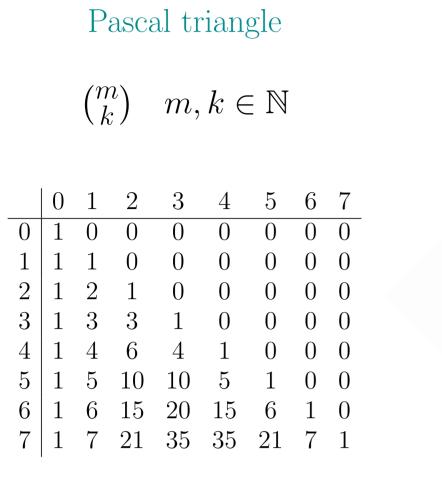
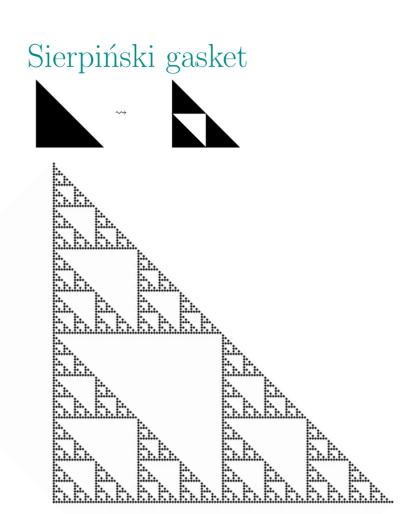
# Generalized Pascal triangle for binomial coefficients of finite words

Manon STIPULANTI FRIA grantee University of Liège m.stipulanti@ulg.ac.be Joint work with Julien LEROY and Michel RIGO

### Pascal triangle and Sierpiński gasket





#### Link between these triangles?

For each  $n \in \mathbb{N}$ , consider the intersection of the lattice  $\mathbb{N}^2$  with the region  $[0, 2^n] \times [0, 2^n]$ :

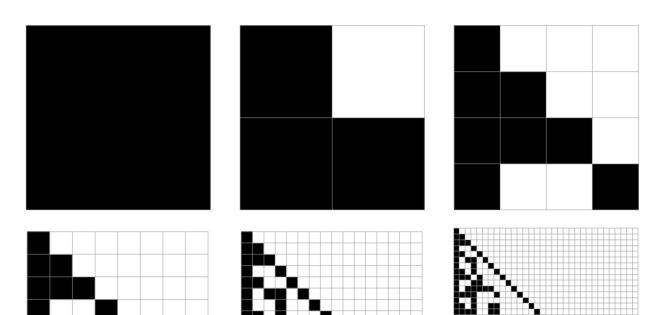
 $0 1 \cdots 2^n - 1 2^n$ 

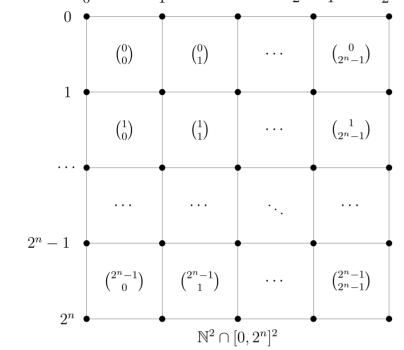
#### Main results

Let  $Q := [0,1] \times [0,1]$ . Consider the sequence  $(T_n)_{n \ge 0}$  of compact sets in  $\mathbb{R}^2$  defined for all  $n \ge 0$  by

$$T_n := \bigcup \left\{ (\operatorname{val}_2(v), \operatorname{val}_2(u)) + Q \mid u, v \in L_n, \begin{pmatrix} u \\ v \end{pmatrix} \equiv 1 \mod 2 \right\}$$
  
$$\subset [0, 2^n] \times [0, 2^n].$$

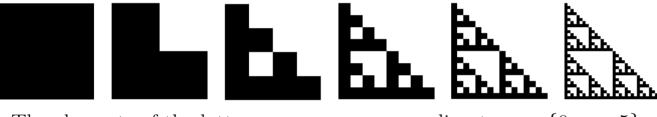
Let  $(U_n)_{n\geq 0}$  be the sequence of compact sets defined for all  $n \geq 0$  by  $U_n := \frac{T_n}{2^n} \subset [0,1] \times [0,1].$ 





Color the unit square associated with the binomial coefficient  $\binom{m}{k}$ in white if  $\binom{m}{k} \equiv 0 \mod 2$  and in black if  $\binom{m}{k} \equiv 1 \mod 2$ .

If we normalize this region by a homothety of ratio  $1/2^n$ , we get a sequence of compacts in  $[0, 1] \times [0, 1]$ .



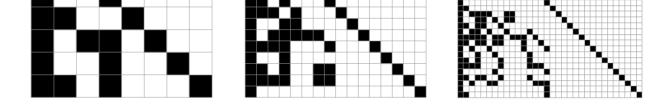
The elements of the latter sequence corresponding to  $n \in \{0, \ldots, 5\}$ .

In 1992, F. von Haeseler, H. O. Peitgen and G. Skordev showed that this sequence converges, for the Hausdorff distance, to the Sierpiński gasket when n tends to infinity.

### **Binomial coefficients of words**

The binomial coefficient  $\binom{u}{v}$  of two finite words u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword). This concept is a natural generalization of the binomial coefficients of integers. For a single letter alphabet  $\{a\}$ , we have

$$\binom{a^m}{a^k} = \binom{m}{k} \quad \forall m, k \in \mathbb{N}$$



The sets  $U_0, \ldots, U_5$ .

Question: Does the sequence  $(U_n)_{n\geq 0}$  converge to an analogue of the Sierpiński gasket and is it possible to describe the limit object?

The (\*) condition: Let  $(u, v) \in L \times L$ . We say that (u, v) satisfies the (\*) condition, if  $(u, v) \neq (\varepsilon, \varepsilon)$ ,  $\binom{u}{v} \equiv 1 \mod 2$ ,  $\binom{u}{v0} = 0$  and  $\binom{u}{v1} = 0$ .

Let (u, v) in  $L \times L$  such that  $|u| \ge |v| \ge 1$ . We define a closed segment  $S_{u,v}$ of slope 1 and length  $\sqrt{2} \cdot 2^{-|u|}$  in  $[0, 1] \times [1/2, 1]$ . The endpoints of  $S_{u,v}$ are given by  $A_{u,v} := (0.0^{|u|-|v|}v, 0.u)$  and  $B_{u,v} := A_{u,v} + (2^{-|u|}, 2^{-|u|})$ .

Let  $\mathcal{A}_0$  be the following compact set which is the closure of a countable union of segments:

$$\mathcal{A}_0 := \overline{\bigcup_{\substack{(u,v)\\\text{satisfying}(\star)}} S_{u,v}} \subset [0,1] \times [1/2,1].$$

Let c denote the homothety of center (0,0) and ratio 1/2 and consider the map  $h: (x, y) \mapsto (x, 2y)$ . Consider the sequence  $(\mathcal{A}_n)_{n \ge 0}$  of compact sets in  $\mathbb{R}^2$  defined for all  $n \ge 0$  by

$$\mathcal{A}_n := \bigcup_{\substack{0 \le i \le n \\ 0 \le j \le i}} h^j(c^i(\mathcal{A}_0)).$$

**Lemma:** The sequence  $(\mathcal{A}_n)_{n\geq 0}$  is a Cauchy sequence.

Since we have a Cauchy sequence in the complete metric space  $(\mathcal{H}(\mathbb{R}^2), d_h)$ (where  $d_h$  is the Hausdorff distance), the limit of  $(\mathcal{A}_n)_{n\geq 0}$  is a well defined compact set denoted by  $\mathcal{L}$ .

To define a new triangular array, we consider all the words over a finite alphabet and we order them by genealogical ordering (i.e. first by length, then by the classical lexicographic ordering for words of the same length assuming 0 < 1). For the sake of simplicity, we mostly discuss the case of a 2-letter alphabet  $\{0, 1\}$ . We also consider the language of the base-2 expansions of integers, assuming without loss of generality that the non-empty words start with 1:

 $L = \operatorname{rep}_2(\mathbb{N}) = \{\varepsilon\} \cup 1\{0, 1\}^*.$ 

The first few values of the generalized Pascal triangle are given in the following table.

|     | $\varepsilon$ | 1        | 10 | 11 | 100 | 101 | 110 | 111 |
|-----|---------------|----------|----|----|-----|-----|-----|-----|
| ε   | 1             | 0        | 0  | 0  | 0   | 0   | 0   | 0   |
| 1   | 1             | 1        | 0  | 0  | 0   | 0   | 0   | 0   |
| 10  | 1             | 1        | 1  | 0  | 0   | 0   | 0   | 0   |
| 11  | 1             | <b>2</b> | 0  | 1  | 0   | 0   | 0   | 0   |
| 100 | 1             | 1        | 2  | 0  | 1   | 0   | 0   | 0   |
| 101 | 1             | 2        | 1  | 1  | 0   | 1   | 0   | 0   |
| 110 | 1             | 2        | 2  | 1  | 0   | 0   | 1   | 0   |
| 111 | 1             | 3        | 0  | 3  | 0   | 0   | 0   | 1   |

When only considering the words of the language  $1^* \subset L$ , we obtain the elements of the usual Pascal triangle (in **bold**).

**Theorem:** The sequence  $(U_n)_{n\geq 0}$  converges to  $\mathcal{L}$ .

## Extension to a more general context

For the sake of simplicity, we only considered odd binomial coefficients. It is straightforward to adapt our reasonings, constructions and results to a more general setting. Let p be a fixed prime and  $r \in \{1, \ldots, p-1\}$ . We can extend the definition of each compact set  $T_n$  to

$$T_{n,r} := \bigcup \left\{ (\operatorname{val}_2(v), \operatorname{val}_2(u)) + Q \mid u, v \in L_n, \begin{pmatrix} u \\ v \end{pmatrix} \equiv r \mod p \right\}$$

and introduce corresponding compact sets  $U_{n,r}$ .



École des Jeunes Chercheurs en

Informatique Mathématique,

Strasbourg, 4 – 8 April 2016.

