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Pascal triangle and Sierpinski gasket

Sierpinski gasket
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Link between these triangles?

For each n € N, consider the intersection of the lattice N? with the region
0,2"] x [0,2"]:
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[f we normalize this region by a homothety of ratio 1/2", we get a sequence
of compacts in [0, 1] X

0,1].
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The elements of the latter sequence corresponding to n € {0,...,5}.

In 1992, F. von Haeseler, H. O. Peitgen and G. Skordev showed that this
sequence converges, for the Hausdorfl distance, to the Sierpinski gasket when
n tends to infinity.

Binomial coefhficients of words

The binomial coefficient (Z) of two finite words w and v is the number of
times v occurs as a subsequence of u (meaning as a “scattered” subword).
This concept is a natural generalization of the binomial coefficients of inte-
gers. For a single letter alphabet {a}, we have
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To define a new triangular array, we consider all the words over a finite
alphabet and we order them by genealogical ordering (i.e. first by length,
then by the classical lexicographic ordering for words of the same length
assuming 0 < 1). For the sake of simplicity, we mostly discuss the case
of a 2-letter alphabet {0,1}. We also consider the language of the base-2
expansions of integers, assuming without loss of generality that the non-
empty words start with 1:

L = repy(N) = {e} U 1{0, 1}*.

The first few values of the generalized Pascal triangle are given in the fol-
lowing table.
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0 When only considering the
8 words of the language
0 1* C L, we obtain the el-
é ements of the usual Pascal
0 triangle (in bold).
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Main results

Let @ :==10,1] x |0, 1]. Consider the sequence (7},),~( of compact sets in
R? defined for all n > 0 by

Ty:=| {(valg(v),valg(u)) +Q | u,v e Ly, (Z‘) = 1 mod 2}
c [0,2"] x [0,2™].

Let (Up),>0 be the sequence of compact sets defined for all n > 0 by
Up =2 C [0,1] x [0, 1].
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The sets Uy, ..., Us.

Question: Does the sequence (U),>( converge to an analogue of the
Sierpinski gasket and is it possible to describe the limit object?

The (%) condition: Let (u,v) € L x L. We say that (u,v) satisfies the
(%) condition, if (u,v) # (e,¢), (;,) =1 mod 2, () =0and (,7) =0.

Let (u,v) in L x L such that |u| > |v] > 1. We define a closed segment .Sy, ,,
of slope 1 and length v/2 - 2714l in [0,1] x [1/2,1]. The endpoints of Su.v
are given by Ay 4 = (0.0|u|_‘”‘v, 0.u) and By y = Ay v + (2_|u|, 2_‘“‘).

Let Ajy be the following compact set which is the closure of a countable
union of segments:

.A() = U Su,v C

(u,v)
satisfying(x)

Let ¢ denote the homothety of center (0,0) and ratio 1/2 and consider the
map h : (x,y) — (z,2y). Consider the sequence (Aj,),,~( of compact sets
in R? defined for all n > 0 by

Avi= | (A,
0<i<n
0<y<1

0,1] % [1/2,1].

Lemma: The sequence (Ay),>0 is a Cauchy sequence.

Since we have a Cauchy sequence in the complete metric space (H.(R?), dy,)
(where dj, is the Hausdorff distance), the limit of (Ay),>0 is a well defined
compact set denoted by L.

Theorem: The sequence (Up)y,>( converges to L.

Extension to a more general context

For the sake of simplicity, we only considered odd binomial coeflicients. It
is straightforward to adapt our reasonings, constructions and results to a
more general setting. Let p be a fixed prime and r € {1,...,p —1}. We
can extend the definition of each compact set T, to

T = {(valg(v),valg(u)) + Q| u,v€ Ly, (:) = 7 mod p}

and mtroduce corresponding compact sets Uy, ;.
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