Generalized Pascal triangle for binomial coefficients of finite words
 Manon STIPULANTI FRIA grantee University of Liège m.stipulanti@ulg.ac.be Joint work with Julien LEROY and Michel RIGO

Pascal triangle and Sierpiński gasket

Pascal triangle
$\binom{m}{k} \quad m, k \in \mathbb{N}$

Link between these triangles?
For each $n \in \mathbb{N}$, consider the intersection of the lattice \mathbb{N}^{2} with the region $\left[0,2^{n}\right] \times\left[0,2^{n}\right]:$

If we normalize this region by a homothety of ratio $1 / 2^{n}$, we get a sequence of compacts in $[0,1] \times[0,1]$.

In 1992, F. von Haeseler, H. O. Peitgen and G. Skordev showed that this sequence converges, for the Hausdorff distance, to the Sierpiński gasket when n tends to infinity.

Binomial coefficients of words

The binomial coefficient $\binom{u}{v}$ of two finite words u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword). This concept is a natural generalization of the binomial coefficients of integers. For a single letter alphabet $\{a\}$, we have

$$
\binom{a^{m}}{a^{k}}=\binom{m}{k} \quad \forall m, k \in \mathbb{N} .
$$

To define a new triangular array, we consider all the words over a finite alphabet and we order them by genealogical ordering (i.e. first by length, then by the classical lexicographic ordering for words of the same length assuming $0<1$). For the sake of simplicity, we mostly discuss the case of a 2-letter alphabet $\{0,1\}$. We also consider the language of the base- 2 expansions of integers, assuming without loss of generality that the nonempty words start with 1 :

$$
L=\operatorname{rep}_{2}(\mathbb{N})=\{\varepsilon\} \cup 1\{0,1\}^{*}
$$

The first few values of the generalized Pascal triangle are given in the following table.

	ε	1	10	11	100	101	110	111
ε	$\mathbf{1}$	0	0	0	0	0	0	0
1	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0
11	$\mathbf{1}$	$\mathbf{2}$	0	$\mathbf{1}$	0	0	0	0
100	1	1	2	0	1	0	0	0
101	1	2	1	1	0	1	0	0
110	1	2	2	1	0	0	1	0
111	$\mathbf{1}$	$\mathbf{3}$	0	$\mathbf{3}$	0	0	0	$\mathbf{1}$

When only considering the words of the language $1^{*} \subset L$, we obtain the elements of the usual Pascal triangle (in bold).

Main results

Let $Q:=[0,1] \times[0,1]$. Consider the sequence $\left(T_{n}\right)_{n \geq 0}$ of compact sets in \mathbb{R}^{2} defined for all $n \geq 0$ by

$$
\begin{aligned}
T_{n}: & =\bigcup\left\{\left(\operatorname{val}_{2}(v), \operatorname{val}_{2}(u)\right)+Q \mid u, v \in L_{n},\binom{u}{v} \equiv 1 \bmod 2\right\} \\
& \subset\left[0,2^{n}\right] \times\left[0,2^{n}\right]
\end{aligned}
$$

Let $\left(U_{n}\right)_{n \geq 0}$ be the sequence of compact sets defined for all $n \geq 0$ by $U_{n}:=\frac{T_{n}}{2^{n}} \subset[0,1] \times[0,1]$.

The sets U_{0}, \ldots, U_{5}.
Question: Does the sequence $\left(U_{n}\right)_{n>0}$ converge to an analogue of the Sierpiński gasket and is it possible to describe the limit object?
The (\star) condition: Let $(u, v) \in L \times L$. We say that (u, v) satisfies the (\star) condition, if $(u, v) \neq(\varepsilon, \varepsilon),\binom{u}{v} \equiv 1 \bmod 2,\binom{u}{v 0}=0$ and $\binom{u}{v 1}=0$.
Let (u, v) in $L \times L$ such that $|u| \geq|v| \geq 1$. We define a closed segment $S_{u, v}$ of slope 1 and length $\sqrt{2} \cdot 2^{-|u|}$ in $[0,1] \times[1 / 2,1]$. The endpoints of $S_{u, v}$ are given by $A_{u, v}:=\left(0.0^{|u|-|v|} v, 0 . u\right)$ and $B_{u, v}:=A_{u, v}+\left(2^{-|u|}, 2^{-|u|}\right)$.
Let \mathcal{A}_{0} be the following compact set which is the closure of a countable union of segments:

$$
\mathcal{A}_{0}:=\bigcup_{\substack{(u, v) \\ \operatorname{satisfying}(\star)}} S_{u, v} \subset[0,1] \times[1 / 2,1]
$$

Let c denote the homothety of center $(0,0)$ and ratio $1 / 2$ and consider the $\operatorname{map} h:(x, y) \mapsto(x, 2 y)$. Consider the sequence $\left(\mathcal{A}_{n}\right)_{n \geq 0}$ of compact sets in \mathbb{R}^{2} defined for all $n \geq 0$ by

$$
\mathcal{A}_{n}:=\bigcup_{\substack{0 \leq i \leq n \\ 0 \leq j \leq i}} h^{j}\left(c^{i}\left(\mathcal{A}_{0}\right)\right)
$$

Lemma: The sequence $\left(\mathcal{A}_{n}\right)_{n \geq 0}$ is a Cauchy sequence.
Since we have a Cauchy sequence in the complete metric space $\left(\mathcal{H}\left(\mathbb{R}^{2}\right), d_{h}\right)$ (where d_{h} is the Hausdorff distance), the limit of $\left(\mathcal{A}_{n}\right)_{n \geq 0}$ is a well defined compact set denoted by \mathcal{L}.
Theorem: The sequence $\left(U_{n}\right)_{n \geq 0}$ converges to \mathcal{L}.

Extension to a more general context

For the sake of simplicity, we only considered odd binomial coefficients. It is straightforward to adapt our reasonings, constructions and results to a more general setting. Let p be a fixed prime and $r \in\{1, \ldots, p-1\}$. We can extend the definition of each compact set T_{n} to

$$
T_{n, r}:=\bigcup\left\{\left(\operatorname{val}_{2}(v), \operatorname{val}_{2}(u)\right)+Q \mid u, v \in L_{n},\binom{u}{v} \equiv r \bmod p\right\}
$$

and introduce corresponding compact sets $U_{n, r}$.

Ecole des Jeunes Chercheurs en
Informatique Mathématique,

