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Background: The pathogenesis of idiopathic pulmonary fibrosis (IPF) in dogs is poorly understood. In human, trans-

forming growth factor b1 (TGF-b1) is considered central in the pathogenesis.

Objectives: To investigate TGF-b1 pathway in IPF.

Animals: Lung tissues from 12 affected and 11 control dogs. Serum from 16 affected West Highland white Terriers

(WHWTs) and healthy dogs from predisposed (13 WHWTs, 12 Scottish Terriers and 13 Bichons Frise) and nonpredis-

posed breeds (10 Whippets, 10 Belgian shepherds, 8 Labradors).

Methods: In this prospective study, immunohistochemistry was used to evaluate expression and localization of TGF-b1
protein and proteins involved in TGF-b1 signaling (TGF-b receptor type I and phospho-Smad2/3). Pulmonary expression

of TGF-b1 and molecules involved in its storage (latent TGF-b binding proteins [LTBP] 1, 2, and 4), activation (amb6 and

amb8 integrins, thrombospondin-1) and signal inhibition (Smad 7) was analyzed by quantitative reverse transcriptase PCR.

Circulating TGF-b1 concentration was measured by ELISA.

Results: In IPF, high level of TGF-b1 protein was found in areas of fibrosis, epithelial cells had strong expression of

TGF-b receptor type 1 and phospho-Smad2/3, gene expression was decreased for LTBP 4 (P = .009) and b8 integrin

(P < .001) and increased for thrombospondin-1 (P = .016); no difference was seen for Smad7, LTBP1 and 2. Serum TGF-

b1 concentration was higher in predisposed compared with nonpredisposed breeds (P < .0001).

Conclusions and Clinical Importance: This study identified an enhanced TGF-b1 signaling activity in IPF. TGF-b1 stor-

age and activation proteins with altered expression represent potential therapeutic targets. Higher circulating TGF-b1 con-

centration in predisposed breeds might partly explain their susceptibility for IPF.
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Idiopathic pulmonary fibrosis (IPF) in dogs has been
recently completely characterized clinically1–3 and his-

tologically.4 This histological description has confirmed
the fibrotic nature of the disease with an underlying
mature fibrosis in all dogs and multifocal areas of accen-
tuated subpleural and peribronchiolar fibrosis with occa-
sional honeycombing and alveolar epithelial changes
found in most dogs (type II pneumocytes atypia and
hyperplasia). Inflammatory changes are limited to mild-
to-moderate interstitial lymphoplasmacytic infiltration.
Another striking figure of IPF is the major breed predis-
position for the West Highland white Terrier (WHWT).
Rare cases have been described in other Terrier breeds
including the Staffordshire Terrier5 and the Scottish Ter-
rier6 and in other small breeds such as the Bichon Frise
(C. Clercx , E. Krafft, personal observation).

Breed predisposition suggests a genetic basis for the
disease; however, the pathogenesis of IPF is poorly
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understood. Endothelin-16 and procollagen aminopep-
tide type III7 have been studied as biomarkers of IPF
and are probably involved in the pathogenesis.
Recently, a pulmonary gene expression profile analysis
has showed increased pulmonary expression of genes
encoding cytokines such as CCL2, CCL7, IL8,
CXCL14, and the fibroblast activation protein.8

Transforming growth factor b1 (TGF-b1), a member
of the TGF-b superfamily, plays important regulatory
roles in cell growth, morphogenesis, differentiation,
and apoptosis. It is a potent fibrogenic factor which
increases extracellular matrix accumulation by enhanc-
ing collagen synthesis and suppressing protease pro-
duction.9 In human patients with IPF, increased
TGF-b1 concentrations are found both in bronchoal-
veolar lavage fluid10 and plasma.11 Moreover, TGF-b1
mRNA and protein are overexpressed in lung tissue of
human patients with IPF.12–14 For all these reasons,
dysregulated or aberrant TGF-b1 signaling TGF-b1 is
now considered to be one of the primary causative
agents of pulmonary fibrosis in man.15

Transforming growth factor b1 is produced as an
inactive form, the small latent complex, which is the
active mature TGF-b1 peptide bound to its propep-
tide. This small latent complex binds to latent TGF
binding proteins (LTBPs) to form a large latent com-
plex before being released from the cell. After excre-
tion, most latent complexes are targeted to the
extracellular matrix through LTBPs. This storage is a
means of regulating TGF-b1 signaling.16 In vivo,
latent complexes are activated by integrins amb617,18

and amb819 and by interaction with thrombospondin-1
(THBS1).20–22 The active form of TGF-b1 binds to its
specific type II receptors, which is followed by the
recruitment of type I receptors (TGFbR1). Various
intracellular signaling pathways downstream to the
TGF-b1 receptors have been described, including the
Smad proteins.23 Activation of TGFbR1 results in
Smad2/3 phosphorylation leading to a complex with
Smad4. This complex translocates to the nucleus where
it activates target genes by binding to specific pro-
moter element. Smad7 inhibits TGF-b1 signaling by
binding to TGFbR1 and interfering with Smad2 and
Smad3 phosphorylation.

The aim of this study was to evaluate TGF-b1 bio-
chemical pathways in healthy dogs and dogs with
IPF. Specifically, the concentration of circulating
TGF-b1 was evaluated in addition to lung expression
and localization of this molecule as well as proteins
involved in its storage (LTBPs) and activation (amb6
and amb8 integrins and THBS1). We also analyzed
proteins involved in TGF-b1 signaling including
TGFbR1, phosphorylated Smad2/3 (P-Smad2/3) and
Smad7.

Materials and Methods

All samples were obtained from privately owned dogs. This

study was carried out in strict accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Ani-

mals of the National Institutes of Health. The protocol was

approved by the Committee of Experimental Animals of the

University of Helsinki, Finland (permit number: ESLH-2008-

05403) and of the University of Li�ege, Belgium (permit number

1435).

Animals

Lung tissue samples were obtained from 12 WHWTs with IPF

(mean age � SE of the mean: 12.8 � 0.4 years) and 11 control

dogs of various breeds (3 Beagles, 3 mixed-breed, one dog from

each of the following breeds: Yorkshire Terrier, Jack Russell Ter-

rier, Border collie, Newfoundland, Leonberger) (5.2 � 1.4 years).

Serum was collected from 16 WHWTs with IPF (11.7

� 0.3 years) and from 66 healthy control dogs from breeds with

different predispositions to IPF. These included highly predisposed

WHWTs (13 dogs, 9.6 � 0.8 years), two breeds reported to be

mildly or moderately predisposed, the Scottish Terrier (12 dogs,

5.6 � 0.8 years), and the Bichon Frise (13 dogs, 5.4 � 1.0 years)

and 3 breeds considered to be nonpredisposed: the Whippet (10

dogs, 8.3 � 0.9 years), the Belgian shepherd (10 dogs,

5.6 � 0.1 years), and the Labrador (8 dogs, 4.9 � 1.2 years).

Clinical diagnosis of IPF was based on compatible clinical

signs and exclusion of other causes of chronic respiratory dis-

ease by thoracic radiography, bronchoscopy, bronchoalveolar

lavage fluid analysis, echocardiography, and fecal analysis

(Baermann and flotation methods), and on the results of

HRCT.1,3 Euthanasia was indicated because of progressive

respiratory failure in 12 dogs; diagnosis of IPF was confirmed

postmortem by microscopical examination of lung tissues.4 The

health status of the control dogs was assessed based on history

(absence of clinical signs consistent with respiratory or cardiac

disease, or any other disease with systemic consequences), physi-

cal examination, hematology, and serum biochemistry. In the

healthy WHWTs, blood gas analysis, bronchoscopy, and tho-

racic HRCT were also performed.1 The 11 control (non-

WHWTs) dogs used for lung analyses were euthanized for

nonpulmonary related reasons and histopathological examina-

tion confirmed normal lung architecture.

Lung and Blood Samples

Full-thickness lung tissue samples were obtained within

30 minutes after euthanasia. Samples for RNA extraction were

either placed in a 1.5 mL cryotube,a snap frozen in liquid nitro-

gen and stored at �80°C (n = 4) or transferred into in a cryo-

tubea containing RNA later,b refrigerated at 4°C for up to

24 hours, and then frozen at �80°C until further processing

(n = 19). Samples for histopathology and immunohistochemistry

were placed in 10% neutral buffered formalin. Since the lesion

distribution is heterogeneous in IPF, samples for RNA extraction

and for histopathological analysis were collected from adjacent

areas to ensure microarray and quantitative reverse transcriptase

PCR (qRT-PCR) analysis was performed on lesional tissue.

Blood samples collected in plain tubes were centrifuged 30 min-

utes after collection at 4°C for 15 minutes at 3,000 9 g and the

serum was stored at �20°C until analysis.

Immunohistochemistry

Paraffin wax-embedded sections of control (n = 5) and IPF

lung (n = 7) were dewaxed in toluene and rehydrated in graded

alcohol. For P-Smad2/3 only, antigens were retrieved by heating

the sections in 0.01 M citrate buffer (pH 6.0) in a microwave

oven set to full power until the solution came to boil and for

10 minutes after this point. Endogenous peroxidase activity was

blocked with 0.3% hydrogen peroxidase.
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TGF-b1 and TGFbR1

Tissue sections were incubated for 1 hour in blocking solution

(10% normal goat serum in PBS) and then exposed to rabbit

anti-human TGF-b1c or anti-human TGFbR1-ALK5c (as

described previously24–27), each diluted at 1 : 400 in the blocking

solution at 4°C overnight. Secondary antibody (biotinylated goat

anti-rabbit IgGd ) was applied to the sections for 1 hour at room

temperature at a concentration of 1 : 300 in the blocking solu-

tion. Immunoreactivity was detected by the use of a peroxidase-

labeled avidin-biotin complex kitd followed by incubation with

3,30-diaminobenzidine tetrahydrochloride.d Sections were then

counterstained with toluidine blue. For negative controls, the pri-

mary antibody was replaced by rabbit IgGd (1 : 5,000) to deter-

mine the specificity of the labeling. Positive control tissue

consisted of sections of canine myocardium.

P-Smad2/3

Tissue sections were exposed to the primary antibody: rabbit

antibody against human, mouse and rat P-Smad2/3,e as described

previously,28 at 4°C overnight. The bound antibodies were visual-

ized by use of the Novolink Polymer Detection System (Novocas-

traf) and 3,30diaminobenzidine.f The sections were counterstained

with Mayer’s hematoxylin. For negative control, the sections

were treated with isotype-specific antibody for rabbit.g

Quantitative RT-PCR

Total RNA was isolated from lung tissue samples (12 dogs

with IPF, 11 control dogs) using the Micro to Mini Total RNA

extraction kith and its quality was checked, as described previ-

ously.8 TATA box binding protein (TBP) and ribosomal protein

S18 (RPS18) were used as nonregulated reference genes for nor-

malization of gene expression.29 The primer and probe sequences

for TGF-b1, RPS18, and TBP were the same as previously

described.29,30 Primers and probes were designed using the Gen-

Bank sequences for integrin chain b6 (ITGB6; XM_852055), inte-

grin chain b8 (ITGB8; XM_532487), THBS1 (XM_544610),

SMAD7 (XM_845400), LTBP1 (XM_546547), LTBP3

(XM_540857.3), and LTBP4 (XM_533664.4), as described previ-

ously30 (Table 1). Quantitative RT-PCR was carried out in a

two-tubes, two enzymes format using a combination of a reverse

transcriptasei and Hot-Start Taq Master Mixj as described previ-

ously.30 A negative control of nuclease free water and a positive

control sample with a known Ct value were included in each run;

with only one transcript quantified on each plate. Duplicate reac-

tions were run for each cDNA sample and a mean Ct value was

calculated for each sample.

Measurement of Serum Concentration of TGF-b1

Transforming growth factor b1 concentration was measured in

serum using a canine ELISA kit,k as per the manufacturer’s

instructions. The range of detection of this assay is 31.2–
2,000 pg/mL. As indicated in the manufacturer’s instructions for

canine serum samples, a 40-fold dilution was performed and the

concentration measured at the end of the procedure was multi-

plied by the dilution factor to obtain the real concentration.

Statistical Analysis

Statistical analysis was performed using commercially available

software.l Relative quantification of gene expression was per-

formed using the DCt method. Mean relative qRT-PCR expres-

sions were compared using the Mann–Whitney U-test. Serum
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TGF-b1 concentration in WHWTs with IPF was compared with

healthy WHWTs with a t-test. Multivariate analysis was per-

formed in healthy dogs to check influence of age and breed on

serum TGF-b1 concentration. If a factor was found significant, it

was further studied using posthoc contrasts in the GLM proce-

dure with correction for multiple testing (Tukey Kramer). Statis-

tical significance was defined as P < 0.05. No quantitative

analysis was performed for immunohistochemical results.

Results

TGF-b1 Gene Expression, TGF-b1 and its Receptor
TGFbR1 Immunoreactivity

Expression of TGF-b1mRNA was not significantly
different between samples of lung from dogs with IPF
and from control dogs (P = .086) (Fig 1A). In sections
of lungs from all control dogs (Fig 2A), strong and
diffuse TGF-b1 labeling was seen in the layer of
fibrous connective tissue surrounding bronchi and
bronchioles and a weaker granular expression was seen
in bronchial/bronchiolar and vascular smooth muscle
(comparable intensity in all dogs). Endothelial cells
and bronchial epithelial cells showed no or a very

weak expression of TGF-b1. In the interstitium
between alveoli, the labeling was less consistent with
some areas showing no labeling and others having
weak expression (Fig 2E). In contrast, bronchial and
bronchiolar epithelial cells had distinct apical expres-
sion of TGFbR1 in all dogs but there was only weak
granular labeling of the smooth muscle and no expres-
sion within the layer of fibrous connective tissue sur-
rounding bronchi or bronchioles (Fig 2C). There was
no TGFbR1 labeling of alveolar tissue in any dog.

In sections of lung from all WHWTs with IPF, the
same pattern of immunoreactivity (same localization
and comparable intensity) was observed for both anti-
bodies in bronchial areas (Fig 2B,D). In areas of pul-
monary fibrosis in all dogs, there was uniformly strong
and diffuse expression of TGF-b1 in the fibrous matrix
(Fig 2F). In contrast, TGFbR1 was not visible within
the fibrotic tissue, but there was very strong labeling
of individual alveolar epithelial cells and particularly
hyperplastic pneumocytes (Fig 2G,H). In those sec-
tions of lung from dogs with IPF in which there was a
concurrent inflammatory response, there was no
expression of TGF-b1 by macrophages or neutrophils,

A B

C D

Fig 1. Pulmonary gene expression levels of (A) transforming growth factor b1 (TGF-b1), (B) latent transforming growth factor binding

protein 1 (LTBP1), (C) LTBP3 and (D) LTBP4 measured by real-time quantitative reverse transcriptase-PCR in West Highland white

Terriers with idiopathic pulmonary fibrosis (IPF, n = 12) versus control dogs (n = 11). Results are presented as box plots: the lower,

middle, and upper lines of each box represent the 1st, 2nd, and 3rd quartiles, respectively. The whiskers delineate the 10th and 90th per-

centiles. Dots show the maximum and minimum values.
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but some alveolar macrophages appeared to express
TGFbR1.

For all staining, control sections were negative; a
representative image in an affected lung is shown in
Figure 2I.

TGF-b1 Signal Transducer P-Smad2/3
Immunoreactivity

In healthy control lungs, P-Smad2/3 nuclear labeling
was observed in some alveolar and bronchial epithelial
cells (Fig 3A). In the lungs of dogs with IPF, intense
positive nuclear labeling was observed in the patholog-
ical alveolar epithelium (Fig 3B).

Gene Expression of TGF-b1 Storage and Activation
Proteins

Relative LTBP1 and LTBP3 gene expression was not
significantly different between the lungs of dogs with
IPF and control dogs, but LTBP4 gene expression was

decreased in IPF (Fig 1B–D). Integrin amb6 and amb8
are heterodimeric molecules containing 2 distinct
chains: the am chain is common to many integrins,
whereas the b6 chain is specific to amb6 and the b8 chain
to amb8. The expression of the 2 b subunits (ITGB6 and
ITGB8) was measured. ITGB6 gene expression was not
significantly different between the two groups
(P = .054). Expression of ITGB8 was significantly lower
(P < .001) and THBS1 expression was significantly
higher (P = .016) in IPF relative to controls (Fig 4).

Gene Expression of the Inhibitory Smad 7

The expression level of Smad7 in pulmonary tissues
of dogs with IPF was not significantly different from
that of control dogs (P = .834) (Fig 4D).

Serum TGF-ß1 Concentration

No significant difference in serum TGF-b1 concen-
tration was observed between WHWTs with IPF

A B C

D E F

G H I

Fig 2. Transforming growth factor b1 (TGF-b1) immunoreactivity in healthy control (A: bronchial area, E: alveolar area) and in West

Highland white Terrier with idiopathic pulmonary fibrosis (IPF) (B: bronchial area, F: alveolar area). TGF-b receptor type 1 (TGFbR1)

immunoreactivity in healthy control lung (C: bronchial area) and in affected WHWT (D: bronchial area, G: alveolar area, and H closer

view). Control staining with rabbit IgG in an affected WHWT in I. *Diffuse and intense staining. Arrows: distinct apical expression in

bronchial and bronchiolar epithelial cells in C and D, strong labeling of individual alveolar epithelial cells in H. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(mean � SE of the mean: 59.2 � 3.9 ng/mL) and
healthy WHWTs (66.0 � 4.1, P = .202) (Fig 5). The
multivariate analysis performed on all healthy dogs
shown no age influence (P = .2363), but a highly sig-
nificant breed effect (P < .0001). Serum TGF-b1 con-
centration was significantly higher in WHWTs
compared with all breeds except for the Scottish Ter-
rier. Serum concentration in the Scottish Terrier was
significantly higher than those in the Whippet, Bel-

gian shepherd, and Labrador. Serum concentration
was also higher in the Bichon Frise compared with
the Whippet, Belgian shepherd, and Labrador
(Fig 6).

Discussion

This study demonstrated that an active TGF-b1 sig-
naling exists in affected lungs, especially at the level of

A B

Fig 3. Phosphorylated Smad2/3 immunoreactivity in healthy control lung (A) showing positive (brown) bronchial epithelial nuclear stain-

ing and in West Highland white Terrier with idiopathic pulmonary fibrosis (B, IPF) showing an intense positive nuclear labeling in the

pathological alveolar epithelium (arrows). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

A B

C D

Fig 4. Pulmonary gene expression levels of (A) integrin chain b6 (ITGB6), (B) integrin chain b8 (ITGB8), (C) thrombospondin-1

(THBS1), and (D) Smad 7 measured by real-time quantitative reverse transcriptase-PCR in West Highland white Terriers with idiopathic

pulmonary fibrosis (IPF, n = 12) versus control dogs (n = 11) and represented as box plot.
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the pathological epithelium, as revealed by an intense
staining for the intracellular messenger P-Smad2/3 and
for TGFbR1 in epithelial cells. While there was no
clear overexpression of TGF-b1 gene, increased TGF-
b1 protein content was found in affected lungs with
intense interstitial labeling. This study suggested that
activation and storage pathways are also modified in
IPF with decreased expression of LTBP4 and ITGB8
and increased expression of THBS1. TGF-b1 circu-
lated in higher concentration in predisposed breeds,
which might partly explain their susceptibility. On the
basis of TGF-b1 well-known profibrotic properties and

the findings of this study, we can speculate that TGF-
b1 is probably involved in IPF pathogenesis in dogs
and modulation of its storage, activation or signaling
represents potential therapeutic targets.

Potential mechanisms for TGF-b1 signal regulation
include changes in TGF-b1 gene transcription,
stability, and translation of TGF-b1 mRNA, post-
translational modifications, storage, and activation of
TGF-b1 latent complexes, inhibition of TGF-b1
intracellular signaling and inactivation of TGF-b1.
Some of these mechanisms were examined in dogs with
IPF. In human IPF, TGF-b1 mRNA and protein have
been reported to be elevated.12,13 In this study, no sig-
nificant overexpression for TGF-b1 gene expression
was found in the lung tissue of affected WHWTs com-
pared with controls, while clear extracellular-TGF-b1
protein labeling was detected in fibrotic areas. These
findings suggested that regulation of TGF-b1 gene
transcription is not an important regulatory mecha-
nism for the TGF-b1 pathway in IPF. Indeed, this
pathway is known to be mainly modulated at posttran-
scriptional stages.16,31

Immunohistochemistry was used to identify cells
producing TGF-b1, areas of TGF-b1 storage and
TGF-b1 target cells. In normal canine lungs, there was
extracellular accumulation of TGF-b1 in connective
tissue surrounding bronchi and bronchioles. This indi-
cates that, in dogs, TGF-b1 is present in the normal
lung and mainly stored in the extracellular matrix. In
the lungs of dogs with IPF, there was intense TGF-b1
labeling of the fibrous matrix. This is a common find-
ing in human IPF,13,32,33 consistent with high amount
of TGF-b1 in fibrotic areas and increased TGF-b1
extracellular storage. Even in areas with inflammation,
no TGF-b1 expression was seen in alveolar macro-
phages, suggesting that, unlike in human, in dog, mac-
rophages are not a source of TGF-b1.31–33 However,
in general, no strong intracellular labeling was seen in
normal lung or in IPF tissues, which precluded identi-
fication of cells producing TGF-b1. The antibody used
in this study is raised against an epitope of the C-ter-
minus tail of TGF-b1. As this epitope is common to
TGF-b1 precursor and mature forms, this antibody
should recognize both precursor and mature TGF-b1.
But, as already shown for antibodies directed again
the aminoterminal region of TGF-b1, one antibody
may preferentially cross-react with the intracellular
form of TGF-b1, while another reacts with the extra-
cellular TGF-b1 storage form.34 So the absence of
intracellular labeling found here could either be
because of the technical use or to an absence of
TGFB1 expression.

Labeling for TGFbR1 was seen in normal lung and
in the lung of dogs with IPF in bronchial and bronchi-
olar epithelial cells as well as a weak expression in the
smooth muscles. In normal lungs, pneumocytes did
not express TGFbR1. In contrast, there was strong
labeling of individual alveolar epithelial cells and par-
ticularly hyperplastic pneumocytes in IPF tissues.
These hyperplastic pneumocytes appear to be an
important target for TGF-b1 in IPF. In the lungs of

Fig 5. Serum transforming growth factor b1 (TGF-b1) concen-

tration measured by ELISA in West Highland white Terriers

(WHWTs) with idiopathic pulmonary fibrosis (IPF, n = 16) and

in healthy WHWTs (n = 13). Results are presented as dot-plots.

The vertical bars indicate the mean � SE of the mean.

Fig 6. Serum transforming growth factor b1 (TGF-b1) concen-

tration measured by ELISA in healthy dogs (n = 66) from breeds

with different predispositions to idiopathic pulmonary fibrosis

(IPF), including the highly predisposed West Highland white Ter-

rier (WHWT, n = 13), 2 breeds reported to be mildly or moder-

ately predisposed: the Scottish Terrier (ST, n = 12), and the

Bichon Frise (B, n = 13), and 3 breeds considered to be nonpre-

disposed: the Whippet (W, n = 10), the Belgian shepherd (BS,

n = 10), and the Labrador (L, n = 8). Results are presented as

dot-plots. The vertical bars indicate the mean � SE of the mean.
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dogs with IPF, some alveolar macrophages also
expressed TGFbR1. Therefore, lung macrophages may
be another TGF-b1 target cell in IPF. Surprisingly,
there was mainly intracellular labeling for TGFbR1,
while membrane labeling might have been expected.
However, TGF-b1 receptors are constitutively internal-
ized via endocytic pathways35 and this might explain
the observed intracellular labeling.

The finding of an increased extracellular storage of
TGF-b1 in fibrotic areas and of a trend toward
increased gene expression of TGF-b1 prompted evalu-
ation of whether increased TGF-b1 signaling was also
present in affected lungs. P-Smad2/3 was used as an
indicator of TGF-b1 signaling in IPF lung tissues. P-
Smad2/3 nuclear expression was observed in both
healthy control lungs and lungs of dogs with IPF, as
shown previously in human lungs.36 In healthy control
lungs, some positive alveolar epithelial cells and bron-
chial epithelial cells were seen, consistent with a basal
TGF-b1 signaling activity. In the lungs of dogs with
IPF, intense positive nuclear labeling was observed in
the diseased alveolar epithelium, suggesting enhanced
TGF-b1 signaling at the level of activated epithelial
cells.

Lung expression of LTBPs was evaluated. Of the 4
isoforms, all but LTB2 can associate with the small
latent TGF-b1.37 Besides acting as matrix components,
LTBPs have important functions in the regulation of
TGF-b1 activity. They facilitate latent TGF-b1 secre-
tion, mediate distribution of latent TGF-b1 in the
extracellular matrix for storage and regulate latent
TGF-b1 activation. This study showed that LTBP-1,
-3, and -4 are all expressed in normal canine lungs. In
the lungs of dogs with IPF, LTBP1, and LTBP3 gene
expression was unchanged compared with controls,
while LTBP4 expression was lower in diseased lungs
than in control lungs. It has been suggested that each
LTBP isoform has specific properties,38,39 but little is
known about their specific functions.

Thereafter, the expression of 3 proteins involved in
TGF-b1 latent complex activation (integrin amb6, inte-
grin amb8 and THBS1) was evaluated. In normal
human lungs, integrins amb6, and amb8 are present at
low levels.36,40 The results of this study suggest that in
dogs, both integrins and THBS1 are expressed in nor-
mal lungs. Activation via integrin amb6 is speculated
to be mainly implicated in pathological responses such
as in injury and inflammation.18,40 In human IPF,
overexpression of amb6 is found within pneumocytes
lining alveolar ducts and alveoli41 and in epithelial cells
of fibrotic areas.36 Integrin amb8 is normally highly
expressed in human airway epithelium,19 but its
expression is sparse in the lung of patients with IPF.36

In the lungs of dogs with IPF, ITGB6 gene expression
was not significantly different compared with normal
lungs, but ITGB8 gene expression was decreased. In
this study, increased expression of THBS1 was docu-
mented as well, suggesting that interaction with
THBS1 might also be an important mechanism for
TGF-b1 activation in IPF as it is suspected in human
IPF.42,43

Expression of Smad 7 is stimulated by TGF-b1, sug-
gesting a negative feedback mechanism.23 A defective
negative retro-control could enhance TGF-b1 signal-
ing. No difference in Smad 7 gene expression was seen
between IPF and control dogs, suggesting that this
inhibitory pathway is neither stimulated nor defective
at the transcriptional level in IPF.

Transforming growth factor b1 serum concentration
was evaluated with the hypothesis that a high circulat-
ing concentration would be a marker of high TGF-b1
lung activity in dogs with IPF and that it could be
used as a biomarker. Surprisingly, no difference was
seen between affected and healthy WHWTs, which pre-
cludes its use as a biomarker. However, the data dem-
onstrated that TGF-b1 circulates at increased
concentrations also in healthy dogs from breeds pre-
disposed to IPF. In human, blood TGF-b1 concentra-
tion is heritable44 and genetic variants have been
associated with increased susceptibility for IPF or to
disease progression in IPF.45–47 This study suggested
that serum TGF-b1 concentrations might be geneti-
cally determined in the dog as well and that there
might be a cause-effect relationship between high circu-
lating TGF-b1 and development of IPF. However,
because not all dogs from predisposed breeds develop
the disease, a high serum TGF-b1 concentration is not
sufficient by itself but might trigger an inappropriate
lung response to injury leading to pulmonary fibrosis,
as suggested in mouse.48

The main limitation of this study was that the con-
trol group was poorly age- and breed-matched. Con-
cerning the effect of age, no significant effect was
found on serum TGF-b1 concentration; however, we
could not exclude that age might have an impact on
the TGF-b1 pathways locally and might have
impacted the qRT-PCR and immunohistochemistry
results. Unfortunately, pulmonary tissue from healthy
WHWTs was not available and although control dogs
mainly included small-breed dogs from which 2 terri-
ers, we could not excluded that breed, independently
from the status affected or free of IPF, has an impact
on the TGF-b1 pathway locally. However, part of
these results has been corroborated in a very recent
immunohistochemical study49 comparing healthy and
affected WHWTs. In this study, the authors also
found an increased P-Smad2/3 immunoreactivity in
WHWTs with IPF at the level of the pathological epi-
thelium in comparison with 3 healthy WHWTs; con-
firming the existence of an enhanced TGF-b1
signaling activity in affected WHWTs. This study also
analyzed the expression of LTBP1. Increased peri-
bronchial and perivascular LTBP-1 immunoreactivity
was seen in WHWTs with IPF compared with con-
trols. Alveolar LTPB-1 immunolabeling in diseased
WHWTs was seen mainly in the altered alveolar epi-
thelium. Lack of concordance between these results
and our findings about LBTP1 may refer to the dif-
ferent technical approaches used. Using qRT-PCR on
whole lung samples, we cannot exclude a localized
overexpression of LTBP1 by a minor cell type popula-
tion, which will show up using immunohistochemistry.
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Another hypothesis is that regulation of LTBP1 gene
transcription is not an important regulatory mecha-
nism determining the amount of protein present in
the tissue.

In conclusion, TGF-b1 and its activating, storage,
and signaling pathways are modified in dogs with IPF
with increased TGF-b1 labeling and increased signal-
ing activity in the pathological epithelium. TGF-b1
activating pathways is altered with a shift toward
increased activation via THBS1; highlighting a poten-
tial therapeutic target with modulation of TGF-b1
activity via inhibition of THBS1. High circulating
TGF-b1 concentration is found in healthy dogs from
predisposed breeds which might at least partly explain
their high susceptibility to IPF.

Footnotes
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g Invitrogen, Carsbad, CA
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