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An analysis of daily Sea Surface Salinity (SSS) at 0.15 °×0.15° spatial resolution from the Soil Moisture and Ocean
Salinity (SMOS) satellitemission using DINEOF (Data Interpolating Empirical Orthogonal Functions) is presented.
DINEOF allows reconstructing missing data using a truncated EOF basis, while reducing the amount of noise and
errors in geophysical datasets. Thiswork represents afirst application ofDINEOF to SMOSSSS. Results show that a
reduction of the error and the amount of noise is obtained in the DINEOF SSS data compared to the initial SMOS
SSS data. Errors associated to the edge of the swath are detected in 2 EOFs and effectively removed from the final
data, avoiding removing the data at the edges of the swath in the initial dataset. The final dataset presents a cen-
tered root mean square error of 0.2 in open waters when comparing with thermosalinograph data at their orig-
inal spatial and temporal resolution. Constant biases present near land masses, large scale biases and latitudinal
biases cannot be correctedwith DINEOF because persistent signals are retained in high order EOFs, and therefore
these need to be corrected separately. The signature of the Douro and Gironde rivers is detected in the DINEOF
SSS. The minimum SSS observed in the Gironde plume corresponds to a flood event in June 2013, and the
shape and size of the Douro river shows a good agreement with chlorophyll-a satellite data. These examples
show the capacity of DINEOF to remove noise and provide a full SSS dataset at a high temporal and spatial reso-
lution with reduced error, and the possibility to retrieve physical signals in zones with high initial errors.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Sea Surface Salinity (SSS) is being measured globally by the Soil
Moisture and Ocean Salinity (SMOS) satellite mission, allowing
obtaining an unprecedented spatial and temporal coverage in the mea-
surement of this variable. SMOS measures radio frequency emission in
the first centimeters of the upper ocean. The SMOS salinity mission
has a target accuracy of ~0.2 over 100 km2 and 30 days (Lagerloef &
Font, 2010). Salinity is derived through the relation between brightness
temperature (BT), sea surface temperature (SST) and sea roughness.
This relation is more reliable for high values of BT and SST, so the preci-
sion of the salinity estimates decreases at high latitudes. Other sources
of error for remotely-sensed SSS are sea roughness, astronomical radia-
tion sources (e.g. galactic glint and cosmic background), sun glint, atmo-
sphere attenuation of the emitted signal and proximity to land and ice
(Lagerloef, Schmitt, Schanze, & Kao, 2010; Boutin et al., 2012). In addi-
tion, illegal anthropic radio emissions (radio-frequency interference,
RFI) in the protected L-band frequency result in permanently or inter-
mittently contaminated zones of the ocean, such as the European seas
and Asia (Boutin et al., 2012). These sources of error result in noise
and biases that need to be corrected, and gaps in the satellite SSS fields.
).
Several features have been analyzed using SMOS SSS data, showing
the importance of this dataset. For example, the North Atlantic subtrop-
ical salinity maximum (Kolodziejczyk, Hernandez, Boutin, & Reverdin,
2015), the Gulf Stream meanders (Reul et al., 2014), and the Amazon
river plume (Grodsky, Reverdin, Carton, & Coles, 2014; Reul et al.,
2014; Fournier, Chapron, Salisbury, Vandemark, & Reul, 2015). Process-
es at smaller scales, or features near land masses are more difficult to
analyze using SMOS SSS because of the systematic errors due to the
proximity of land.

DINEOF (Data Interpolating Empirical Orthogonal Functions) is a
technique to reconstruct missing data in geophysical datasets that
uses a truncated EOF basis in an iterative approach. DINEOF has been
successfully applied to sea surface temperature (e.g. Alvera-Azcárate,
Barth, Rixen, & Beckers, 2005), chlorophyll-a and winds (e.g. Alvera-
Azcárate, Barth, Beckers, &Weisberg, 2007), and total suspendedmatter
(e.g. Sirjacobs et al., 2011; Alvera-Azcárate, Vanhellemont, Ruddick,
Barth, & Beckers, 2015). This work represents the first attempt at
using DINEOF with salinity data. The challenges faced in the use of
DINEOF to analyze SSS are the high level of noise in the SMOS SSS
data, the presence of constant biases and errors due for example to
the presence of landmasses, and the lack of knowledge about the spatial
and temporal signatures in SSS and how to separate them from the
mentioned errors. Constant biases cannot be corrected with DINEOF
so these should be removed separately, using for example the approach
suggested by Kolodziejczyk et al. (2016-in this issue).
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The aim of this work is to assess if DINEOF is able to detect and re-
move noise and errors from the SMOS SSS dataset at the highest tempo-
ral and spatial resolution provided by the data. By removing noise and
errors at the highest resolution, these data do not enter into the compu-
tation of composites and can provide therefore improved estimates at
10-day or monthly averages.

This work is organized as follows: the satellite and in situ data used
are described in Section 2. Section 3 describes the methods used in this
work: pre-processing of the data, and a description of DINEOF and the
outlier detectionmethodology. The results section consists of a sensitiv-
ity study, a comparison with independent data, an assessment of the
spatial resolution achieved by the data, the analysis of the final dataset
and the description of the EOF basis used for the computation of the
final dataset. These are presented in Section 4. We conclude this work
in Section 5.

2. Data used

2.1. Satellite data

Level 2 Ocean Salinity User Data Product (UDP) version 5.50, provid-
ed by ESA, are used in this study. The domain covered is the North-East
Atlantic Ocean andMediterranean Sea, as shown in Fig. 1. Daily data for
2013 consisting of the ascending orbits have been selected, and the SSS
data calculated using Roughness Model 1 (Yin, Boutin, Martin, &
Spurgeon, 2012) have been retained for this study. Only ascending or-
bits are used to avoid working with data that have a different accuracy,
as the descending orbits present larger errors than the ascending orbits.
The data are kept at the original spatial resolution, which is of
0.15 °×0.15°. Data located farther than ±300 km of the centre of the
track are subject to higher errors (Zine et al., 2008; Yin et al., 2014),
and are therefore typically removed (i.e. Boutin et al., 2014). In this
work, however, we have retained the full swath in order to assess if
these errors at the edges of the swath can be discarded through the
DINEOF analysis.Mediterranean Sea data are also subject to large errors,
but the data are retained aswell in thiswork in order to assess if DINEOF
is able to extract a physically meaningful signal from the initial SSS.
Fig. 1. Percentage of missing data of the SSS data after quality checks and outlier detection. To
position of the Douro river mouth, and the red triangle marks the position of the Gironde estu
For a qualitative assessment of the salinity data near the river plume
of the Douro river we use 8-day composites of MODIS (Moderate Reso-
lution Imaging Spectroradiometer) Aqua level 3 chlorophyll-a data,
with a spatial resolution of 4 km and obtained from http://oceancolor.
gsfc.nasa.gov/.

2.2. In situ data

In situ salinity data for 2013 have been extracted from the World
Ocean Database (WOD) 2013 (Boyer et al., 2013), http://www.nodc.
noaa.gov/and the Coriolis Data Centre (http://www.coriolis.eu.org/).
Data from all platforms are extracted (Argo, CTD, drifting buoys and
moored buoys), and the shallowest value is retained for each profile
(with amaximumdepth of 2m). Note thatmost Argo data stopmeasur-
ing when reaching depths shallower than 5 m, therefore most of the
data used here have an effective depth that is deeper than 2 m. The in
situ data have been randomly distributed into a training dataset (90%
of the data) and a validation dataset (10% of the data). The training
dataset has been used to compute a monthly climatology using divand
(n-dimensional Data Interpolating Variational Analysis, Barth et al.
(2014)). This technique is equivalent to DIVA (Troupin et al., 2012)
but multi-dimensional analyses can be handled, which allows taking
into account for example the temporal correlation existing in the data.
A SSS field has been calculated for each month of 2013, with a spatial
resolution of 0.5 degrees. The spatial correlation length has been
established to 10 degrees for the first guess and 1 degree for the
short-scale background. The temporal correlation length is 90 days for
the first guess and 15 days for the short-scale background. Signal-to-
noise ratio is set up to 20. The spatial and temporal correlation scales
have been optimized by minimizing the RMS between the analysis
and a cross-validation dataset consisting of 5% of the initial data chosen
at random. Signal-to-noise ratio was optimized by the same procedure.
Thesemonthly fields, interpolated to daily values, are removed from the
SMOS SSS fields prior to the DINEOF analyses in order to work with
anomalies, and an example for February, July and December is shown
in Fig. 2. Evidently, the presence of features like the Gulf Stream or the
subtropical salinity maximum in the background fields depends
p panel: spatial distribution of the percentage of missing data. The green circle marks the
ary. Bottom panel: temporal evolution of the percentage of missing data.
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Fig. 2. Example of monthly background SSS fields calculated using in situ data. Top panel:
in situ SSS for February 2013;middle panel: in situ SSS for July 2013; bottompanel: in situ
SSS for December 2013.
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strongly on the presence of enough data to resolve them, as in the case
of the Gulf Stream weaker amplitude in February (top panel of Fig. 2).
The validation dataset (10% of the initial data, not used in the back-
ground) is used in the comparisonwith the original SSS and DINEOF re-
construction, in Section 4.

Thermosalinograph (TSG) data from Voluntary Observing Ships dis-
tributed by Legos http://www.legos.obs-mip.fr are also used in this
work for comparison purposes. The TSG SSS data are measured every
5 min over a series of fixed tracks along the North Atlantic Ocean and
the Mediterranean Sea.

3. Methods

3.1. Data pre-processing

Several quality flags, provided with the original data, are used in
order to remove data suspected of low quality. These are the flag for
poor geophysical retrieval Fg_ctrl_poor_geophysical (which detects
sun glint, galactic glint, wind speed and suspected ice), the flag for
poor retrieval Fg_ctrl_poor_retrieval (bad convergence of the algorithm
calculating SSS) and a quality flag specific for the roughnessmodel used
(Dg_quality_SSS1). A pixel with the three flags activated is removed
from the dataset. While this quality flag setup is likely to allow pixels
with a bad quality to be retained, the aim of this work is to filter these
bad data in later steps with the DINEOF processing.

Two additional steps are performed in order to remove data with
low quality. The first one consists of a range check in which pixels
with a value too high or too lowwith respect to the monthly climatolo-
gy calculated using the data described in Section 2.2 are removed. This
test is performed on a pixel basis, and the difference threshold is set to
±2. Finally, the outlier detection procedure described in Section 3.3,
based on DINEOF, is applied. The parameters used for the outlier detec-
tion have been determined through a sensitivity analysis which will be
shown in Section 4.1.

The final dataset has an average amount of missing data of 75.45%,
and the average percentage of missing data in space and time is
shown in Fig. 1. The highest amount of missing data (more than 90%)
is found in the eastern part of the North Atlantic Ocean and the
Mediterranean Sea. Part of the easternMediterranean Sea does not con-
tain any data after the quality checks (white areas in Fig. 1), and there-
fore these zones are not used in the rest of this work. The percentage of
missing data is the lowest in September, andwhile it is difficult to deter-
mine the reason for this decrease in the percentage of missing data, a
possible cause is that during this period of the year both temperature
and salinity reach their highest values in the zone of study, which
might result in a lower signal-to-noise ratio in the calculation of SSS,
and therefore to more data passing the quality checks.

3.2. DINEOF

DINEOF (Data Empirical Orthogonal Functions, Beckers and Rixen
(2003), Alvera-Azcárate et al. (2005)) has been used in this study in
order to calculate daily SSS fields with low noise and reduced error.
DINEOF consists of an EOF-based reconstruction of the missing data in
a geophysical dataset, extracting the main patterns of variability from
the data. It uses a truncated EOF basis to infer the missing data, and
therefore noise can be effectively reduced in the reconstructed dataset,
as noise is typically found in the higher order EOFs. Some transient in-
formation, however, can be also removed from the final result as these
might be also found in the higher order EOFs. In order to calculate the
EOF basis from a dataset that has missing data, the following steps are
performed: first the monthly climatology described in Section 2.2 (in-
terpolated to daily values) is removed from the data, and the missing
values are set to zero (i.e. themean of the dataset). A first EOF decompo-
sition using only the first EOF is performed, and this reduced EOF basis is
used to infer an improved estimation of the missing data. Once conver-
gence has been reached for the estimation of themissing data using the
first EOF, the whole procedure is repeated using 2 EOFs. Then 3, 4… n
EOFs are calculated. The total number of EOFs to be calculated, n, is de-
termined by cross-validation: a set of initially valid data (about 3% of the
total data) is set aside at the beginning and treated as missing data. At
each step, a cross-validation error is calculated. The number of EOFs
that minimizes this error is used as the optimal for the dataset recon-
struction. More details about DINEOF and examples can be found in
Beckers and Rixen (2003), Alvera-Azcárate et al. (2007, 2005).

A filter was applied to the temporal covariance matrix, based in
Alvera-Azcárate, Barth, Sirjacobs, and Beckers (2009). This filterwas ini-
tially implemented to improve the temporal sequence of the analyzed
images. In case of large amounts of missing data (Alvera-Azcárate
et al., 2009), or highly irregular time steps (Alvera-Azcárate et al.,
2015), the filter allows improving the reconstruction by taking into ac-
count the temporal coherency of the data. In this case, the aim was to
smooth the reconstruction and improve the temporal coherence of the
data, as the percentage of missing data is very high in certain zones,
which results in not enough data to perform a DINEOF reconstruction
if no filter is used. In order to test the effect of this filter in the final qual-
ity of the data, two filter lengths are presented in the sensitivity study of
Section 4.1.

3.3. Outlier detection

In order to detect outliers in the initial SSS dataset, before
performing the final analysis using DINEOF, an outlier detection proce-
dure consisting of three tests is applied to the data, following Alvera-
Azcárate, Sirjacobs, Barth, and Beckers (2012). In the first test (“EOF
test”) suspect data are detected as those presenting a large residual
with respect to a truncated EOF basis calculated using DINEOF. The sec-
ond test (“Median test”) aims to detect departures from a local median
(calculated in a 20 by 20 pixel box) and the third test (“Proximity test”)
penalizes more strongly pixels in the vicinity of land or missing data
(e.g. at the edges of the swath, or near other pixels already classified
as bad by the quality flags). A weighted combination of these three
tests is performed (in this study, an equal weight of 1/3 is given to all
tests), and finally a threshold to classify a given pixel as an outlier is

http://www.legos.obs-mip.fr


Fig. 4. Example of the data classified as outliers for 7 February 2013, using two thresholds:
1 (top panel) and 2 (bottom panel). The total number of outliers detected for each
threshold is given in the title of each sub-figure.
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decided. Fig. 3 shows an example of the three outlier detection sub-tests
for 7 February 2013. The effect of the final threshold in the quantity of
eliminated data is shown in Fig. 4 for 7 February 2013 as well, where
two thresholds are shown: 1 (stronger, i.e. more data are classified as
outliers) and 2 (weaker). As expected, a higher concentration of outlier
data is found at the edges of the swaths, near land and in theMediterra-
nean Sea. The initial SSS field and the resulting fields when applying the
outlier detection with the two mentioned thresholds are shown in
Fig. 5. Theweights given to each sub-test and the final threshold depend
on the initial data quality and the final use of the data. In this work the
final threshold is set to one,which eliminates 12.14% of data (see Table 1
to see the impact of the outlier threshold in the amount ofmissingdata).
For more details and examples using other variables (sea surface tem-
perature and chlorophyll-a concentration) the readers are referred to
Alvera-Azcárate et al. (2012).

4. Results

4.1. Sensitivity study

Once the SSS data have been checked for their quality and the out-
liers have been removed, a DINEOF analysis is performed in order to ob-
tain full SSS fields at daily temporal resolution and 0.15°×0.15° spatial
resolution. In order to determine the optimal values for the temporal co-
variance filter and the outlier threshold, a series of analyses have been
realized with varying values for these parameters. Regarding the length
of the temporal covariance filter, two values are shown here: 3 and
14 days, representing a short and a long filter. Other tests were done
with intermediate values that are not shown here. The 14-day filter, as
shown in the following, provided better results than any of the other
tested filter lengths. The repeat cycle of SMOS is 18 days, but, as ad-
dressed later in Section 4.5, using a 18-day length for the temporal
covariance filter results in part of the signal considered erroneous
being retained in the EOF basis, and therefore we chose 14 days as
themaximum filter length in this work. The reader is cautioned howev-
er that the optimal filter length will vary from one dataset to another,
and therefore an optimisation of this value must be realized for each
dataset. A summary of the number of EOFs retained by the DINEOF
Fig. 3. Example of the three sub-tests for the detection of outliers for 7 February 2013. Top
panel: EOF test (unitless, larger valuesmean larger departures from the EOF basis).Middle
panel: proximity test (unitless; a value of 3 is assigned to pixels near land ormissing data,
zero value for the rest). Bottom panel: median test (unitless, larger values mean larger
departures from the local median).
reconstruction, the variance explained and the cross-validation error
obtained is included in Table 2.

Using a very short temporal covariance filter length (3 days) results
in a reconstruction using one EOF, while the three reconstructions test-
ed using a longer filter (14 days) results in reconstructions using 5 EOFs.
The number of EOFs has an effect in the quantity of explained variance,
and therefore in the quality of the final reconstruction. For this case, it
therefore appears that longer filter lengths provide better results, with
the reconstruction using an outlier threshold of 1 retaining the highest
variance (78%, see Table 2).

In order to establish the impact of the different parameters used, a
comparison of each reconstruction with the in situ validation dataset
and the TSG data described in Section 2.2 has been realized. The results
of this comparison are summarized in Table 3. It can be seen that, in gen-
eral, the choice of the outlier threshold level has a strong influence in
the quality of the final result: for example, the centered RMS error of
the DINEOF reconstructed data when compared with TSG data is of
0.6 for a filter length of 14 days and outlier threshold of 2, and this
value decreases to 0.55when the outlier threshold is 1. For afilter length
Fig. 5. Top panel: initial SSS data (after quality checks) for 7 February 2013. Middle panel:
initial data with outliers removed, using a threshold of 1. Bottom panel: initial data with
outliers removed, using a threshold of 2.



Table 1
Percentage of missing data in the initial SMOS SSS dataset (after the quality checks de-
scribed in Section 2.1) and after the outlier detection tests, using 3 thresholds.

Dataset Missing data

Initial data (after QC checks) 63.31%
Initial data with outlier threshold = 2.0 64.87%
Initial data with threshold = 1.5 68.84%
Initial data with threshold = 1.0 75.45%

Table 3
Comparison statistics between in situ data and SMOS data for two filter lengths (3 days
and 14 days) and two outlier threshold levels (1.0 and 1.5). The two in situ datasets used
(WOD/Coriolis and thermosalinograph data) are described in the text. The DINEOF recon-
struction is compared at initially present points and at all available points. Statistics used
are Root Mean Square Error (RMS), centered RMS (CRMS), bias and Correlation (r). The
number of data used for each calculation is included. Note the low number of data avail-
able for some of the comparisons using initial SMOS data.

RMS CRMS Bias r # data

Filter length 3 days
Outlier threshold 1.0

WOD/Coriolis initial 0.85 0.76 −0.37 0.33 11
WOD/Coriolis DINEOF initial points 0.36 0.31 −0.18 0.82 11
WOD/Coriolis DINEOF 0.55 0.54 −0.1 0.79 1557
TSG initial 0.67 0.55 −0.4 0.79 29
TSG DINEOF initial points 0.42 0.33 −0.26 0.89 29
TSG DINEOF 0.71 0.49 −0.52 0.88 184

Filter length 14 days
Outlier threshold 1.0

WOD/Coriolis initial 0.71 0.7 −0.1 0.7 8
WOD/Coriolis DINEOF initial points 0.43 0.41 −0.14 0.76 8
WOD/Coriolis DINEOF 0.67 0.64 −0.2 0.72 1557
TSG initial 0.67 0.55 −0.39 0.79 29
TSG DINEOF initial points 0.53 0.37 −0.38 0.87 29
TSG DINEOF 0.79 0.55 −0.57 0.86 184

Outlier threshold 1.5
WOD/Coriolis initial 0.64 0.6 −0.24 0.5 26
WOD/Coriolis DINEOF initial points 0.52 0.49 −0.17 0.78 26
WOD/Coriolis DINEOF 0.68 0.64 −0.2 0.72 1567
TSG initial 0.73 0.6 −0.43 0.77 38
TSG DINEOF initial points 0.56 0.35 −0.4 0.92 38
TSG DINEOF 0.86 0.57 −0.64 0.85 184

Outlier threshold 2
WOD/Coriolis initial 0.77 0.67 −0.37 0.67 49
WOD/Coriolis DINEOF initial points 0.61 0.58 −0.19 0.56 49
WOD/Coriolis DINEOF 0.72 0.67 −0.27 0.7 1568
TSG initial 0.87 0.70 −0.51 0.73 44
TSG DINEOF initial points 0.61 0.4 −0.47 0.90 44
TSG DINEOF 0.92 0.6 −0.7 0.84 184

Table 4
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of 3 days and an outlier threshold of 1, the centered RMS decreases fur-
ther to 0.49. Similar reductions are observed in the comparison with
WOD and Coriolis data, although the number of match-ups is very
low. These results lead to the conclusion that an outlier threshold of 1
is the best choice. Regarding the filter length, it appears that the short
filter value (i.e. 3 days) leads to improved results, although as it has
been shown in Table 2, this reconstruction uses only one EOF, which de-
creases the explained variance and results in a smoother reconstruction
which may explain the lower error values. Large fresh biases are
observed in all comparisons. As mentioned before, DINEOF is not able
to remove constant or persistent biases from the initial data. As a con-
clusion of the sensitivity study, the results of the reconstruction using
a filter length of 14 days and an outlier threshold of 1 will be used in
the remaining of this work.

4.2. Comparison with TSG data

The comparisonwith TSGdata in Table 3 reveals that the freshbias ob-
served in the initial data (−0.39) increases to −0.57 in the reconstruc-
tion provided by DINEOF (Table 3). In order to assess the causes of this
increase, the comparison between TSG and SMOS data will be looked at
withmore detail. Fig. 6 shows the TSG data and the SMOS data (anomaly
with respect to the TSG data) at the TSG positions. The DINEOF data along
the French, Spanish and Portuguese coasts present the lowest values
with respect to the TSG data. These data are not present in the original
SMOS data, and therefore the bias of the original SMOS data appears
-artificially- to be lower than the DINEOF reconstruction. Large biases in
SMOS SSS can be expected near land due to land contamination issues.
Latitudinal or large scale bias is also present in the original data, and as
mentioned before DINEOF does not aim at correcting these sources of
bias. Fig. 6 also includes the DINEOF estimate at the initially present
SMOSpositions, showing the ability of DINEOF to reduce noise in the data.

Fig. 7 shows a scatter plot comparing the initial SMOS data and
DINEOF data (at positions initially present in SMOS and at all points),
with the color representing the longitude of the data. It can be seen
that the DINEOF results at positions initially present in SMOS are
much closer to the 1:1 line than the original SMOS data. When looking
at the DINEOF results at all points we can see that data at around
10°W depart largely from the 1:1 line, and these are again the data
near the French, Spanish and Portuguese coasts. The DINEOF SSS data
at the Mediterranean Sea (in deep red in Fig. 7, longitudes larger than
0°E) do present also a slightly larger bias than the average data,
but this bias is smaller than the one along the French, Spanish and
Portuguese coasts in the North Atlantic Ocean.
Table 2
Number of EOFs retained by DINEOF, percentage of explained variance and cross-valida-
tion error for analyses using different values of the covariance filter length and outlier
threshold.

# EOFs Variance
explained

Cross-validation
error

Filter length Outlier threshold

3 1 1 64% 0.76
14 1 5 78% 0.75
14 1.5 5 71% 0.76
14 2 5 68% 0.75
It should also be noted that the error statistics of Table 3 include
zones that are very close to land and the Mediterranean Sea, which
are typically not available in other SMOS SSS products, and therefore
not used in comparisons with in situ data. A comparison using only
DINEOF SSS data at open ocean locations (west of 24 ∘W) reveals a cen-
tered RMS of 0.61 when comparing to WOD and Coriolis data and of
0.32 when comparing to TSG data (Table 4), a reduction of 40% with re-
spect to the error of the initial SMOS data.

4.3. Spatial resolution of the reconstruction

In order to show the effective spatial resolution that the DINEOF re-
construction is able to retain, two transects of TSG data are compared to
the SMOS data at very high spatial resolution. Co-located transects of
TSG salinity, SMOS and DINEOF SSS are shown in Fig. 8. The TSG data
Comparison statistics between in situ data and SMOS data for open waters (longitudes
west of 24°W), for a filter length of 14 days and an outlier threshold of 1. There are not
enoughmatch-up points to assess the error between SMOS data andWOD. Statistics used
are Root Mean Square Error (RMS), centered RMS (CRMS), bias and Correlation (r). The
number of data used for each calculation is included. Note the low number of data avail-
able for some of the comparisons using initial SMOS data.

RMS CRMS Bias r # data

WOD/Coriolis initial – – – – –
WOD/Coriolis DINEOF initial points – – – – –
WOD/Coriolis DINEOF 0.62 0.61 −0.12 0.67 1372
TSG initial 0.59 0.53 −0.25 0.66 20
TSG DINEOF initial points 0.28 0.19 −0.2 0.91 20
TSG DINEOF 0.39 0.32 −0.22 0.94 48



Fig. 6. First panel: TSG data, averaged daily. Second panel: original SMOS SSS data
anomalies with respect to the TSG data. Third panel: DINEOF reconstruction of SSS data
(anomalies with respect to the TSG data) at the initially present SMOS positions. Fourth
panel: DINEOF reconstruction of SSS data anomalies with respect to the TSG data at all
positions. Fresh biases can be seen along the French, Spanish and Portuguese coasts.

Fig. 7. Scatter plots comparing the SMOS data andDINEOF reconstruction to TSG data. Top
panel: SMOS data vs. TSG data. Middle panel: DINEOF reconstruction at originally present
points vs. TSG data. Bottom panel: DINEOF reconstruction at all points vs. TSG data. The
colors indicate the longitude of each point in the graphic.
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are kept at their original temporal resolution (~5min) in order to show
the capability of the DINEOF SSS to reproduce small-scale variations.
The original and DINEOF SSS data (daily data at 0.15°×0.15°) are inter-
polated to the TSG positions. Two transects are shown, one getting
closer to the European coasts. It is observed that DINEOF is able to
strongly reduce the noise in SMOS data, and at the same time reproduce
the small-scale variations observed in the TSG data. There is a constant
fresh bias in the DINEOF data, that increases when getting close to the
coast (east of 24°W). The centered RMS for transect a is 0.22 and the
bias is −0.35. For transect b, which is located only in open ocean, the
centered RMS is 0.2 and the bias is −0.3. These results show the capa-
bility of DINEOF to retain the high resolution of the initial dataset.

4.4. Reconstruction results

An example of the reconstructed SSS provided by DINEOF is shown
in Fig. 9 for 21 July 2013. This example shows the capability of DINEOF
to reduce the noise still present in the daily SSS fields after the quality
checks and the outlier check performed in this work. The Gulf Stream
is well observed in the top left part of the domain, with fresher waters
and meanders of about 200 km in size. Two low salinity zones around
the Gironde (France) and the Douro (Portugal) rivers are also observed,
indicating that these river plumes can as well have a signature in the
SMOS SSS maps, once the appropriate corrections have been applied.
Large river plumes have already been studied using SMOS data (e.g.
the Amazon river plume, Grodsky et al., 2014; Reul et al., 2014;
Fournier et al., 2015), but the Douro and Gironde river plumes, because
of their smaller size and the large biases caused by land contamination,
have not yet been assessed using SMOS data. Although it is difficult to
assess quantitatively the accuracy of the SMOS data at these river
plumes, the qualitative description of these signals can be helpful to an-
alyze the extent of the plumes and their seasonal variability.

Fig. 10 presents the averaged salinity time series at the Douro and
Gironde river plumes along 2013 (the boxes delimiting these two
zones are shown in Fig. 9). The Douro river plume shows values ranging
from 33 to 35.4. The Gironde plume shows values ranging from 32.2 to
33.7, with minimum values in June and November 2013. Following
Jalón-Rojas, Schmidt, and Sottolichio (2015), a flood event occurred in



Fig. 8. Two TSG transects at their original temporal resolution (~5 min) in the North
Atlantic Ocean and their SMOS and DINEOF interpolated to the TSG positions. Transect a
(top panel) gets closer to the coast and this is reflected in the larger fresh bias in the
DINEOF data.

Fig. 10. Time series of SSS at the Douro (top panel) and the Gironde (bottom panel) river
plumes. The boxes delimiting these two zones are shown in Fig. 9.
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the Gironde estuary in June 2013 (see their Fig. 3), which explains the
low salinity values observed in the DINEOF reconstruction. This mini-
mum in the DINEOF SSS is observed to develop quickly at the beginning
of June, and erode during July (data not shown). The minimum SSS ob-
served in November in Fig. 10 can also be correlated to a peak in river
discharge (Fig. 3 in Jalón-Rojas et al., 2015).

While part of the low salinity signal observed at the Portuguese coast
is certainly due to land contamination, the lowest SSS amplitudes are
found near the mouth of the Douro river. By inspecting the initial SSS
data (after check for outliers), and the DINEOF reconstruction, averaged
over the whole 2013, a zone of lower SSS is observed in the vicinity of
theDouro rivermouth, extending about 200 km from the coast. This sig-
nal is also observed in the background field described in Section 2.2,
which is independent of the original SMOS SSS data. In order to investi-
gate if this signal could be produced by the presence of freshwater from
theDouro river, the chlorophyll-a data described in Section 2.1were an-
alyzed.Mendes et al. (2014) describe a circular signature inMODIS data
due to the presence of the plume, which varies in form and expansion
from the coast due to thewind regime. The plume of the Douro is visible
in the chlorophyll-a data at several instances through 2013, with vary-
ing magnitude, and the location and size corresponds to what is ob-
served in SSS. An example for the period from 26 February to 5 March
is shown in Fig. 11. It can be seen that the zone of the lowest SSS near
Fig. 9. Example of initial (top panel) and reconstructed DINEOF SSS data (bottom panel)
for 21 July 2013.
themouth of the river is associatedwith a higher chlorophyll-a concen-
tration, and that the plume has a spatial signature that reaches a longi-
tude of ~11°W. The fact that the plume is not detected in the TSG data
shown in Fig. 6 can be due to the fact that the TSGs are often located
at depths ranging from 6 to 10 m, while the Douro plume might be
shallower than 10 m (Iglesias, Couvelard, Avilez-Valente, & Caldeira,
submitted for publication).

TheMediterranean SSS reconstruction provided by DINEOF presents
a large bias with respect to TSG data (Fig. 7), but as can be seen in Fig. 9
the DINEOF data are able to reproduce the east–west salinity gradient
observed in the Mediterranean Sea (e.g. Brasseur, Beckers, Brankart, &
Schoenauen, 1996). The DINEOF SSS average value is 35.5 for the west-
ern Mediterranean basin and 38 in the eastern Mediterranean basin
when considering the whole 2013 dataset. For the particular day
shown in Fig. 9, 21 July 2013, the average SSS value is 37 in the western
Mediterranean basin and 38 in the eastern Mediterranean basin. There-
fore, while a careful bias correction procedure should be applied, this
example shows the approach used in this work allows obtaining a first
estimate of the SSS in this zone.

4.5. EOF basis

The DINEOF reconstruction used in this work consists of 5 EOF
modes that explain 78% of the initial variance (Table 2). The five spatial
EOFs are shown in Fig. 12 and the temporal ones in Fig. 13. These show
the spatial and temporal evolution of the Gulf Stream and its meanders,
Fig. 11. Example of the signal of the Douro river plume in SSS (left panel) and chlorophyll-
a concentration (right panel) averaged over the period 26 February to 5 March 2013.



Fig. 13. Five EOF temporal modes retained for the DINEOF reconstruction.
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and the subtropical SSS maximum. Other features that appear to have a
signal in the EOF basis are the Alboran Sea (EOF 1) that becomes saltier
through the year, and the plumes of the Gironde (EOF 1) and Douro riv-
ers (EOFs 1 and 3). An in-depth study of the signature of these three fea-
tures in the SMOS SSS needs to be carried on in future works.

Two of the EOFs rejected by DINEOF (i.e. not used in the final recon-
struction) present a pattern that is easily attributed to the errors at the
edges of the satellite swath (Fig. 14). These patterns, with a periodicity
of 18 days, represent about 2.8% of the initial variance and have been
isolated by the EOF decomposition. Because these EOF modes are not
retained in the EOF basis used for the DINEOF reconstruction, the errors
at the edges of the swath are effectively removed from the dataset. This
approach allows retaining more information in the initial dataset while
removing constant errors. The length of the temporal covariance filter
has an effect in the detection of these patterns: when using a filter of a
length of 18 days, these features were not captured in any EOF mode
(results not shown), indicating that the signalwas being averagedwith-
in the data. By selecting a shorter filter length we were able to smooth
the data in time but at the same time to isolate and remove these fea-
tures from the data, which validates the choice of a 14-day filter length.

5. Conclusions

A procedure to obtain SMOS SSS data at a daily time step and with a
spatial resolution of 0.15°×0.15° using DINEOF has been presented. It
Fig. 12. Five EOF spatial modes retained for the DINEOF reconstruction. The percentage in
each title provides the explained variance.
has been shown that DINEOF allows retrieving complete daily fields of
SSS with reduced noise, by detecting and removing outliers in the initial
fields. A sensitivity study has been carried out to determine the optimal
configuration of DINEOF, namely the length of a temporal covariancefil-
ter (aiming at improving the temporal coherence of the dataset) and the
outlier detection threshold. The truncated EOF basis used to compute
the final SSS data is able to reject noise, as well as errors present at the
edges of the satellite swath. Comparison with in situ data shows that
in addition to the increased coverage, the correlation is improved and
the centered RMS error is reduced. The centered RMS error between
the DINEOF SSS estimates (at the highest spatial and temporal resolu-
tion) and TSG data in open waters is as low as 0.2. When considering
the whole domain of study (including the Mediterranean Sea) the cen-
tered RMS increases to 0.55. Constant biases present in the initial
dataset cannot be corrected using DINEOF, as these persistent signals
are probably in the most dominant EOFs, and therefore affect the final
dataset as well. The bias has been shown to be of −0.3 in open waters
(in comparisons with TSG data) and −0.57 over the whole domain of
study.

The presence of several features in the reconstructed dataset has
been assessed: the Gulf Stream and the subtropical salinity maximum
at the large spatial scale, and the fresh plumes of the Gironde and
Douro rivers at the small scale. The presence of the river plumes in the
SMOS data is evidenced by a localized salinity minimum that is
superimposed to constant biases present along the coast and that are
due to the presence of land masses. Because of these biases, the study
of these plumes cannot be done quantitatively, but the DINEOF SSS
data allow assessing their spatial extent and variation with time. The
time series of SSS at the vicinity of the Gironde estuary correlates well
to the river discharge, with the minimum SSS occurring during a flood
event in June 2013. Regarding the Douro river plume, it has been
shown that it presents a shape and size similar to what is observed in
chlorophyll-a concentration data. A careful validation of these results
as well as an assessment of the spatial and temporal scales of these
river plumes must be carried out using other sources of data (satellite
and in situ) and hydrodynamic models.

While errors still remain in the DINEOF reconstruction, these can be
further reduced through bias correction procedures and through spatial
and temporal averaging of the data, as for example the one proposed by
Kolodziejczyk et al. (2016-in this issue). The aim of this work was to
provide SSS data at the highest resolution possible in space and time
in order to remove errors at their source. Future work includes themul-
tivariate analysis of SSS with variables like temperature and precipita-
tion, in order to establish the correlation between them and use this
information in the improvement of the SSS estimations. The assessment
of the spatial and temporal variability of the river plumes observed in
this work, and their correlation with river discharge and turbidity will
be also the focus of future studies.



Fig. 14. EOFmodes 6 and 7, not retained in theDINEOF reconstruction. Thesemodes represent error at the edges of the swath,which are reinforced at the 18-day repeat cycle of SMOS and
therefore isolated as two distinct EOF modes. Note that the temporal EOFs have a quarter-phase lag between them.
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