODUCTION 500
A.P. Cláudio, M.B. Carmo, A.A. de Carvalho, W. Xavier, R.F. Antunes

PRELIMINARY DATA OF CFD MODELING TO ASSESS THE VENTILATION IN AN ARCHAEOLOGICAL BUILDING ... 504
F.J. García-Diego, C. Scatigno, P. Merello, E. Bustamante

THE CIRCUS MAXIMUS: DIACHRONIC RECONSTRUCTION THROUGH THE APPLICATION OF NEW TECHNOLOGIES .. 508
D. Dininno

APLICACIÓN DE DIVERSAS TÉCNICAS DE DOCUMENTACIÓN PATRIMONIAL ARQUITECTÓNICA EN LA ALQUERÍA ‘MAS DEL NOI’ ... 511
J.P. Carbonell-Rivera, D. Montalvá-España, J.L. Lerma

EL PALACIO DE LOS NIÑOS DE DON GOME (ANDÚJAR, JAÉN), GESTIONADO DESDE UN PROYECTO H-BIM ... 516
Á. García, E. Nieto, J.J. Moyano

THE WESTERN HIGH GATE OF MEDINET HABU: PHOTOGRAMMETRIC 3D MODELLING & DOCUMENTATION ... 520
O. Murray, H. McDonald, J.L. Kimpton
PROPUESTA DE ANÁLISIS TRIDIMENSIONAL APLICADO A LA INTEGRACIÓN DE LAS DIFERENTES ACTUACIONES ARQUEOLÓGICAS REALIZADAS EN CUEVA DE LA COCINA (DOS AGUAS, VALENCIA) 524
A. Diez, O. García, M. Basile, A. Cortell, N. Tsa

TRABAJOS DE DOCUMENTACIÓN DIGITAL DE GRABADOS RUPESTRES EN EL TÉRMINO MUNICIPAL DE ALCÁZAR DE SAN JUAN (CIUDAD REAL, ESPAÑA) .. 528

EXTRACTING SPATIAL INFORMATION OF HERITAGE GARDENS FROM BOUNDARY PAINTINGS BASED ON 3D MAPPING TECHNOLOGIES .. 531
C. Yang
CASTLE4D: AN ARCHAEOLOGICAL INFORMATION SYSTEM BASED ON 3D POINT CLOUDS

Andrea Luczsfalvhy Jancsóa,b,*, Benoît Jonleta, Pierre Hallota, Florent Pouxa, Patrick Hoffsummerb, Roland Billenb

a Geomatics Unit, Department of Geography, University of Liège, Quartier Agora, Allée du 6 Août 19, 4000 Liège, Belgium. \texttt{andrea.luczsfalvhyjancso@doctulg.ac.be; bjonlet@ulg.ac.be; phollot@ulg.ac.be; fpoux@ulg.ac.be; rbillen@ulg.ac.be}

b European Archaeometry Centre (CEA), University of Liège, Quartier Agora, Allée du 6 Août 19, 4000 Liège, Belgium. \texttt{phoffsummer@ulg.ac.be}

Abstract:

During the past decade, the implementation of 3D visualization and Geographic Information System (GIS) in archaeological research has increased and is now well established. However, the combination of these two factors remains rather complicated when faced with archaeological data. Some of the characteristics of this discipline impose the development of applications that will be able to cope with all of the specificities of archaeological data. Our research aims to create an Archaeological Information System (AIS) that will gather all of the characteristics of an archaeological work. In order to develop such an AIS, our first step was to identify its purposes and consequently, the features that should be available to the users. As it is destined to help with archaeological research, it is therefore of the outmost importance that the particularities of such a study are also taken into account. Moreover, the AIS is intended to incorporate point clouds that serve as a base for the three-dimensional model. These 3D point clouds result from the use of photogrammetry and/or lasergrammetry and, at a later stage, will be inserted into a GIS similar structure. The archaeological data will then be linked to the relevant section of the 3D model. However, these various stages and during the development of the AIS itself, we will encounter a series of issues that require to be addressed in order to produce a working system. This paper aims to identify and define the AIS characteristics as well as the issues and obstacles that we are going to face so that this system becomes a functional tool for archaeological research.

Key words: digital archaeology, 3D point clouds, AIS, GIS, 4D.

1. Introduction

Archaeological research is characterized by the various types of documents and data that are taken into account while examining a site, a monument or an artefact. Results are based on their analysis (Laurenza and Putzolu 2001). Yet, along with the speedy evolution of the digital world, archaeologists can now rapidly produce big amounts of data (Entwistle et al. 2009). All of this information needs to be examined in order to draw pertinent conclusions.

In order not to lose sight of any of the dataset, we are currently developing an Archaeological Information System (AIS) based on 3D point clouds and considering the temporal aspect as a fourth dimension. With this, every shred of data is linked to the area on which they provide information.

The development of the 4D AIS is taking place in our research project CASTLE4D in which several Belgian castles located in the province of Liège are being studied under the light of archaeological sciences and geomatics. This procedure enables the elaboration of new research topics as well as new data that will lead to a better understanding of the history of each castle site.

This paper aims at presenting the features of the 4D AIS that we are developing as part of our doctoral research. To achieve this, a state-of-the-art will summarize today’s use of 3D representation in archaeological research. Following this, the system’s main characteristics will be named and described. Finally, we are going to address the issues that we are going to face and the reasons why it is necessary for this project to deal with them.

2. Current 3D models

Now, as far as archaeological research is concerned, 3D models are generally used for visualization, reconstruction, measuring and documentation (Entwistle et al. 2009).

* Corresponding Author: Andrea Luczsfalvhy Jancsó, \texttt{andrea.luczsfalvhyjancso@doctulg.ac.be}
its angles, depths and structures. Volumes are easier understandable and smaller pieces as well as objects can be handled without damaging them (Laurenza and Putzolu 2001; Paliou 2013).

Virtual reconstruction offers different possibilities: theories can be checked, a better understanding can be reached where only a small part is preserved and it is a frequently used tool for vulgarisation purposes. In addition to the elements that remain and, if it applies, are still situated at their original location, the missing parts are reconstructed based on previously gathered data (Hallot et al. 2015).

Photogrammetry and lasergrammetry produce 3D models that include a possibility to perform distance or angular measurements. Yet, in the first case, local or georeferenced coordinates must be considered in order to assure the geometric coherence as well as the scale of the reproduced element. Once the coordinates are inserted, measurements can be taken and cross-sections or plans can be extracted (Ballarin et al. 2013).

Three-dimensional recording of cultural heritage acquires a great importance since it assists in preserving monuments and objects that are likely to face natural disasters, wars or degradation over time (Doulamis et al. 2015; Entwistle et al. 2009).

All of the examples listed above consider a static 3D model. Once the data has been recorded and the three-dimensional representation has been assembled or, in some cases, reconstructed, the final product is rarely altered. It is analysed as a whole or through segments. In accordance with the research and the communication purposes, it is often inserted into a map, an information system or a visualization tool. However, its appearance is conserved and as for the data, it is stored next to it, but seldom in the 3D model itself (Dell’Unto et al. 2016).

3D models are slowly starting to serve other purposes besides those already discussed above. Indeed, some researchers are developing them into analytical tools: data is accessible and managed through them (Ardissoni et al. 2013; De Roo et al. 2013a; Dell’Unto et al. 2016; Houshirt et al. 2015; Koehl et al. 2008). Moreover, spatial relations between findings or between zones can be easier understood than with a two-dimensional approach (Belussi et al. 2015; Dell’Unto et al. 2016; Paliou 2013; Robles Ortega et al. 2015).

3. Ideal components

Within our research, we aim at developing a 4D AIS (mixing 3D and the temporal aspect) especially created in order to deal with archaeological information that is characterized among others by uncertainty, imprecision, ambiguity and incompleteness (De Roo et al. 2013a; De Runz 2008). Currently, these aspects are not efficaciously managed in recent GIS-based tools. Time, which is of a great importance in archaeological studies, represents a fourth dimension in addition to the better-known 3D model (De Roo et al. 2014).

Our planned system should ideally provide us with a range of possibilities. With these, a better understanding of the current research object should be obtained. The system should help to analyse the actual study object as well as all of the collected data related to it, to visualize the available sources and to record different work stages.

3.1. 3D model

A virtual point cloud of the studied object will be considered as the virtual working space that is destined to organize and group every bit of information gathered during fieldwork and sources examination (Cripps 2013). This interface will also serve as a place to gain an overview of current studies that evolve daily and to exchange ideas and theories between all of the researchers (Landeschi et al. 2015; Laurenza and Putzolu 2001).

The point cloud will be acquired using photogrammetry and/or lasergrammetry with a geodetic reference system (local or national grid). However, a georeferenced 3D model can also be considered for an on site research since it will ease the integration of various other elements surrounding the research site that can provide new insights (Ardissoni et al. 2013).

There are several reasons that lead to the choice of a three-dimensional representation. Recent technological advances allow a quick and accurate data acquisition. In addition, users can sort of “walk around” in the virtual environment. So, even if it does not substitute for an on site study, it can nevertheless support the outdoor work by providing a way to access out of reach sections. Consequently, they will be easier to observe since such a 3D model can be turned and observed from every point of view (Koehl et al. 2008).

3.2. Data storage and consultation

In addition to the 3D model, a database is planned to store every known source, document and other data. The file types used by archaeologists are various, which generally implies that numerous softwares are needed to consult them (De Roo et al. 2014). Therefore, each of them will be accessible through the semantic context information added to the virtual reproduction. This way, the data will be directly linked to the element or part of the research object it holds information about (Dell’Unto et al. 2016; Doulamis et al. 2015; Koehl et al. 2008; Landeschi et al. 2015; Manferdini et al. 2008; Wulff and Koch 2013). Therefore, if the coordinates are known, the data will be inserted in the same location than in real life. Unlike a plan or a drawing, this kind of information will no longer be projected in a two dimensional presentation. This procedure will provide a better understanding of the spatial relation between every element. Furthermore, some questions inherent to a 2D projection may also be answered through a more accurate representation of the spatial distribution and by using the spatial reasoning capabilities of the supporting GIS system (Dell’Unto et al. 2016; Paliou 2013; Robles Ortega et al. 2015).

This data storage will also allow the researcher to consult all of the available sources and documentation (Coughenour et al. 2015; Laurenza and Putzolu 2001). Since they are linked to the part of the 3D model that they contain information about, it will be possible to visualize all of the data related to specific segments the researcher is interested in at a given time.
3.3. Data production

The 3D point cloud itself can also be exploited. Orthophotos, profiles, plans and cross-sections can be created, distances as well as angles measured (Ballarin et al. 2013). The model itself can be segmented in order to focus on a smaller sector (Koehl et al. 2008). Every action can be recorded and the results will then be added to the previous data.

3.4. Topographic setting and environmental analysis

Since the model is based on a georeferenced framework, topographic information such as maps, LiDAR datasets or geological context is included transparently. All the information is interoperable (Entwistle et al. 2009).

All of this added data about the surrounding territory can then be integrated into the research. Therefore, analyses combining the cultural heritage and its physical environment can be carried out. Some of the possible applications could be territorial visibility, positioning in relation to the natural environment or even the provenance of the materials (Entwistle et al. 2009). Other analyses may also be available based on the nature of the data used for the research.

Moreover, the ancient perception of space and its appropriation by its past inhabitants can also be studied through this interactive system (Dell'Unto et al. 2016; Paliou 2013).

3.5. Time management

Time is the key element in an archaeological research. However, a 3D model provides a static view of a recorded monument, site or object (De Roo et al. 2013a; De Roo et al. 2013b). Within the 4D AIS, the researcher should therefore be able to assign a time frame to each element (Belussi et al. 2015; Doulamis et al. 2015; Manferdini et al. 2008). Once this step is done, he could then choose which sections should be visible by applying a terminus post quem and a terminus ante quem. A timeline feature is also being considered. This tool will be able to display chronologically the appearance and, in some cases, the disappearance of the timed parts (Doulamis et al. 2015; Hallot et al. 2015; Van Ruymbeke et al. 2015).

3.6. Work flow and developed theories

Since the 4D AIS will provide a virtual workspace, it will be interesting to save different versions in order to be able to get back to them if new ideas or new data are inserted.

Another option will be the opportunity to register elaborated theories (Van Ruymbeke et al. 2015). Along with these, the data that they are based on will also be included. This will provide an overview of the used information and it will support the discussion about the pertinence of each of the generated hypotheses.

3.7. Adaptability

Archaeological study objects come in various types, forms, sizes and complexity levels. In addition to that, an archaeological research is also characterized by uncertainty, imprecision, ambiguity and incompleteness (De Runz 2008), it is of the outmost importance that a 4D AIS that deals with these features has to be malleable (Haskiya 2002).

Fieldwork is another argument supporting this feature. In those cases, data is collected on multiple days, months or even years. New spaces can be uncovered, the research site can be increased in size and unexpected events are numerous (Laurenza and Putzolu 2001). A 3D point cloud is a practical solution to which new scans can be added. This way, the old appearance as well as the new one can overlap and therefore, they are easier to compare and study together.

4. Issues

The above sections cite and describe the ideal components of our application. However, as already stated, it deals with an ideal. Therefore, we will now address the issues with which we will have to cope in order to reach our goal.

4.1. Development of the Archaeological Information System

Although Geographic Information Systems are widely used for archaeological research, some of the properties of archaeological data are complicated to integrate in such a structure (De Roo et al. 2013a). In addition, as research on archaeological subjects continuously grows and evolves (Haskiya 2002), the AIS should include a virtual workspace in order to allow at the same time consultation of already recorded information, navigation in the 3D model, working on the theories as well as adding and modifying data. As the newly inserted entries can affect previously registered work steps and the current development of theories, a notification needs to be issued in order to highlight all the sections that are affected by an extension. With this, the researcher can review them and update his theories.

It will be necessary to develop an application able to handle all these aspects at once. At the same time, all of these options need to be organized and clearly presented. A structured display will also have a big impact for an easier apprehension of the different elements in an AIS based on a 3D model.

One of the main features of this system will be to be able to handle modification to its basic presentation (Dell’Unto et al. 2016). Since every archaeological study or site has its own characteristics, new categories need to be inserted without disrupting the stored data beforehand. This should also apply when adding an extension to the 3D model: the links, which were previously established between the data and an older state of the 3D point cloud, have to be conserved without any disruption.

4.2. The multivocality of archaeological data

As Cripps (2013) mentions it, archaeological data consists mostly of various and fragmentary information and archaeologists often construct multiple narratives based on the collected data. This multivocality forces the development of an application that is able to adjust to the versatility of archaeological studies (Dell’Unto et al. 2016).
Amongst those characteristics, different elements need to be addressed. The temporal aspect is one of the most important ones. However, the integration of such a parameter in an Information System is still limited as an attribute. Moreover, time is not a constant feature as far as archaeological data is concerned and its delimitations are often fuzzy (Belussi et al. 2015; De Roo et al. 2013b).

Therefore, this 4D AIS, as we conceive it, should propose the opportunity to hide unwanted parts of the 3D model and the information that is linked to it. Of course, this procedure will not be able to automatically reconstruct the parts that disappeared over time, but it can assist the archaeologist in hiding unneeded data and visual information. This option could be a useful tool for the researcher to understand use of space as well as the reasons that lead to later modifications. For this concept to be effective, the semantic classification of the point cloud will be crucial. Indeed, it will be very important to sort the data correctly and to link it to the appropriate sections of the 3D model (Doulamis et al. 2015; Wulf and Koch 2013). The attributes that will be added to them will also need to be carefully selected so that the information, if it is linked to two or more parts, is still available even if some of those sections are not on display.

Since archaeological data is multivocal, as Van Ruymbeke (2015) states, different theories can be elaborated. In order to keep track of their evolution, saving a new development should replace the old entry. This will allow to review the thought process that led to the current interpretation and to assess the links that have been created between some of the hypotheses.

4.3. Data volume

As the AIS is destined to store almost all of the data about the study object the archaeologist is working on, the number of files can vary from small to quite large depending on the stage of the research and of its extend (Coughenour et al. 2015).

The 3D model on its own contains billions of points that are defined by X, Y and Z coordinates and semantic information. Laser scanners also produce photographic panoramas in order to colorize the point cloud. Each of these panoramas can range from 70 megapixels (for the Trimble TX5) (Trimble 2012) to 700 megapixels (for the Leica ScanStation P30) (Leica 2015). Therefore, depending on the size of the studied area, the resolution and the quality of the recorded data, the size of the 3D model can begin with a few gigabytes with no maximal size.

As for the collected documentation, it can present itself in different file types and formats going from a simple text document to a high-resolution image scan. As for the size of all of these entries, it can fluctuate from almost nothing to a perpetual addition of data (Coughenour et al. 2015).

In order to consider this huge amount of data, solutions will need to be set up so that the application is not slowed down.

4.4. Standardization of the file formats

All of the used file formats will need to be standardized and compatible with one another. This will allow to switch from the system to another one as well as to share the results of the research with other partners (Houshiar et al. 2015; Laurenza and Putzolu 2001; De Roo et al. 2013a). Therefore, already existing and widespread formats are going to be selected in order to ensure an easy data transmission and sharing.

5. Conclusion

In this paper, we presented the main features of the system we are currently developing within research project CASTLE4D. This application is destined to support archaeological research and fieldwork by providing a virtual workspace which allows the researcher to incorporate all of the available data to a 3D model of its research object as well as to analyse the information and to export the results of his study.

The ideal components we identified for this system include a 3D model based on a point cloud, data storing and consultation as well as data production based on the analyses carried out by the researcher. Additionally, the user will be presented with the possibility to insert the study object into its surrounding topographical and environmental context and a temporal feature that will assist the researcher sort and visualize the interesting data for a specific topic. Furthermore, work status and theories can be saved in order to get back to them on a later stage. This will enable the user to document the thought process that led to the conclusions. Finally, an emphasis is set on adaptability since every archaeological research has its own particularities.

However, along with this hypothetical application, a number of issues have to be addressed in order to create a system that will work the way it is supposed to and that will not collapse when some modifications are necessary in order to adapt to some singularities of the research object.

First, the AIS has to be developed according to the needs of archaeological research. In addition to this, the AIS interface will have to be clear in order to be easily used by the researcher. Indeed, several aspects such as visualization, the workspace and the storage will be accessed through the graphical interface.

Then, we have to make sure that the multivocality of an archaeological research is taken into account by the system as well as the temporal aspect. At the same time, the system must be able to handle frequent modifications, addition of data and new links between different entities. All of this has to happen without deleting or changing any of the previous constructed relations.

Going on, data volume will have to be addressed since the totality of the inserted data (point cloud and other information) will be of a very large size which could greatly slow down. Therefore, different approaches will be tested so that the most appropriate one is selected.

Finally, the file formats will be standardized. This step will reduce a few variables that could impeach the good functioning of the application. The choice of widespread formats enables compatibility with other systems.
The next step of this research will be the development of the above defined AIS. A prototype will be worked out and tested on the castle of Franchimont (Theux, province of Liège, Belgium) before applying it on other study objects.

References

