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Abstract

Trabecular bone is the spongy type of bone found in humans inside vertebrae and
in long bones close to joints. In this thesis the biological material trabecular bone
is investigated theoretically at two different levels of its structural hierarchy. In the
first part, the focus is on the bone material which evolves in time as a result of two
processes. During the process of remodeling small bone packets are continuously re-
sorbed from the bone surface and new packets are deposited. In the mineralization
process the mineral content in the initially unmineralized new bone packet increases.
As a consequence, trabecular looks like a ”patchwork” of bone packets with different
mineral content. This heterogeneity of the mineral content can be characterized by a
frequency distribution of the mineral content, called the bone mineralization density
distribution (BMDD). The BMDD describes the volume of bone with a given mineral
content detected in a bone sample. A partial differential equation is developed to
describe how remodeling and mineralization influences the amount and the homo-
geneity of the mineral content. The model is first used to extract information on
the mineralization kinetics from the experimentally measured peak-shaped BMDD of
healthy humans. The model is then applied to more clinically relevant questions. The
time evolution of the BMDD was predicted and compared with experimental data for
the two cases of accelerated bone turnover, as typically observed in osteoporosis, and
slowed turnover, as caused by standard medications used to treat osteoporosis. Im-
portant dynamical effects are discovered, leading to a transient homogenization of
the mineral content in the case of turnover reduction, while the opposite is true for
increased turnover.
In the second part of the thesis, the connection between trabecular bone architec-
ture and its mechanical performance is investigated. The trabecular architecture is
idealized as a cellular solid consisting of a two dimensional network of cylindrical
beams (trabeculae). The aim is to find a mechanical description of the structure
which allows to identify mechanically weak elements. For this purpose the cellular
structure is viewed as consisting of different ”nodes”, where a node is defined by a
set of trabeculae joined together at a junction point. The mechanical behavior of a
node in two different environments is compared. Either the node is part of a periodic
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lattice which is constructed with identical copies of itself, or acts as a defect in a reg-
ular isotropic lattice. The comparison demonstrates that in addition to the specific
geometry of the node, the neighboring nodes also strongly influence its deformation
behavior. Only in special cases is the geometrical information of the node enough to
predict its mechanical behavior.



Chapter 1

Motivations

Bone has attracted the attention of physicists and engineers for centuries, with one
of the first examples being Galileo’s analysis of the aspect ratio of bones from dif-
ferent sized animals [1]. Nowadays, there are at least two prominent characteristics
that attract the interest of the material physics community. Firstly, its self-organized
hierarchical structure, which goes from the macroscopic (cm) down to the molecular
(nm) length scale (see Fig. 1.1). And secondly, its dynamical nature which enables
bone to maintain and adapt to its mechanical environment. To understand how bone
structure relates to the observed mechanical properties it is fundamental to investi-
gate the behavior at each single hierarchical level. In addition, a more difficult and
still unsolved question, is how the different levels interact. Basic biological processes,
which enable bone to adapt to its environment, are bone remodeling and bone miner-
alization. In bone remodeling old or damaged bone is continuously substituted with
new unmineralized bone and during bone mineralization new bone progressively in-
creases its mineral content and thus its stiffness. In addition to biochemical signals,
the main factor controlling the organization of bone structure is the local mechanical
load. In this thesis bone is studied from two different points of view. Applying a
”dynamical” framework, in the first part it is analyzed how, due to bone remodeling
and mineralization, the bone material evolves with time. In a more ”static” approach,
in the second part, single ”snapshots” of the network-like architecture of trabecular
bone are investigated in terms of their mechanical performance.
A further motivation of this work stems from the alterations of the complex time
evolving structure of bone by diseases, which in turn could decrease its mechanical
performance. Most of these diseases are poorly understood, both from a medical and
a materials science point of view. Although there is a large amount of data available
from clinical studies of diseases in bone, it still remains to interpret the data in terms
of the underling physics, which can in turn be used to get quantitative predictions
of the mechanical response of bone. This thesis is aimed to bridge the gap between

1
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Figure 1.1: The hierarchical structure of bone extends over length scales of cm to
mm. For example, the macroscopic scale (cm) includes a whole vertebra. At a lower
scale (mm) trabecular bone can be distinguished from compact bone. Compact bone
(not shown) is dense whereas trabecular bone exhibits a spongy architecture with
a high porosity. Struts of the spongy architecture, called trabeculae are seen on a
lower scale (µm) and their lamellar structure is investigated at an even lower scale.
Eventually, at the microscopic level (nm) bone is viewed as nanocomposite of a soft
but tough protein matrix and stiff but brittle mineral crystals. The two hierarchical
levels, the thesis will focus on, are marked.

medicine and material physics by developing simple physical models of bone which
can be used by the medical community.
Osteoporosis is a particularly important disease to study both because of its high
prevalence in the aging community and for the dramatic reduction in the life quality
of the people affected. An osteoporotic skeleton is characterized by a deterioration of
mass, architecture and material properties, which manifest themselves as an increased
probability for bone fractures.
Currently the main diagnostic method to assess osteoporosis is to measure in vivo
the amount of bone. This is performed with a technique called dual-energy X-ray
absorptiometry (DXA) which estimates from the amount of the adsorbed radiation
how much bone is present. The result of these measurements, corrected by body size,
is the bone mineral density (BMD) characterizing with a single scalar value the bone
under investigation. According to the instruction of the World Health Organization
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(WHO), a reference value for healthy people as a function of age is established and
deviation of 2.5 standard deviation or more below this value defines an osteoporotic
patient. When thinking at the intricate structure of bone it is obvious that there are
several limitations in estimating the bone mechanics and in particular bone strength
using BMD only. Estimating the risk of fracture with BMD does not identify all
the people at risk and does not tell who will and who will not have a non traumatic
fracture. The poor predictive power of BMD is also evident from the effects of an
antiresorptive therapy where the significant reduction observed in fracture risk has
almost no correlation with the small increase in BMD. In addition to bone mass the
mechanical performance of bone depends, at the material level, on the collagen ma-
trix, the mineral content and their interactions and spatial arrangement. At a bigger
length scale, bone mechanics is more influenced by the intricate trabecular architec-
ture. In turn, all the hierarchical levels are influenced by the way and the rate at
which bone is remodeled and repaired. All these factors, which are not directly en-
tering in the bone mass or BMD, are referred as bone quality.
The following two chapters of this thesis (chapters 2 and 3) focus on the material
quality of bone, and the influence of the remodeling and mineralization processes on
the heterogeneity of the mineral content. A partial differential equation is developed
to describe these processes and is solved for scenarios of medical importance. In the
second part of the work (chapters 4 and 5), the hierarchical level is changed from
that of the material to that of the bone architecture. Rather than focusing on the
dynamics of how the architecture evolves, we concentrate on the mechanical response
of given architectures at a single point in time. The mechanics of idealized trabecular
architectures are evaluated using geometric descriptors that extend the approaches
based on just the bone mass. For this problem analytical solutions are compared with
numerical results obtained using commercial finite element software.
The thesis will show that is sufficient to use relatively simple physical tools to extract
”knowledge” from the big amount of available experimental data of human bone.
Since the aim of our work must be to reach the medical community, an effort in
publishing and presenting, has been made to make our models and results accessible
and understandable to this community which normally communicates in a different
language.
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Chapter 2

Bone material quality

This chapter introduces the material which makes up bone and the processes of re-
modeling and mineralization, which are necessary to understand the simulational
work described in chapter 3.
Bone material is composed by three very different constituents: a soft protein matrix,
stiff mineral crystals and water. Even if the relative amount of these three compo-
nents varies among bone types [2] approximately 35% of the total bone weight is given
by the organic collagen component, 45% by the inorganic mineral and the remaining
20% by water [3]. The individual properties of collagen and mineral are shortly re-
viewed in sections 2.1 and 2.2, respectively. The interaction, at the nanometer level,
of these two components leads to a nanocomposite material with remarkable mechan-
ical properties, as explained in section 2.3. In addition to an intricate hierarchical
structure, bone is a living material in the sense that it is continuously resorbed and
reformed in a process called bone remodeling. In section 2.4 the main features of this
biological process are explained. After new unmineralized bone is formed, it starts
to mineralize by a formation of mineral crystals inside the protein matrix. The cur-
rent understanding of this complex phenomenon is summarized in section 2.5. Due
to bone remodeling, the mineralization of the bone matrix is far from uniform and
evolves as a function of different remodeling scenarios as explained in section 2.6. In
that introductory section special emphasis is devoted to the problem of measuring
bone remodeling and to the changes in bone remodeling occurring during menopause
and following clinical treatments. The reason for introducing those more clinical as-
pects, is that the model presented in the next chapter, aims to explain and simulate
changes in the material properties - in term of mineralization of the bone matrix -
which are observed experimentally.

5



6 CHAPTER 2. BONE MATERIAL QUALITY

2.1 Collagen matrix

Collagen is the most abundant protein in the human body. It is a ”structural pro-
tein” in the sense that it provides tissues the ability to withstand mechanical forces.
Different types of collagen can be found in almost all connective tissues: bone, skin,
tendon, ligament, cornea and blood vessels. In bone, type I collagen comprises some-
thing like 85-90% of the total protein content [4]. The basic building block of the
collagen fibers is the collagen molecule. It has a rod-like shape of about 300 nm long
and 1.5 nm width and it is composed of three similar polypeptide chains that are
folded together to form a triple helix. The triple-helical molecules self assemble to
form fibrils in a staggered fashion (see Fig. 2.1). Along the axial direction adjacent
molecules are shifted by a period D=67 nm that gives rise to a pattern of gap zones
(35 nm long) and overlap zones (32 nm long) within the fibril [5]. This pattern was
shown experimentally with TEM [6] and with neutron scattering [7]. The gap zones
are fundamental when thinking about the mineralization of the collagen fibrils since
they probably act as nucleation sites for the mineral particles [6].

(A)

(B)

Figure 2.1: Self-assembly of collagen fibrils (after [8]). (A) the collagen molecules
self-assemble with a staggering period of D. (B) this staggering results in a periodic
density variation along the fibril axis. In the stripes labeled O, there is an overlap
of all molecules. In the stripes labeled G (gap region), one molecule out of five is
missing and the density is accordingly smaller.

The collagen matrix is stabilized by covalent cross-links between the collagen molecules
which can be investigated, for instance, using Fourier-transform infrared microspec-
troscopy (microFTIR) [9]. Cross-link changes during aging and osteoporosis nega-
tively correlate with bone mechanical performance [10, 11, 12].
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2.2 Mineral crystals

In addition to the organic matrix, bone contains inorganic mineral. The bone min-
eral crystals are nanocrystals of calcium phosphate, analogous to the geologic mineral
hydroxyapatite [Ca10 (PO4)6 (OH)2]. Bone mineral always contains impurities (e.g.,
phosphate ions, PO3−

4 , are often replaced by carbonate groups, CO2−
3 ) and vacancies

(e.g., missing OH−)[13, 14]. Those small imperfections increase the solubility of bone
crystals which are important also for the equilibrium of ions (calcium, phosphate and
magnesium) in the body. Mineral crystal composition can be determined using spec-
troscopy methods like microFTIR [15] and Raman [16]. In addition to the atomic
defects, bone mineral can incorporate also non-collagenous protein [17]. The precise
role of those organic molecules is still not clear and most probably they are involved
in regulating the mineralization process [14].
The shape of the mineral crystals is dictated by the well defined environment of the
collagen matrix in which they nucleate and grow. As shown by transmission electron
microscopy (TEM) [18, 19] and small-angle X-ray scattering (SAXS) [20, 13], mature
bone crystals are flat plates with an average length of 50 nm, a width of 25 nm and
a maximum thickness of 4 nm. In general those dimensions may be influenced by
intrinsic (related to the composition and arrangement of the matrix) and extrinsic
(related to age, health, diet, etc.) factors [21]. The longest dimension of the crys-
tals correspond to the c-axis and this is aligned parallel to the collagen fibrils, the
thickness of the mineral being limited by the available space within the hole zones
[20]. Crystals are periodically located along the collagen fibrils, with an approximate
period of 67 nm [22], which corresponds to the staggering distance of adjacent col-
lagen molecules (see Fig. 2.2). The equatorial spacing between collagen molecules
can vary from 1.6 nm in non-mineralized wet fibrils to 1.1 nm in dried conditions,
where as in mineralized wet bone an intermediate value of 1.25 nm was found [24].
This suggests a very close packing of the collagen molecules when clusters of mineral
crystals replace the water within the fibril [25].
An interesting consequence is the possibility to estimate the average amount of min-
eral content of the mineralized collagen matrix, starting from the knowledge of the
amount of water which can be replaced by the mineral particles. The space occupied
by free water within the fibril is 48 vol% in the gap zone and 35 vol% in the overlap
zone. Since the fibril consists in 60% of gap and 40% of overlap zones, a value of the
mineral content of 43 vol% can be reached [13].
The mechanical properties of bone crystals are quite difficult to compute due to their
small size. An indication of the stiffness comes form the Young’s modulus of large
single crystals of hydroxyapatite which is 114 GPa [4]. In addition, combining in
situ tensile testing with synchrotron X-ray diffraction and scattering, it was shown
that the fracture strain of mineral crystals in bone is twice the fracture strain of bulk
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Figure 2.2: Sketch of a probable arrangement of the mineral particles in collagen
fibrils. The flat plates mineral crystals are arranged parallel to each other and parallel
to the collagen fibrils. The proposed nucleation of mineral particles inside the gap
zone of collagen fibrils causes the staggering of the crystals (from [23]).

apatite [26]. Crystal properties like size, composition and orientation are known to
influence the mechanics of bone. In aged bone, for instance, large crystal size are
often found and this is associated with increased brittleness of bone [21]. Crystal
orientation and arrangement in the collagen matrix are key factors for the properties
of bone material (stiffness and resistance to fracture in particular), as explained in
the following section.
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2.3 Collagen-mineral nanocomposite

In bone, stiff mineral nanoparticles are embedded in a tough polymeric matrix. From
a materials scientist point of view it is surprising to see how bone actually manages to
combine the ”best” properties of both constituents, namely the high Young’s modulus
of the mineral and the high toughness of the matrix. This can be best visualized in
an Ashby-map [27, 28] obtained by plotting stiffness versus toughness (defined as
fracture energy) of collagen, hydroxyapatite on the one hand, and bone-like materials
on the other (see Fig. 2.3).

Figure 2.3: Ashby-map of the stiffness versus toughness for collagen, pure hydroxya-
patite and calcified tissues where the basic building block is the mineralized collagen
fibril. The dotted lines bounds the mechanical behavior of the composite materials
and are obtained assuming parallel (Voigt) and serial (Reuss) arrangement for the
mineral and collagen phases (from [23]).

Hydroxyapatite is very stiff but brittle whereas collagen is two orders of magnitude
softer but approximately three orders of magnitude tougher. The behavior of the
resulting bone composite cannot be explained by a simple linear (Voigt) or inverse
(Reuss) rule of mixtures [29]. In a linear rule of mixtures, where collagen and mineral
are loaded in parallel, the composite stiffness is basically the one of the mineral.
The weak point of this arrangement is the fact that the strains in the two phases
are identical and therefore the toughness is limited by the brittle mineral behavior.
Conversely, in the inverse rule of mixture collagen and mineral are viewed in series
and the elastic properties are governed by the collagen. In this situation the stresses
are identical and therefore the overall possible load is limited by the stress which can
be carried by the collagen phase.
A simple mechanical model which is able to explain how to combine stiffness and
toughness in composite material, on the base of pure geometrical arguments, has
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been introduced by Jäger and Fratzl [29]. The model is based on the staggered
arrangement of stiff (mineral) elements embedded in a soft (protein) matrix (see Fig.
2.4).

mineral

protein

Figure 2.4: Two-dimensional model for mineral crystals arrangement in the collagen
matrix. When the system is loaded (on the right), the stiff crystals carry tensile
load whereas the thin matrix transfers load via high shear zones between the mineral
(adapted from [23]).

With this geometry, under applied tensile load, the mineral platelets carry tensile
stresses while the main task of the protein layer is to transfer the load between
adjacent mineral crystals by shear. For small deformations, the resulting stiffness Ec,
stress σc and strain εc, of the composite material can be expressed as [23, 30, 29]

Ec =
(

4(1−Φ)
GpΦ2ρ2

+ 1
ΦEm

)−1

σc = (1− Φ)σp + Φσm

εc = 2
ρ

1−Φ
Φ
ηp + εm

, (2.3.1)

where Em, σm and εm are the Young’s modulus, tensile stress and tensile strain of the
mineral phase; Gp, σp and ηp are the shear modulus, tensile stress and shear strain of
the protein phase; Φ is the volume fraction of the mineral and ρ is the aspect ratio
of the mineral crystals.
The first relation of Eq. 2.3.1 shows that one can compensate for the low stiffness
of the protein phase just by increasing the aspect ratio of the mineral crystals. An
aspect ratio of ρ=30, for example, could already compensate for a protein phase which
is almost three order of magnitude softer than the mineral [23]. The second relation
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in Eq. 2.3.1 says that most of the load is carried by the mineral phase which therefore
must have a sufficiently high strength. This requirement is matched when mineral
particles are very small. In fact numerical calculations showed that when the size of
particles is smaller than a critical length - which depends on the surface energy of
the particle material and on its theoretical strength - they become flaw-tolerant in
the sense that they cannot have defects large enough to reduce their strength in a
significant way [30, 23]. A rough estimation of this length for mineral crystal gives 30
nm [30] which is in agreement with the mineral crystals size reported in section 2.2.
With the aspect ratio is possible to compensate for the soft protein matrix, however
there is a draw back of this simple linear elastic model in that the strain of the
composite cannot exceed too much the value of the brittle strain of the mineral, as
shown by the third relation of Eq. 2.3.1. To correct for this, one has to consider
that beyond a certain critical shear stress, the behavior is not linear anymore since
the protein matrix starts to deform plastically. The flow of the protein matrix is the
mechanism which allows the nanocomposite to have bigger strains than the mineral
particles [31, 26].
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2.4 Bone remodeling

In addition to a very smart arrangement of its main components on the nanome-
ter level, bone has another remarkable property. It can self-adapt and self-repair
to match the mechanical requirements of its environment. In bone physiology, the
term bone remodeling in fact refers to the continuous resorption and deposition of
bone carried out by two different cell types: the bone forming cells (osteoblasts) and
the bone resorbing cells (osteoclasts). Bone remodeling probably exists for struc-
tural and metabolic reasons. From a structural viewpoint remodeling serves to repair
microdamage, in order to avoid fatigue effects, and to adapt bone shape and microar-
chitecture to mechanical loads [32]. The mechanical adaption of bone structure was
already proposed from anatomical observation at the end of the 19th century. This
is summarized in the so-called Wolff-Roux law which states that bone is deposited
where mechanically needed and is resorbed wherever there is no mechanical need [33].
This concept was further developed by Frost who introduced the idea of a ”mechanos-
tat”, i.e., that a mechanically controlled feedback loop is active in bone and regulates
bone mass and architecture [34]. This type of structural remodeling is also known as
targeted remodeling [35] in the sense that is targeted toward specific sites that maybe
are experiencing particularly high or low strain states or that are maybe damaged by
a microcrack.
Bone is the main calcium reservoir in the body and, although calcium ions can enter
and leave the skeleton also by other mechanisms [36], remodeling probably is funda-
mental to regulate the concentration of ions in the extracellular fluids [32]. This does
not require that remodeling occurs in a specific site and, as long as the mechanical
quality is not compromised, can be carried out in a stochastic manner. The metabolic
remodeling is therefore called non-targeted remodeling [35]. During bone remodeling
osteoblasts and osteoclasts form a well organized team of cells called basic multicellu-
lar unit (BMU) that, in trabecular bone, travels across the bone surface and replace
old with new bone. The remodeling process is normally subdivided into 5 phases:
resting, activation, resorption, reversal and formation [37]. During the resting phase
the surface of bone is covered and protected with lining cells (inactive osteoblasts),
therefore no resorption or formation can take place. In the subsequent activation
phase osteoclast precursors mature and are ready to resorb bone. Resorption takes
place when bone lining cells withdraw, therefore exposing the mineralized bone sur-
face to the action of osteoclasts. These aggressive cells, after attaching at the bone
surface, create an acidic environment in order to dissolve both the mineral and the
collagen phase. When this step is completed, small cavities called resorption pits
with a dept of about 60 µm [38] are left on the trabeculae as fingerprints of osteoclast
action. The reversal of the remodeling process takes place when resorption stops and
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formation of new bone starts. The main actors of the formation phase are the os-
teoblasts and their role is to lay down unmineralized collagen matrix (osteoid) into the
resorption pits. After deposition, the osteoid starts to mineralize. The mineralization
process will be described in detail in the next section. During the formation process,
osteoblasts may remain trapped in the bone matrix, where they become osteocytes.
Osteocytes are networked with each other and to bone lining cells via small channels
called canaliculi. This network is probably important in the maintenance of bone as
it is believed to sense mechanical changes and to trigger targeted remodeling [33].
Remodeling is a key factor for the bone mechanical performance since it affects both
bone architecture and material. Despite the ongoing clinical debate on which rate
of bone remodeling is optimal for bone health [39], it is generally accepted that high
remodeling rates as well as absent remodeling can dangerously reduce bone strength
[40]. When the trabecular network is remodeled, the characteristic resorption pits
generated by the osteoclasts could, from a mechanical point of view, act as stress
concentrators, therefore weakening locally the trabecular structure [41]. If the in-
creased remodeling is also accompanied by an imbalance in favor of bone resorption
(e.g., osteoporosis) this can result in loss of bone mass by thinning, perforation and
disconnection of the trabecular network [42]. Once a trabecula is lost, it is very un-
likely that it will be reformed and in general, as we will see in the second part of
this thesis, the mechanical competence of bone is reduced more dramatically when
bone is lost due to the disappearance than to thinning of trabeculae [43]. On the
contrary, low rates of bone remodeling lead to an accumulation of microdamage [44]
which could eventually degrade bone toughness as suggested by animal models [45].
At the material level, remodeling influences the mean degree of mineralization, the
size and composition of the mineral crystals and the amount of collagen cross-links.
A high rate of bone remodeling, for example, reduces the degree of mineralization
[46, 47] and therefore the stiffness of bone material. When remodeling slows down,
the degree and the homogeneity of mineralization increases, which in turn could result
in more brittle bone [48, 13].

2.4.1 How to measure bone remodeling rates

Since remodeling and in particular the remodeling rates (or turnover rates) are im-
portant input parameters for the mathematical model which is introduced in the next
chapter, the main experimental methods and their limitations in the assessment of
those rates should be shortly mentioned. A first indirect method to estimate the rates
of bone remodeling is to measure biochemical markers of bone resorption or of bone
formation released into the blood. Markers of bone resorption include, for instance,
collagen breakdown products. Signs of bone formation are osteocalcin and cleavage
products of procollagen synthesis [49]. Assessing bone remodeling with bone markers
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is easy to perform but presents strong limitations like a big variability and the lack
of specificity for bone since collagen is produced also in other tissues.
A second approach, which however is not that practical since it cannot be performed
in vivo, is with standard bone histomorphometry [50]. Parameters of bone turnover
measured with this technique includes for instance activation frequency (Ac.f), i.e.,
the frequency at which a given point on the surface undergoes remodeling per unit
time, bone formation rate volume referent (BFR/BV) and bone resorption rate vol-
ume referent (BRs.R/BV) which are the fraction of total bone formed and resorbed
per year, respectively. With this approach it was found that, with ”physiological”
remodeling rates, 20% of the total trabecular bone volume is remodeled per year [51].
To this corresponds a turnover time (i.e., the time needed to remodel an amount
of bone equal to the actual total trabecular bone volume) of 5 years. Finally, a
recent method to assess remodeling rates is via synchrotron radiation microtomogra-
phy (SRµCT) [52]. This imaging method allows also to determine the ratio of low- to
high-mineralized bone volume fractions (Bone Mineralization Ratio-Volume: BMR-
V) and the ratio of the surface areas (Bone Mineralization Ratio-Surface: BMR-S).
Those two quantities have been shown to correlate well with turnover indices from
histomorphometry [52].

2.4.2 High and low bone turnover scenarios

Two fundamental clinical situations, where the alteration in the remodeling rates
are shown to affect the mineralization pattern, are the increased turnover scenario
observed in menopause, which could lead to osteoporosis, and the subsequent treat-
ments to reduce the remodeling rates. The enormous interest in those situations is
also evident from the fact that all the major pharmaceutical companies have produced
a drug to influence the remodeling rates.
In the postmenopausal years, important changes in the remodeling cycle are mainly
triggered by lack of estrogen hormones. Those changes may have a dramatic effects
on bone material and architecture, thus leading to an increased probability for bone
to fracture. Estrogen deficiency increases osteoclast recruitment, activation frequency
of new remodeling sites and reduces osteoclast death, therefore prolonging the resorp-
tion phase [53]. When measured with bone remodeling markers, there is a wide range
of turnover variation in menopause: from 20% to 150% increase [54, 55]. In terms of
Ac.f. (in transiliac biopsy), remodeling doubles already one year after the menopause,
triples 13 years later and remains elevated in osteoporosis [56]. During menopause,
the osteoblasts are not able to follow the increased activity of the osteoclasts, there-
fore each resorption pit is refilled with less bone than it was resorbed, thus leading
to a global bone volume loss. Also postmenopausal rates of bone loss are not well
defined and vary widely across the population. An indicative value may be a bone
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loss of 0.85% per year [57].
The increased bone fragility which characterizes osteoporotic bone can be reduced
when antiresorptive treatments using bisphosphonates are given, as indicated by var-
ious clinical studies [58, 53]. Bisphosphonates is a class of drugs that inhibits the
resorption of bone. Bisphosphonates molecules are negatively charged and therefore
they have a high tendency to bind with calcium ions (Ca2+). In the acidic environment
generated by the osteoclasts to resorb bone, the negative charge of bisphosphonates
is neutralized, the molecules therefore detach from bone surface and can enter in the
osteoclasts. Among various bisphosphonates, the nitrogen-containing drug inhibits
an enzyme for the production of cholesterol which results in compromised capacity
of the osteoclasts to attach to the mineralized matrix and in the reduction of the
osteoclasts life span [59].
Different bisphosphonates result in different amount of turnover reduction. For exam-
ple using risedronate (a bisphosphonate medication which will be investigated with
our model in more detail) the turnover marker shows a rapid and significant reduction
of 54.2% already after 3 months [60]. Measurements with standard bone histomor-
phometrical parameters agree with this value: Ac.f and BFR/BV give roughly a 50%
reduction for the risedronate treated patients after 3 years of treatment [61, 51].
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2.5 Bone mineralization

The end product of the remodeling process is new unmineralized bone matrix which
has replaced old mineralized bone. The subsequent step is the mineralization of
the organic matrix. Macroscopically the mineralization of the bone matrix has been
qualitatively described as a two step process [62, 13]. A rapid increase in the mineral
content within the first weeks after osteoblast deposition, called primary mineraliza-
tion, is then followed by a slower augmentation of the mineral component lasting for
several years and referred to as secondary mineralization. The amount of mineral
deposited during the primary mineralization is roughly 70% of the full mineralization
capacity and the remaining 30% is slowly added during the secondary mineraliza-
tion. Experimental information on the mineralization kinetics can be obtained with
a labeling procedure [37]. Fluorescent compounds like tetracycline which have high
affinity for the small newly formed mineral crystals are given to a patient some days
before a biopsy in order to have a bone sample where the tetracycline is incorporated.
The information obtained with those methods, however, is only limited to the earlier
stages of the mineralization process and an experimental method to measure the full
mineralization kinetics is still missing. Here theoretical modeling can usefully com-
plement the lack of experimental data. In this thesis a model is proposed to derive
quantitative information on the mineralization process [47] (see section 3.2.1. From a
more microscopic point of view, bone mineral is initially laid down at discrete sites in
the collagenous matrix. First, the mineral particles grow very fast in two dimensions
with a strong increase in the particles surface. This phase could probably correspond
to the primary mineralization. Later on, during secondary mineralization, those thin
and elongated crystals increase further in thickness [63, 20].
Currently a hot topic of research is to understand how the process of mineralization
is controlled in living tissues [64, 14]. The underlying physical chemistry of crystal
formation is basically the same, both for biological and geological crystals. How-
ever, the resulting crystals can be strikingly different. While geological crystals are
macroscopic in size and faceted, biocrystals are typically nano-sized , have geometri-
cally intricate shapes [65, 14] (being still a single crystal!) and occur in well defined
spatial organizations. In vitro experiments demonstrated the importance of organic
additives, depending on the concentration of the additives crystals can be formed in
almost arbitrary shapes [66, 14].
In classical theory of crystal growth, nucleation occurs when aggregates of ions have
sufficient energy to form a first stable nucleus. This is the most energy-demanding
step of crystal formation and can occur when the free energy required to form new
interfaces (which goes with the square of the size of the forming nucleus) is balanced
by the free energy released in the formation of bonds in the bulk of the aggregates
(which is proportional to the cube of the nucleus radius) [14]. Since the initial sites
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for mineralization are probably the hole zones between collagen fibrils, collagen was
thought to act like an apatite nucleator [67]. The same type of collagen, however,
is also present in other tissues that normally do not mineralize, thus suggesting that
collagen alone could not explain the nucleation of mineral crystals. There are at least
three other factors which play a key role in the mineralization process: increased local
ion concentrations, removal of nucleation inhibitors (like osteopontin [68] or fetuin A
[69]) and direct exposure of nucleators [70]. The picture is in fact quite complex since
most of the macromolecules of the bone matrix can act both as apatite nucleators as
well as apatite growth inhibitors, also as a function of their concentrations [70].
After the nucleation, crystals start to grow by addition of ions and ion clusters to
the newly formed stable nucleus. Crystal growth requires less energy than nucleation
since, after a critical size, the nucleation barrier is already passed. In addition, during
crystal growth, new nuclei may form on the surface of a growing crystal, a process
called secondary nucleation, allowing the growth to speed up. The collagen matrix
in which the mineral crystals are growing influences their shape and the size. This
is evident for instance in osteogenesis imperfecta (OI) also called brittle bone disease
[71]. In OI a defect in the genetic code results in slightly different assembly of the
bone collagen, which in turn, alters the mineral size, shape and composition [72, 70].
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2.6 Bone mineralization density distribution (BMDD)

Due to bone renewal, which comprises two distinct biological processes (remodeling
and mineralization), the mineral content in bone is not uniformly distributed. Tra-
becular bone thus appears like a patchwork of different bone packets each of them
having different age and therefore different mineral content (Fig. 2.5A). The different
degrees of mineralization in different areas of bone can be measured experimentally.
The result of these measurements can be summarized by a frequency distribution of
the mineral content, called the bone mineralization density distribution (BMDD). In
the BMDD diagram (Fig. 2.5B), the x -axis represents the calcium content and the y-
axis the frequency at which a particular calcium content is present. This distribution
for trabecular bone has usually a distinct asymmetric peak which can be character-
ized by three parameters. The most frequent calcium content, i.e., the position of the
peak, is denoted by CaPeak, the full width at half maximum is called CaWidth, and
the mean calcium content, Camean, is defined as the first moment of the BMDD.
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Figure 2.5: (A) backscattered electron image of transiliac bone biopsy (healthy fe-
male), the soft tissue or embedding medium is in black while the mineralized bone
tissue is in gray. By zooming in, individual bone packets of different degree of miner-
alization can be seen. (B) corresponding peak-shaped BMDD distribution with the
definition of three BMDD parameters: the most frequent calcium content (CaPeak),
mean calcium content (CaMean) and the full-width at half maximum (CaWidth).



2.6. BONE MINERALIZATION DENSITY DISTRIBUTION (BMDD) 19

Despite their similar names, the bone mineralization density distribution (BMDD)
and the bone mineral density (BMD) are quite different quantities. BMD is a single
scalar value that reflects the mineral content in a given portion of bone which, in turn,
depends on both, the total bone volume and the mean mineral content of the bone
matrix [73, 74]. In contrast, the BMDD is not a simple number but a probability
distribution which describes local differences in mineral content at the micrometer
level.

2.6.1 How to measure the BMDD

Differences in mineral content within trabecular bone can be measured experimentally
with three different techniques: quantitative microradiography (qMR) [62], quantita-
tive backscattered electron imaging (qBEI) [73] and synchrotron radiation microto-
mography (SRµCT) [75]. They all are invasive techniques because of the requirement
of bone biopsy. In qMR a bone section of 100 µm thickness is illuminated with an
X-ray beam. The X-ray absorption is measured and the BMDD is derived from the
contact microradiograph by analyzing the distribution of the X-ray attenuation in
the different pixels. This method has a resolution of 40 µm and due to the rela-
tively high sample thickness displays artifacts that come from projection effect errors
[76]. SRµCT is based on the absorption of a monochromatic X-ray radiation from
a synchrotron source by 3-dimensional bone samples. The monochromatic radiation
allows the conversion of the gray level intensities (X-ray attenuation coefficients) in
local mineral concentration. SRµCT is a quite powerful 3-dimensional measuring
technique with a resolution of 4 µm per voxel. In addition to the BMDD, SRµCT
gives access to the trabecular architecture. An example of a SRµCT image is given
in Fig. 2.6 which shows a 3-dimensional mineralization distribution in an iliac crest
biopsy: darker areas represent bone with low mineralization and younger age and
in the brighter zones bone is older and more highly mineralized. In qBEI a bone
specimen is irradiated with an electron beam and the amount of electrons that are
back scattered from a thin surface layer of about 0.5 µm is detected. The probability
of backscatter increases with the atomic number Z of the atoms interacting with the
electron beam [78]. In bone tissue the element with the highest atomic number is
calcium (Z=20) and therefore qBEI gives access to the local calcium content. The
word quantitative indicates that a calibration needs to be performed in order to cor-
relate the atomic number of the atoms in the sample and the back scattered signal in
terms of its gray level. Carbon and aluminium are normally the reference materials
used in the calibration. In addition, gray levels need to be translated into calcium
concentration measured in weight%. This is done by considering as reference points
the gray level to osteoid (unmineralized bone matrix) which is taken as 0 wt% Ca
and the gray level of pure hydroxylapatite (HA) with 39.86 wt% Ca [73].
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Figure 2.6: A gray-scale image in 3D of a 8.6mm3 volume of an iliac crest biopsy show-
ing the spatial distribution of low-mineralized bone (dark areas) and high-mineralized
bone (bright areas) in trabecular bone [77].

2.6.2 BMDD of healthy adults

Since the mean mineral content and homogeneity of mineralization are recognized as
key points for the material quality of bone [13], it is important to establish whether
or not the mineralization distribution is a characteristic conserved pattern for healthy
people. Roschger et al. [79] investigated how the shape of the BMDD is influenced
by ethnicity (African-American vs. Caucasian), skeletal site (ilium, vertebral body,
patella, femoral neck and femoral head), gender and age (25 to 95 years). The main
finding was the lack of a statistically significant influence of these biological variables
on the BMDD [79]. The authors defined a reference BMDD for trabecular bone of
healthy adults which can be used to detect changes in case of bone diseases or after
bone treatments. The BMDD is therefore an important diagnostic tool to detect
abnormal mineralization distributions that could contribute to reduce the mechanical
competence of trabecular bone.
The reference BMDD of trabecular bone obtained in [79] is bell-shaped, presents a
peak at about 23 wt% Ca content and is slightly asymmetric favoring lower mineral
content (blue line in Fig. 2.7). To demonstrate how strong the BMDD can change due
to bone diseases, in Fig. 2.7 the reference BMDD is compared with a BMDD from
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Figure 2.7: Reference BMDD (blue) compared with the BMDD from a patient with
Paget’s disease (red) and osteomalacia (green) caused by the celiac disease.

a patient with Paget’s disease and osteomalacia (red and green line, respectively).
Paget’s disease is a disorder of bone remodeling which can affect isolated bones in the
skeleton. In the diseased skeletal site, bone is softer and weaker than normal. Paget’s
disease is characterized by high bone turnover. Early in the course of the disease,
old bone starts breaking down faster than new bone can be built. Over time, this is
compensated by a subsequent increase in bone formation [37]. Osteomalacia, instead,
is caused by a disorder in the mineralization process. In this disease bone normally has
the right collagen structure but is lacking calcium, and therefore the osteoid (newly
deposited unmineralized bone) fails to mineralize [37]. The corresponding BMDD
is characterized by a mean mineral content, CaMean, that is 20% less than in the
reference BMDD.

2.6.3 BMDD in osteoporosis and antiresorptive treatments

Two very important scenarios, which will be also investigated with our mathematical
model, are the wide spread cases of osteoporosis and the subsequent antiresorptive
therapies. Since the changes in the mechanical performance cannot be explained
in terms of simple bone mass, other influencing factors like the BMDD have been
investigated. Recent results by Zoeher et al. [46] focus on the effect of osteoporosis
and long-term treatment with risedronate on the mineralization pattern. The study
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is based on the analysis of iliac crest bone biopsies at three different time points.
The first biopsy was taken at baseline, i.e., in the osteoporotic condition and before
giving medications. The second biopsy came from the opposite iliac crest, after three
years of treatment. The last biopsy was removed after five years, from the same iliac
crest as the baseline biopsy but far enough from the first site to avoid a bias of the
mineralization distribution by bone healing processes. For each time point biopsies
from at least 8 different patients were available and the corresponding BMDDs were
generated with qBEI as described in section 2.6.1. Here, the BMDD data collected
in [46] are averaged to obtain for each time point a representative BMDD.
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Figure 2.8: Reference BMDD (blue) and osteoporotic BMDD (red) along with the
modification of the mineralization distribution after 3 (black) and 5 (green) years of
treatment with risedronate. BMDDs are obtained by averaging the data reported in
[46].

At baseline the osteoporotic BMDD (red line, Fig. 2.8) displays a lower degree of
mineralization (low values of CaPeak and CaMean), but a larger heterogeneity (high
value of CaWidth). This state, which reflects more newly formed bone matrix with
a lower degree of mineralization, is consistent with the higher bone turnover of the
osteoporotic patients (see section 2.4.2). After 3 years of treatment with risedronate
(black line in Fig. 2.8) the peak of the distribution shifts to the right and gets
narrower. While the shifting can be understood as a result of reduced turnover due
to risedronate so that the bone packets have more time to mineralize, the narrowing
is surprising. At the end of the treatments, at 5 years, the mean value, CaMean,
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remains bigger than at baseline, CaPeak moves only slightly with respect to the 3-
years position and the heterogeneity of the mineralization decreased compared to the
3-years time point (Fig. 2.8, green). In short, the behavior of CaMean and CaPeak
can be understood quite intuitively in term of different turnover rates, whereas the
complex time evolution of the BMDD (also reflected in part by CaWidth) requires
more insights.
In the next chapter we present a mathematical model which allows the prediction of
the time evolution of the mineralization distribution for different turnover situations,
which will help to explain the experimental findings presented here.
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Chapter 3

Mathematical model for the
BMDD

In the previous chapter we have seen that the non uniform mineralization in bone
can be described by a characteristic peak-shaped frequency distribution of the mineral
content, called the BMDD. The distribution is the result of two dynamical processes:
the remodeling process where small bone packets are renewed, and a subsequent
mineralization during which the mineral content in the initially unmineralized bone
packets increases. For healthy adults, the BMDD is virtually constant independent
of biological parameters like sex, ethnicity, skeletal site and age [79]. Motivated by
these experimental findings, we have developed a mathematical model to describe
how remodeling and mineralization affect the shape of the BMDD.
The main purpose of our modeling will be:

• to investigate the steady state configuration of the BMDD to extract informa-
tion on the underlining mineralization kinetics,

• to compute how different mineralization laws could give rise to different miner-
alization distributions and

• to simulate transient and steady-state configurations of the BMDD for different
turnover rates of remodeling.

3.1 Model description

This section introduces all the model parameters and outlines how the two processes
of mineralization and remodeling can be described in mathematical terms. Informa-
tion about each variable are summarized, for example its dependent or independent
character, its physical meaning and its connection with experimentally measurable

25
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quantities. This part can also serve as kind of glossary for the symbols or quantities
used.

Time, t, and calcium content, c
Time, t, and calcium content, c, are the two independent variables of our model. The
value of the calcium content, measured in weight percentage of bone tissue (wt% Ca),
can vary between 0 - corresponding to unmineralized bone (osteoid) - and a maximum
value, cmax, which can be estimated based on the available volume in the collagen
matrix to be about 56 vol% [29], i.e., close to 30 wt%.

BMDD, ρ
The BMDD is described as a function, ρ(c, t), of the two independent variables time
and calcium content. For a given bone sample, ρ(c, t)dc is the total bone volume
having a calcium content between c and c + dc, at time t. The measured BMDD
histogram is usually normalized in a way that it sums up to 100% since independent
data on bone volume is usually not available [73]. In our model ρ(c, t) is defined in
such a way that integrating over the whole range of calcium concentrations yields the
bone volume BV (t) ∫ cmax

0

ρ(c, t)dc = BV (t). (3.1.1)

Consequently the quantity ρ(c, t)dc/BV (t) denotes the probability that an elemen-
tary bone volume has a mineral content between c and c+ dc.

Mineralization

Mineralization law, m(t)
The mineralization process is described by a mineralization law, m(t). This function
denotes how the calcium content in a newly deposited bone packet changes as a func-
tion of time. Since the calcium content is here assumed only to increase during the
mineralization process, the function m(t) is strictly monotonous and can therefore
be inverted. The inverse function, m−1(c), then describes the time t needed to reach
a calcium content of c starting from unmineralized bone matrix. In our model we
assume for simplicity that the functional dependence of the mineralization law does
not change with time. This assumption is realistic for healthy adults but maybe be
erroneous during growth and for specific bone diseases like osteomalacia (see Fig. 2.7).

Mineralization velocity, v(c)
Closely connected with the mineralization law is the mineralization velocity, v(c),
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obtained from the time derivative of the mineralization law

v(c) ≡ dm

dt

(
m−1(c)

)
. (3.1.2)

The mineralization velocity is therefore the slope of the mineralization law. The hy-
pothesis of fast (primary) and slow (secondary) mineralization regimes corresponds
to a non-constant velocity for different values of c. That v(c) does not explicitly de-
pend on time reflects the assumption of a fixed mineralization law. In addition, the
constraint v(c) > 0 is a result of m(t) being strictly monotonous.

Remodeling

Bone resorption - osteoclast action, ωOC
Osteoclast action is described by a quantity which gives the probability of bone re-
sorption. In principle, this resorption probability can depend on the calcium content.
It was argued that osteoclasts could resorb preferentially mechanically damaged bone
[44], which should be on average older and therefore higher mineralized. Likewise it
can be argued that osteoclasts resorb preferentially younger, less mineralized bone,
since they are more likely to encounter younger bone at the bone/marrow interface.
To take into account this possible preference of resorption, the bone resorption prefer-
ence rate, ωOC(c, t), depends on both time and mineral content. ωOC(c, t) ρ(c, t) dc dt
gives the bone volume fraction with a calcium content between c and c+dc which
is removed between the time t and t + dt. ωOC(c, t) can be connected to a param-
eter which is experimentally accessible with standard bone histomorphometry. The
bone resorption rate, BRs.R/BV, defines the percentage of bone volume resorbed per
year. The connection between ωOC and BRs.R/BV is therefore established by (time,
t, measured in years)

BRs.R

BV
(t) =

∫ t

t−1

∫ cmax

0

ωOC(c, t′) ρ(c, t′) dc

BV (t′)
dt′. (3.1.3)

Bone deposition - osteoblast action, jOB
The osteoblast activity, jOB, can change during life time and is therefore in general
time dependent. For instance in high turnover osteoporosis both deposition and re-
sorption increase [56]. The osteoblast action in our model is mathematically described
by a time dependent function, jOB(t). Again the model quantity, jOB(t), can be con-
nected to a measurable quantity of bone histomorphometry, the bone formation rate,
BFs.R/BV, by

BFs.R

BV
(t) =

∫ t

t−1

jOB(t′)

BV (t′)
dt′. (3.1.4)
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Bone volume, BV(t)
The bone volume, BV (t), can be derived from the deposition and resorption rate
of the bone cells and is therefore not an independent parameter. Changes in bone
volume occur due to an imbalance between the amount of bone resorbed by osteoclasts
and the amount of bone deposited by osteoblasts during the remodeling process. The
time evolution of the bone volume is therefore described by the following differential
equation

dBV

dt
= jOB(t)−

∫ cmax

0

ωOC(c, t) ρ(c, t) dc. (3.1.5)

3.1.1 The evolution equation of the BMDD

Before the rigorous mathematical description, an intuitive cartoon is presented which
describes how mineralization and remodeling, when considered alone, may influence
the mineralization distribution described by the BMDD. The starting point is a tra-
becula having a given mineralization distribution in terms of different bone packets
with different mineral contents (different gray levels in Fig. 3.1A). For the case
in which only mineralization occurs (Fig. 3.1B), the mineral content in each bone
packet will increase with time according to the same mineralization law. The in-
crease in mineral content is reflected by a shift of the BMDD to the right, towards
higher mineralization values (Fig. 3.1C). The effect of an exclusive remodeling pro-
cess can be depicted in the same way. Bone resorption, presented by resorption pits
in (Fig. 3.1E) lowers the BMDD. The new unmineralized material laid down by the
osteoblasts to refill the resorption pits is symbolized by a black bar at the very left of
the BMDD diagram (Fig. 3.1F). In summary, the changes of the BMDD due to the
mineralization can be seen as a flow from low to high values of the mineral content
with an unchanged area under the curve corresponding to a constant bone volume.
The effect of remodeling on the BMDD is that while flowing to the right towards
higher c values, bone volume is lost due to some leakage to the flow (osteoclast ac-
tion). Additionally the flow is fed from the very left (osteoblast action). Such flow
problems can be mathematically described by a balance law which can be written
schematically in the form



3.1. MODEL DESCRIPTION 29

end

start

only
mineralization

only
remodeling

low Ca

high Ca

start         end

effect on the BMDD

start

end

(A) (D)

(B) (E)

(C) (F)

remodeled

Figure 3.1: Sketch of the effect of mineralization and remodeling on the BMDD.
Figures A, B and C illustrate how the mineralization process influences the mineral-
ization distribution at the trabecular level. Due to the mineralization law the mineral
content in each bone packet increases with time and the corresponding BMDD shift
towards higher mineralization values. Figures D, E and F sketch the influence of
the remodeling process: the osteoclasts simply lower down the BMDD whereas the
osteoblasts add in new unmineralized material at the very left of the BMDD diagram
(black bar). This is not seen in the BMDD curve if the osteoid does not mineralized.
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Based on these ideas, the evolution equation of the BMDD can be derived. Since
this derivation is presented in detail in the appendix A of [47], only the final result
is presented here. Note that for clarity reasons, in the thesis the notation of the
mineralization law has been changed to m(t).
The BMDD, ρ, evolves according to the following first order partial differential equa-
tion (PDE)

∂ρ

∂t
(c, t) = − ∂

∂c
[ρ(c, t) v(c)]− ωOC(c, t) ρ(c, t) , (3.1.6)

with the boundary condition at c = 0

ρ(c = 0, t) v(c = 0) = jOB(t). (3.1.7)

Equation 3.1.6 can be solved (numerically) once the cell action functions (i.e., ωOC(c, t)
and jOB(t)), and the mineralization law m(t) - and therefore the mineralization ve-
locity v(c) - are specified. For simple assumptions on the form of the ωOC(c, t), jOB(t)
and v(c), equation 3.1.6 can be even solved analytically. Before describing an analyti-
cal solution (section 3.1.3) and a high resolution numerical method (section 3.1.4), the
steady-state solution of equation 3.1.6 is discussed in the next section. The analysis
of this type of solution is strongly motivated by the important experimental evidence
that for healthy adults the BMDD is almost constant, independent of sex, ethnicity,
skeletal site and age [79]. In the framework of our model this experimental obser-
vation means that in healthy adult humans a balance between bone remodeling and
mineralization should maintain the reference BMDD unchanged.

3.1.2 Steady state solution

Under the assumption of steady-state, ρ(c, t) and ωOC(c, t) become functions only of
the mineral content, i.e., ρ(c) and ωOC(c). Equation 3.1.6 and its boundary condition
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3.1.7, become also time independent and simplify to{
d
dc

[ρ(c, t) v(c)] = −ωOC(c) ρ(c)

ρ(c = 0) v(c = 0) = jOB
. (3.1.8)

This ordinary differential equation can be solved analytically. The solution can be
found in the appendix B of [47]. Here only the most important results are presented
which can always be expressed in the form of two transformations. Either for a known
mineralization law the BMDD is calculated or, vice versa, for a known BMDD the
mineralization law is expressed.
The general solution for the mineralization law, expressed as m−1(c), is given by

m−1(c) =

∫ c

0

ρ(c′) dc′∫ cmax
c′

ωOC(c′′) ρ(c′′) dc′′
. (3.1.9)

The inverse transformation reads

ρ(c) = jOB
m−1(c)

dc
exp

(
−ωOC(c)m−1(c)

)
exp

(∫ c

0

dωOC(c′)

dc′
m−1(c′)dc′

)
. (3.1.10)

Under the assumption that the osteoclasts remove bone independent of its mineral
content, i.e., ωOC(c) = ω̄OC , Eq. 3.1.5 simplifies to jOB = BV ω̄OC . Furthermore as
a consequence of the loss of the time dependence, the time unit can be chosen freely.
The BMDD remains unchanged, for instance, in the case where both mineralization
and remodeling are sped up by the same factor. Introducing a dimensionless time τ
defined as t/tTO, where tTO is the turnover time, the transformations can be written
in a more compact form

ρ(c)

BV
= − d

dc
[exp (−τ(c))] (3.1.11)

and

τ(c) = −ln
∫ cmax

c

ρ(c′)

BV
dc′ . (3.1.12)

3.1.3 Analytical solution

The evolution equation 3.1.6, classified as a first order linear PDE, can be solved
analytically with the method of the characteristics in special cases.
Such a special case is when an exponential mineralization law is assumed, i.e.,

m(t) = 1− exp(−t/tMI), (3.1.13)

where tMI denotes a time constant characterizing the mineralization kinetics and
when the remodeling is assumed to be completely suppressed, leading to

∂ρ

∂t
(c, t) = − ∂

∂c
[ρ(c, t) v(c)] . (3.1.14)
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The mineralization law in inverted form reads as

m−1(c) = −tMI ln(1− c). (3.1.15)

The mineralization velocity v(c), obtained by differentiating the mineralization law
3.1.13 with respect to time t and then inserting Eq. 3.1.15, is then simply a linear
decreasing function of the mineral content (Fig. 3.2B)

v(c) =
1

tMI

(1− c). (3.1.16)

Eq. 3.1.14 simplifies to
∂ρ

∂t
+

1

tMI

(1− c)
∂ρ

∂x
=

1

tMI

ρ , (3.1.17)

along with some initial condition for the mineralization distribution ρ(c, t = 0) = ρ̂(c).
The method of characteristics can be now applied to find an analytical solution for Eq.
3.1.17. The idea behind this method is to look for particular lines, called characteristic
lines or characteristics, along which the PDE simplifies to an ordinary differential
equation (ODE). Performing a coordinate transformation from the c-t coordinate
system to the new s-c0 system, the characteristics equations have the following form{

dt
ds

= 1

t(s = 0) = 0
(3.1.18)

{
dc
ds

= 1/tMI (1− c)

c(s = 0) = c0

(3.1.19)

which gives {
t = s

c0 = 1− (1− c)exp(s/tMI) .
(3.1.20)

The characteristic curves c(t) = 1 − (1 − c0)exp(t/tMI) are plotted in Fig. 3.2C
for different values of c0. When c0 = 0 the resulting characteristic is exactly the
mineralization law. The other characteristics describe also the increase in mineral
content, now for bone packets which display already a mineral content c0 at t = 0.
In the new s− c0 coordinate system, the PDE 3.1.17 simplifies to the ODE{

dρ
ds

= 1/tMIρ

ρ(s = 0) = ρ̂(c0)
(3.1.21)
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which can be easily solved with the result

ρ(s) = ρ̂(c0)exp(s/tMI). (3.1.22)

Inserting now the expression for c0 and s in Eq. 3.1.22 we obtain the analytical
solution of the evolution equation in terms of the mineral content c and time t

ρ(c, t) = ρ̂ (1− (1− c)exp(t/tMI)) exp(t/tMI) . (3.1.23)

Assuming that the initial condition ρ̂(c) is a Gaussian function, Fig. 3.2D describes
the time evolution due to the mineralization process. As time proceeds, the BMDD
moves to the right and gets narrower as a result of a decreasing mineralization veloc-
ity. This simple result obtains specific significance when contrasted to the numerical
solution in the case when bone remodeling is only partly suppressed (see section 3.10).
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Figure 3.2: (A) a simple exponential mineralization law characterized by a single time
constant. (B) the corresponding mineralization velocity is a linear decreasing function
of the mineral content. (C) the characteristic curves which describe the increase in
the mineral content in bone packets having an initial mineral content c0. (D) the
time evolution of the BMDD corresponds to a shift to the right and a narrowing of
the peak.
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3.1.4 Numerical solutions

In general situations where analytical solutions are not available, Eq. 3.1.6 needs to
be solved with a suitable numerical method. Classical finite difference schemes fail to
approximate the solution of such PDEs since they can give rise to non physical oscil-
lations. High resolution finite volume methods [80] have been developed to overcome
these limitations.

n
i 1−ρ n

iρ
n
i 1+ρ

nt

1+nt
1+n

iρ

n
iF 2/1−

n
iF 2/1+

2/1−ic 2/1+ic

Figure 3.3: Illustration of a finite volume method for updating the cell average ρni by
fluxes at the cell edges.

In finite volume methods, rather than point wise approximations at grid points as in
finite difference methods, the integration domain is broken into intervals called finite
volume or grid cells. The discrete variable, ρni , has the meaning of cell average of
ρ(c, tn) over each grid cell in the interval from ci−1/2 to ci+1/2

ρni ≡
1

∆c

∫ ci+1/2

ci−1/2

ρ(c, tn)dc . (3.1.24)

The quantity ρni is modified in each time step by the flux through the edges of the
grid cells, as sketched in Fig. 3.3. In the finite volume framework, an explicit time
marching algorithm has the following general form

ρn+1
i = ρni −

∆t

∆c

(
F n
i+1/2 − F n

i−1/2

)
(3.1.25)

where F n
i−1/2 and F n

i+1/2 are approximations to the average flux along c = ci−1/2 and
c = ci+1/2, respectively. The primary problem in finite volume method is to determine
good numerical flux functions (stable and accurate) based on the approximated cell
averages ρi−2, ρi−1, ρi and ρi+1. In the high resolution finite volume methods, the flux
at the boundary of each grid cell contains a combination of a low-order stable flux
FL (ρi−1, ρi) and a higher-order accurate flux FH (ρi−2, ρi−1, ρi). This combination is



36 CHAPTER 3. MATHEMATICAL MODEL FOR THE BMDD

weighted by a so-called ”flux limiter” which controls the local solution behavior and
allows one to decide whether to use a more stable or a more accurate flux function.
The key point is that to control the local behavior of the solution which, from the
finite volume point of view, is described by its average value over each grid cells,
one needs to make some assumptions on the form of the solution ρ̃(c, tn) inside each
interval (ci−1/2, ci+1/2). A simple, but already very useful assumption, is to describing
the solution inside the finite volume cells with a linear function

ρ̃(c, tn) = ρni + σin (c− ci) (3.1.26)

where σin is the slope of the linear reconstructed function. The local behavior of the
solution can now be controlled by a reasonable guess for σin including information of
ρni of the nearest and next-nearest grid cells. Near strong variation of the solution
between adjacent grids, the slope σin can be reduced in order to avoid oscillations.
Since also a source term is present in Eq. 3.1.6, we need to use a fractional-step or
operator splitting method, where the idea behind is to split up the problem in two
sub-problems that can be solved independently [80]:

Problem A:
∂ρ

∂t
(c, t) +

∂

∂c
[ρ(c, t) v(c)] = 0 (3.1.27)

Problem B:
∂ρ

∂t
(c, t) = −ωOC(c, t) ρ(c, t) (3.1.28)

For each of these two sub-problems we can use suitable numerical methods: for prob-
lem A we need a high resolution method of the type presented before, whereas problem
B can be solved also analytically. The full implementation of the numerical method
adopted is reported in appendix A.

3.2 Results and discussion

First the steady state relationship between the mineralization law and the BMDD,
which is mathematically summarized in the transformations 3.1.11 and 3.1.12, is
investigated. We start by showing how different mineralization laws influence the
shape of the resulting steady-state BMDD. In the next step we solve the ”inverse”
problem, i.e., starting from the experimental data of the reference BMDD we derive
the underling mineralization law for healthy humans. The last step of the steady
state analysis is the assessment of the influence of turnover on the final form of the
mineralization distribution. Since these results were already published in [47], the
following two sections concentrate on the discussion of three key figures.
By solving Eq. 3.1.6 numerically, with the method presented in the previous section,
the full time evolution of the BMDD as a function i) of a change in turnover and ii)
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of the rate at which this change is applied, can be predicted. An extensive study of
the influence of these two turnover variables on the transient configurations of the
BMDD and on the BMDD parameters CaMean, CaPeak and CaWidth is performed. The
computation results are compared with experimental data obtained from patients with
high turnover osteoporosis and turnover reduction due to bisphosphonates treatments.

3.2.1 Effect of mineralization law

Due to experimental difficulties in determining the increase of the mineral content in
a bone packet as a function of time, no mineralization law has been quantitatively
proposed in the bone literature both for healthy humans and for patients with disor-
ders in the mineralization process. To gain a better understanding of the effect of the
mineralization law on the resulting shape of the BMDD, we chose simple, hypothet-
ical mineralization laws (Fig. 3.4A) and then calculated the corresponding BMDDs
(Fig. 3.4B) using Eq. 3.1.11. The hypothetical mineralization laws are an exponen-
tial function with a small time constant (fast mineralization), large time constant
(slow mineralization), two exponentials and a double linear function. All equations
are summarized in table 2 of [47].
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Figure 3.4: (A) different hypothetical functions to describe the mineralization law:
exponential growth with one slow time constant (τMI = 5) or one fast time constant
(τMI = 0.25), green and red line respectively; double linear function (black) and sum
of two exponentials (pink) with two time constants (τ1 = 9 and τ2 = 0.09). (B) com-
parison between the reference BMDD (blue) and the simulated BMDDs considering
the mineralization laws defined in (A).
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The conclusion of this test of mineralization laws is that laws with a single time con-
stant fail to reproduce the characteristic peak of the reference BMDD. Exponential
mineral laws result in monotonous BMDDs (Fig 3.4B). Either mineralization is so
fast that the mineral content in most of the bone packets come close to the maximum
value before being remodeled (red curve in Fig. 3.4), or, in the case of slow remod-
eling, bone is remodeled while it is still almost unmineralized, therefore the BMDD
decreases monotonously from c=0. A mineralization law which is consistent with the
peak-shaped form of the reference BMDD is characterized by at least two time con-
stants. In the first time regime, the mineralization process dominates, which leads to
an increase in the amount of not yet fully mineralized bone. Conversely, when the
mineralization process slows down significantly and drops behind the remodeling pro-
cess, the amount of higher mineralized bone starts to decrease due to bone resorption
causing a peak in the BMDD. Due to the mineralization process, the bone packets
shift in the BMDD diagram from low to high mineral content. The slowing down of
the mineralization velocity leads to a kind of ”traffic jam” of the moving bone packets
in the diagram, with the result that the different bone packets pile up giving rise to
a peak in the BMDD. According to this picture, the more rapid the reduction in the
mineralization velocity, the sharper becomes the peak of the BMDD.
Being interested in the mineralization law which results exactly in the reference
BMDD, there is no need to proceed with guessing adequate mineralization laws. In-
stead Eq. 3.1.12 can be used which allows a back-transformation of the BMDD to the
underlying mineralization law. Since Eq. 3.1.12 defines a nonlinear transformation,
it is important to start from the raw data which were used to define the reference
BMDD (see Fig. 3.5A). The input data were the BMDDs of 52 samples, both au-
topsies and biopsies, of healthy adult humans having different age, sex, ethnicity and
skeletal site analyzed in reference [79]. Using Eq. 3.1.12 the mineralization law for
each of the 52 BMDDs was calculated separately. The results were then averaged
resulting in a mineralization law of healthy adult humans and its standard deviation
describing the increase in the mineral content in a bone packet over several decades in
time (Fig. 3.5B, note the logarithmic time scale of the insert). Since the input data
is only numerical data, the resultant mineralization law is not an analytical mathe-
matical function. However, a sum of two hyperbolic functions give a reasonable fit to
the numerically calculated mineralization law. According to the obtained law, min-
eralization proceeds extremely fast (within days) up to a value of about 18 wt% Ca.
After this initial mineralization surge, a smooth transition follows, which leads for
later times to an approximately linear increase in the mineralization as a function of
time. The slope in this regime is about three orders of magnitude smaller than for
the initial part of the mineralization law. Assuming a turnover time of 5 years [51],
the increase in the mineral content is predicted over decades.
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Figure 3.5: (A) measured reference BMDD: the black line shows the curve obtained
averaging 52 BMDDs from healthy adult humans with the standard deviation bound-
aries (gray area). The red line denotes the analytical fitting using a sum of two
hyperbolic functions for the mineralization law. (B) the corresponding calculated
mineralization law: the black line shows the derived mineralization law together with
its standard deviation. In a semi-logarithmic plot (insert) the biphasic nature of the
mineralization law is evident.

3.2.2 Steady state effect of turnover rate

The mineralization law obtained for healthy humans (Fig. 3.5B) is used to investigate
the effect of changes in the remodeling process on the final form of the BMDD. With
the help of Eq. 3.1.11 the BMDD as a result of different values for the turnover rate
can be predicted. The effect of a higher turnover rate is a shift of the peak to values of
lower mineralization, while a reduced turnover results in a shift to the right (red and
green line in Fig. 3.6A, respectively). The shift of the peak position is also reflected
in the monotonously increasing function of CaPeak plotted in Fig. 3.6B.
While in the considered interval of the turnover time with respect to the healthy
turnover time between 0.1 and 4, CaPeak increases only by a factor of 1.19, the mean
Ca content, CaMean, increases by a factor 1.56. This discrepancy of the behavior of
CaPeak and CaMean is due to the change in the shape of the BMDD as characterized
by the width of the peak, CaWidth, and its asymmetry.
The next section will show that the full time evolution of the BMDD is not a simple
shift of the peak, but gives rise to interesting transient configurations.
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of Fig. 3.5B: the blue line denotes the reference BMDD, the red line presents a high
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time) and the green line is the result of a 2 times reduced turnover. In both cases a
constant bone volume and a steady state condition for BMDD is assumed. (B) most
frequent calcium content (CaPeak), mean calcium content (CaMean) and full-width at
half maximum of the peak (CaWidth) plotted against different turnover times. The
turnover times are normalized by the healthy turnover time, which corresponds to
the turnover of the reference BMDD (i.e., 0.1 refers to a 10 times increased turnover).



3.2. RESULTS AND DISCUSSION 41

3.2.3 Time evolution of the mineralization distribution

For the dynamical simulations we also assume that the mineralization law does not
change with time. Changes in the turnover after menopause or after administration
of bisphosphonates are known to occur initially fast and then level off. We assume
that this variation in turnover can be well described by an exponential function. In
the model, changes in turnover are introduced via a varying osteoclast action

ωOC(t) = ωOC−i + (ωOC−f − ωOC−i)

[
1− exp

(
− t

tOC

)]
, (3.2.1)

where ωOC−i denotes the initial turnover rate, ωOC−f the final one and tOC describes
the time constant of the change between these two values. When the osteoblast action,
jOB, follows the changed resorption with an equal law, the bone volume remains
unchanged. Different time dependence for both types of bone cells lead otherwise to
a change in bone volume according to Eq. 3.1.5.
In the following we study the effect of the magnitude of the variation in the turnover
rate (ωOC−f/ωOC−i) and the effect of how fast the turnover rate is varied (tOC) on the
time evolution of the BMDD and on the three BMDD parameters CaMean, CaPeak
and CaWidth. In particular two scenarios are investigated: i) the increase of the bone
turnover due to hormonal changes after menopause and ii) a decrease in turnover as
an example of antiresorptive treatment of an osteoporotic patient.

Increased turnover as a model for menopausal changes

The hormonal changes at the onset of menopause have an effect also on bone remod-
eling. Measurements of these effects (see also section 2.4.2) gave the following values
which are also used as input data for our simulations. The bone remodeling rate in
postmenopausal women was found to be between 1.2 and 5 times higher than in pre-
menopausal women [54, 56]. Here simulations are reported where the turnover rate is
assumed to be 1.25, 2.5 and 5 times increased in comparison to healthy premenopausal
reference values (i.e., a turnover time of 5 years [51]). Since these changes in turnover
have been reported to occur rather slowly [56, 81], time constants for turnover change
(Eq. 3.2.1) of 1 and 5 years were chosen. Also a very short time constant, tTO, of only
1 month was tested to see the influence of this parameter. To take into account the
bone loss after menopause simulations have been performed with both a bone loss of
0.85% per year [57] and a constant bone volume. The bone volume reduction showed
only very minor effects on the shape of the BMDD. The loss in bone volume is just
reflected by a lowering of the curve, without affecting the characteristic shape.
Starting with the reference BMDD defined for healthy adults in [79], Fig. 3.7 shows
the time evolution of the BMDD when the turnover rate is increased 2.5 times with
a time constant of 1 year. As already shown in the analysis of the steady state solu-
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tion of the evolution equation (section 3.2.2), the main difference between the initial
BMDD and its ”final” configuration for later times is a shift of the peak towards
lower values of the mineral content. The time evolution of the BMDD, however, is
far from being a smooth movement of the peak towards lower Ca values. At the
beginning the initial peak at about 23 wt%Ca decreases in height due to increased
osteoclast activity without changing its position. The concurrent increased osteoblast
activity leads to enhanced bone deposition, whose mineral content increases quickly
during primary mineralization. In the BMDD diagram this leads to the appearance
of a second peak, which moves in from the left. For the parameters used in Fig. 3.7,
after about 2 years the two peaks have approximately the same height, while after
3 years the old peak is vanished and is visible only as a shoulder in the new shifted
main peak. After 5 years the new peak has grown to its final height, and with the
exception of Ca values larger than approximately 23.5 wt% where small differences
can be still observed, is indistinguishable with the equilibrium configuration.
The temporal change of bone turnover with the values chosen in the simulations, to-
gether with the time development of two key parameters characterizing the BMDD,
CaPeak and CaMean, are plotted in Fig. 3.8. Since CaPeak marks the position of the
highest peak in the BMDD, the discontinuity in Fig. 3.8C corresponds to the distance
in the time-axis between the old shrinking peak and the newly formed one. For larger
changes in the turnover the new peak position is reached faster, also due to the fact
that the new equilibrium positions for larger turnover changes are at smaller values
of the Ca content.
The same holds for CaMean, which decreases after change in turnover from an initial
value, CaMean−i, and attains a new reduced value, CaMean−f . This decrease can be
well described by an exponential decay similar to Eq. 3.2.1

CaMean(t) = CaMean−i + (CaMean−f − CaMean−i)

[
1− exp

(
− t

tCa

)]
, (3.2.2)

where tCa denotes the time constant of how fast the new reduced value of CaMean

is attained. Surprisingly, larger changes in the turnover are accommodated more
quickly than smaller one, which is reflected in the corresponding values for tCa. For a
5 times reduction of the turnover tCa is 2 years, while a reduction of 2.5 times results
in tCa=7 years. As expected, when the change in turnover occurs faster, then also the
equilibration of the new peak position and of CaMean occurs faster (see Fig. 3.8F).
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Figure 3.7: Simulated time evolution of the BMDD starting with the healthy reference
BMDD (full blue line) and increasing the turnover by a factor of 2.5 exponentially
with a time constant of 1 year. Mineralization distributions are given at 1, 2 and
3 years. At 5 years (not shown) the BMDD coincides with the new equilibrium
configuration (black line) for Ca values below 23.5 wt%.
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Figure 3.8: Time development turnover changes and of corresponding changes of
CaPeak and CaMean. Left, the turnover is changed by a factor of 1.5, 2.5, and 5 with
the same time constant tOC of 1 years. Right, the turnover is always increased 2.5
times, but with different velocities corresponding to time constants tOC= 1 month, 1
and 5 years. The change in CaMean can always be fitted by an exponentially decaying
function like Eq. 3.2.2.
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Reduced turnover as a model for antiresorptive treatments

Bisphosphonates are administered to osteoporotic patients to reduce bone turnover.
In this work specifically the action of the bisphosphonate risedronate is simulated,
since its effects are very well documented by clinical studies making use even of triple
temporal biopsies of the same patient (see section 2.6.3 for more information about
this study). Although the interindividual variability is high, the effect of risedronate
on bone is a reduction of about 50% of the remodeling rate [51], which is substantial
after 3 to 6 months after treatment initiation [60]. In the simulations, the initial con-
dition was an average over 5 BMDDs from osteoporotic patients having participated
in the study mentioned above. For this condition a turnover of 2.5 higher than the
healthy turnover was assumed. Reported here are simulations with reduced turnover
of 30, 50 and 60 % and with time constants of turnover reduction, tTO, (reflecting
the temporal efficacy of the drug) of 6 months, 1 year and 3 years. Fig.3.9 shows
an example of the time evolution of the BMDD when the turnover rate is reduce
from an initial rate 2.5 times higher than the healthy turnover to a final rate only
1.25 times higher than the healthy turnover, with a time constant of 6 months. The
reduction of turnover results on the long term, after the system is re-equilibrated, in
a new peak shifted to higher Ca content (peak marked as ”final” in Fig. 3.9). Again
the transient configurations of the BMDD are of interesting shape. The transient
peak displays an unusual large height and small width. This behavior correspond to
a strong homogeneity of the mineral content in bone. Furthermore it is remarkable
that the position of the peak overshoots its final position, as can be seen after 5 years
(Fig. 3.9), therefore performing a peculiar first-right-then-left movement.
How this behavior of the BMDD depends on the specific change in turnover is shown
in Fig. 3.10. In the top row the different changes of the magnitude of turnover (left)
and the velocity of turnover change (right) are plotted with time. Starting from its
initial position at 22.2 wt% Ca, the peak moves to the right much further than its final
position at about 22.8 wt% Ca. The overshooting of the peak is strongest, when the
turnover reduction is large and occurs fast. Under exactly these circumstances, the
peak width takes very small values. After some initial reductions, which are probably
due to a non completely equilibrated initial condition, CaMean increases again in an
exponential way. Comparison with the measured BMDDs available at 3 and 5 years
(triangle and square in Fig. 3.10, respectively) shows good agreement in the behavior
of CaPeak and CaMean. Also qualitatively the intermediate reduction of CaWidth is
reproduced, although in the simulations this effect is more pronounced. It is a general
feature of our computational results, that simulated BMDDs tend to be narrower than
the measured ones. The reason could be the biological variability between individuals
and even for one individual biological factors like the diet can change during the long
observation time. Such variabilities cannot be easily incorporated in the model.
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Figure 3.9: Simulated time evolution of the BMDD starting with a BMDD obtained
by averaging over 5 BMDDs of osteoporotic women after menopause. It is assumed
that the turnover at baseline is 2.5 times increased compared to normal and that the
antiresorptive therapy slows down the turnover to half of its initial value with a time
constant of 6 months. Mineralization distributions are plotted at 1, 3 and 5 years.
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Figure 3.10: Time development of CaPeak, CaWidth and CaMean. Left, the turnover is
reduced 30%, 50% and 65% with the same time constant tOC of 6 months. Right, the
turnover is always reduced 50%, but with different velocities corresponding to time
constants tOC = 1 month, 1 and 3 years.
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3.3 Conclusions and outlook

The remodeling activities of bone cells together with the time course of mineralization
of newly formed bone matrix generate a characteristic mineralization pattern that
can be described by the BMDD. The dynamical evolution of the BMDD is strongly
influenced by variations in the remodeling rates and interestingly by the sign of these
variations. By this we mean that an increase in turnover causes a transient double
peak, while a reduction leads transiently to a very pronounced BMDD peak. The
proposed theoretical framework is independent of bone type and can therefore also
be applied to cortical bone. However, the definition of a reference BMDD for healthy
adults in cortical bone has not yet been obtained. This is not unexpected considering
the poor equilibration of the BMDD in cortical bone due to its slow remodeling.
Another application of our model would be to investigate the mineralization kinetics
in animals. In bone research, animals like mice and dogs are often employed as
models to understand bone and to perform clinical studies. The metabolic functions
usually depend on animal size, being faster in smaller animals. Therefore it would
be interesting to compare mineralization laws in different animals and ask whether
they can be superimposed by appropriately rescaling time. In terms of bone material
quality, this work can be seen only as a first step since the mechanical implication of
changes in the BMDD still need to be assessed. It is known that highly mineralized
bone tends to be stiffer but more brittle. However how the heterogeneity of the BMDD
is reflected in the mechanical properties is difficult to predict. From a mechanical
point of view the specific location of the bone packets of different mineral content has
to be considered, an information completely disregarded by the BMDD. Analysis of
single trabeculae indicated more mineralized bone packets are concentrate along the
middle axis of the trabecula, whereas the surface is occupied predominately by less
mineralized bone [82]. The standard physical tool to improve this deficiency of the
BMDD is by introducing spatial correlation functions.



Chapter 4

Bone architectural quality

Trabecular bone is the spongy type of bone that can be found inside vertebral bodies
or close to joints. Its network like architecture, like bone material, undergoes dynam-
ical changes and evolves in time due to bone remodeling. When looking at trabecular
structures, for example inside a human vertebra or inside a femoral head (Fig. 4.1),
it is obvious that the trabecular arrangement is neither completely regular nor com-
pletely random. Even if the trabeculae seem to be placed where there is a mechanical
need, a rigorous mathematical formulation of the ”optimization” principle to explain
the trabecular arrangement is still missing [83].

Figure 4.1: Inside a vertebral body (left) the trabeculae run mainly along the vertical
and horizontal direction. Conversely, inside a femoral head (right) the trabecular
arrangement is more complex and probably reflects a less simpler loading pattern.

From a mechanical view point, despite its intrinsic dynamical nature, trabecular
bone architecture is normally studied considering static ”snapshots”. This is the
point of view adopted in the second part of this thesis, where the focus will be on

49
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the architecture-mechanics relationship in trabecular bone. An open and important
question is which architectural parameters, that could ideally be measured in vivo,
one should introduce and evaluate to have a robust prediction of trabecular fragility
without performing a direct mechanical test-to-failure. Of course this is not only in-
teresting for trabecular bone but, more in general, for all those materials which have
an internal microstructure. The books of Gibson and Ashby [84] for ordered cellular
solids and of Torquato [85] for random heterogeneous materials provide excellent in-
troductions to the field.
The most established procedure to determine the effect of bone microarchitecture
on its global mechanical behavior comprises three main steps. The first step is the
imaging of the trabecular bone microarchitecture and the measurement of some ar-
chitectural parameters. In section 4.1 the main non destructive imaging methods
which allows a complete three dimensional reconstruction of the trabecular structure
are presented. Successively, in section 4.2, the parameters that have been introduced
to quantify the trabecular structure are reported, focusing only on those parameters
which have a mechanical connotation.
The second step is to compute trabecular bone mechanical properties. This can be
done with a theoretical approach, i.e., employing cellular solid theories, spring models
or the finite element method. Experimental alternatives are direct mechanical tests
on bone samples or techniques using rapid prototyping (see section 4.3).
The last step is to establish a connection between architectural descriptors and me-
chanical properties as reported in section 4.4. In general the predictive value of a
parameter is investigated by looking at how much of the variations in the mechanical
properties it can explain. Most of the results in this last section have been obtained
with the help of cellular solid models. Cellular solids are very useful tools in studying
architecture-mechanics relationships since their internal geometry can be varied in a
controlled manner and the resulting effects on the mechanical performance can be
established.
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4.1 Imaging of trabecular bone architecture

The most used and recent three dimensional imaging techniques for the assessment of
trabecular bone microarchitecture, in vitro and in some cases also in vivo, include X-
ray micro-computed tomography (XRµCT), synchrotron radiation micro-computed
tomography (SRµCT), peripheral quantitative computed tomography (pQCT) and
magnetic resonance imaging (MRI). The first three methods are based on the atten-
uation of an X-ray beam through the bone sample. In fact, in XRµCT and SRµCT a
bone specimen is rotated around its its central axis and at each point in the rotation
the attenuation of the beam when passing thorough the specimen is collected. A
mathematical reconstruction algorithm, based on the Radon transform [86], is then
employed to reconstruct a full 3-dimensional image from the set of two dimensional
density projections. With XRµCT nowadays a resolution of about 30 µm can be
achieved, with SRµCT a resolution down to even 7 µm is feasible [87]. XRµCT has
also been used in vivo to detect architectural changes in animal studies [88]. A very
interesting approach is to use an imaging method like XRµCT or SRµCT in com-
bination with microcompression test on bone specimen [89, 87]. Taking a series of
”images” of trabecular bone during a ”quasi-static” mechanical test enables a three
dimensional visualization and quantification on the trabecular bone failure mecha-
nism at the level of individual trabeculae. Those studies indicate that trabecular
bone failure is characterized by the formation of localized failure bands rather than
a sudden catastrophic event (see Fig. 4.2), a failure behavior known from cellular
solids [90, 91].
pQCT is an in vivo technique used clinically which allows measurements on human
extremities (typically the wrist, radius and calcaneus) with a resolution of about 100
µm. Even if the resolution is comparable with the trabecular dimensions, pQCT
seems very useful since it can detect age- and disease-related changes in trabecular
microstructure [92].
MRI is based on the magnetization of hydrogen nuclei and essentially produces a map
of hydrogen distribution contained in soft tissue, fat and water. In MRI imaging the
hydrogen of the bone marrow is viewed whereas bone itself appears dark. When used
in vitro this technique presents a resolution down to 10 µm [93] whereas in vivo on
the order of 150 µm [94]. The main advantage with respect to pQCT is the absence
of ionizing radiation delivered to the patient.
Due to the fast improvements in the imaging technologies, is not unrealistic to think
that in the near future, the full 3-dimensional trabecular architecture of living pa-
tients may be (even routinely) available. Therefore it is quite urgent to develop tools
for a fast mechanical analysis of these images and which, consequently, allows a more
adequate patient-specific therapy.
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Figure 4.2: 3-dimensional visualization of a trabecular bovine bone sample subjected
to compression before and after tissue failure. The image on the right side shows an
oblique fracture band ranging from the upper left to the lower right of the sample. A
detailed view of the region indicated in the white frame shows a crack formation and
crack opening in three dimensions (from [87]).
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4.2 Quantification of trabecular bone architecture

The result of the imaging methods described in the previous section is a representation
of the intricate three dimensional trabecular bone architecture in a binary set of
voxels. Each voxel denotes either a small cubic volume element of bone, or of marrow.
The next step is to reduce this information (which for a vertebral body is about 1
GB) and therefore to search for parameters which characterize by only a few numbers
the complex trabecular architecture. Among the numerous parameters which have
been introduced to fulfill this task, here only parameters that have a clear mechanical
connotation will be considered. They could be subdivided into five main groups,
according to the quantities that they try to define:

• amount of bone

• geometry of the trabeculae

• degree of anisotropy

• connectivity

• rod-plate architecture

Anisotropy, connectivity and rod-plate architecture require a closer analysis and will
therefore be presented in the three following subsections. The amount of bone is in-
tuitively defined by counting the number of bone voxels divided by the total number
of voxels. The situation already becomes more difficult when quantifying the geom-
etry of the trabeculae with parameters like mean trabecular number (Tb.N.), mean
trabecular thickness (Tb.Th) and mean trabecular spacing (Tb.Sp). Definitions of
these parameters for a single trabecula can be ambiguous since trabeculae do not have
simple cylindrical forms [95, 96]. In addition to those more ”classical” parameters, a
new set of studies try to quantify trabecular bone architecture and its changes due
to osteoporosis or micro-gravity conditions, using tools from theoretical physics like
symbolic dynamics, measures of complexity [97, 98] and generalized recurrence plots
[99].

4.2.1 Degree of anisotropy

In general material anisotropy defines differences in the material distribution in space
when measured along different axes. There are several ways to define material
anisotropy and it was demonstrated that different methods yield different results
[100]. The mean intercept length (MIL) was the first method introduced to measure
anisotropy of trabecular bone [101]. The basic idea is to superimpose a linear grid
with a given orientation α on a bone section and to count the number of intersections
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I between the grid and the bone-marrow interface (see Fig. 4.3). The resulting MIL
as a function of the orientation is then

MIL(α) =
L

I(α)
, (4.2.1)

where L is the total line length of the grid. MIL varies with the orientation α and
it was observed that for planar sections of trabecular bone, a polar plot of MIL as a
function of α could be approximated by an ellipse. Generalized to 3 dimensions, MIL
measurements in trabecular bone results in an ellipsoid which can be described with
a second rank tensor, called fabric. The fabric tensor provides a description of the
orthotropic architectural anisotropy in trabecular bone, where its eigenvectors give
the three main directions of the spatial material distribution and its eigenvalues give
the degree of material anisotropy along the main directions [100].

Figure 4.3: A linear grid rotated by an angle α is superimposed on a two-dimensional
cross-section of trabecular bone. The mean intercept length (MIL) is calculated from
the length of the intercepts between the grid and the bone structure (from [23]).

4.2.2 Connectivity

Intuitively connectivity describes the number of redundant trabeculae in cancellous
bone, i.e., the number of trabeculae that may be cut without increasing the numbers
of separate parts in the bone structure [102]. Connectivity is not simply a ”mean”
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coordination number of a structure and from topological studies it is accepted that,
instead of calculating directly the connectivity of a structure, it is easier to start with
the Euler number [102]. In 3-dimensional structures the Euler number, χ, is given by

χ = β0 − β1 + β2 , (4.2.2)

where β0 is the number of separated bone parts, β1 is the number of redundant con-
nection inside the bone structure and β2 is the number of completely enclosed marrow
cavities. For bone it is assumed that no trabeculae are completely isolated from the
main structure (β0=1) and that no marrow space exists fully isolated from the re-
maining environment (β2=0). The number of redundant trabeculae can therefore be
expressed as

β1 = 1− χ . (4.2.3)

In a voxel-based 3-dimensional reconstruction, the Euler number χ is obtained simply
by looking at the voxels filled with bone and combining the number of voxel corners
a0, voxel edges a1, voxel faces a2 and voxel volumes a3 inside a given volume of interest
according to [100]

χ = a0 − a1 + a2 − a3 . (4.2.4)

In addition one has to correct for the artificially unconnected trabeculae that are
generated when analyzing only a subregion of the entire trabecular network. Various
algorithms for implementing these corrections are reported by Odgaard et al. [102].

4.2.3 Rods and plates decomposition

A method to simplify the complex architecture of trabecular bone, is to decompose
the trabecular structure into two basic elements: rods and plates [96]. The procedure
to obtain this decomposition comprises various steps [96, 103]. First, starting from
a digital image of trabecular bone, a shape preserving skeletonisation algorithm with
a topological optimization procedure is applied. As a result, the bone architecture is
reduced to a one-voxel thick skeleton; subsequently a point classification algorithm
which is able to say, for each point in the skeleton, whether it belonged to a rod or to a
plate, is employed. Eventually, according to this new classification, a final algorithm
is utilized to expand the elements of the skeleton to their original size. This operation
results in a spatially decomposed bone structure where rods and plates are labeled
with a different color (see Fig. 4.4). The overall morphology of trabecular bone
can change quite a lot and, in general, low relative density structures are more rod-
like whereas high relative density structures present a more plate-like architecture
(see Fig. 4.4). A previous attempt for quantification of whether the structure of
trabecular bone is more rod-like or plate-like was done by Hildebrand et al. [105]
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(A) (B)

Figure 4.4: Spatial decomposition of trabecular bone into rod (blue) and plate (red)
elements. (A) low relative density structures tend to have a more rod-like architecture,
(B) whereas with higher relative density, trabecular bone is characterized by a more
plate-like architecture (from [104]).

with the introduction of a structure model index (SMI). SMI is defined as

SMI = 12
< H > BV

BS
(4.2.5)

where < H > is the mean surface curvature, BV is the bone volume and BS the
bone surface. SMI is defined in the range from 0 (for perfect plates) to 3 (for perfect
rods). The main limitation of SMI was that this index is mainly determined by the
arrangements of the plates, in fact for very dense plate-like structures characterized by
negative mean curvature (a Swiss cheese can be an example [96]) SMI takes negative
values. The spatial decomposition into rods and plates does not suffer from this
limitation, and in addition, it can improve standard three-dimensional morphometry
measurements when they are applied to the individual rods and plates [96].

4.3 Assessment of trabecular bone mechanics

The quantification of the mechanical performance of trabecular bone can be done
in several ways. Experimentally different methods have been introduced to asses
the mechanical properties of trabecular bone [106]. A direct mechanical test on a
bone sample gives information of both, elastic and post-yield behavior. Compression
and tensile testing have been used for measuring the Young’s modulus and ultimate
strength of trabecular bone [107]. However, the mechanical tests are limited by the



4.3. ASSESSMENT OF TRABECULAR BONE MECHANICS 57

requirement of a bone specimen, by the destructive nature which allows a specimen to
be tested only once and by the artifacts coming from the fixation of the bone sample
[108]. When testing experimentally a bone sample, the result is influenced by the
nonhomogeneous material properties. Being interested only in the architecture, this
can be disadvantageous.
Alternatively, one can build physical replicas of trabecular bone architecture using
rapid prototyping (RP) technologies [109]. In RP, starting from a digital image of a
bone sample obtained for instance with µCT, a layer-by-layer physical reconstruction
is obtained using as a material a photoreactive polymer. The three main advantages
with respect to a direct mechanical test on bone are the possibility to reconstruct a
bone model using a homogeneous material with well characterized mechanical proper-
ties, to perform multiple tests on samples with the same geometry and also to change
some architectural features and to study the effects of those changes on the stiffness
and strength. RP has also been used in cellular solids to study the influence of dif-
ferent cell geometries at equal apparent density [110].
In addition to experimental methods, the mechanical properties of trabecular bone
have been evaluated also with analytical and computational tools. In the next three
sections the two main computational tools and an analytical method are presented.
A state of the art example of the application to trabecular bone is also given for each
method.

4.3.1 Finite element method

Among all the computational methods for the assessment of trabecular bone mechan-
ical performance, the most powerful and widely used is the finite element method
(FEM). Again, the starting point can be a digital image of the trabecular bone. The
architecture is discretised into elements, interconnected at points called nodes, (see
Fig. 4.5) which in principle can all have different constitutive laws. Boundary condi-
tions and external loads are then applied, the transmission of forces to all the elements
in the architecture is calculated and, from the constitutive laws, deformations in each
elements are derived. The FEM is an approximate method where the displacement
of any points in the elements is interpolated from the displacement of the nodes. For
the interpolation, linear or quadratic interpolation functions are normally used [111].
On the one hand, the FEM gives the possibility to model in great detail the trabec-
ular geometry but, on the other hand, it is limited by the intensive computational
time required. The FEM has been extensively used in the analysis of trabecular bone
mechanics where in most cases isotropic material properties has been assumed.
An interesting study combined a high resolution imaging method (µCT), high reso-
lution FEM and parallel supercomputing [113]. With these three techniques it was
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Figure 4.5: A cubic region of trabecular bone obtained with high resolution (20 µm)
serial imaging and used as basis for a finite element model where each cubic element
has a side of 60 µm (from [112]).

possible to compute the load distribution in an entire healthy and osteoporotic verte-
bral body under vertical load (the FEM employed linear elastic brick elements with
a resolution of 65 µm and the computing time was roughly 20000 h CPU). The main
finding of this study was that the number of highly loaded trabeculae was not higher
in the osteoporotic vertebra, despite having 25% less material to carry the load than
the healthy vertebra. Together with the observation that in the osteoporotic case the
trabeculae were less in number, thinner, further apart, but more oriented in the axial
direction, the reported simulations suggest that trabecular bone tries to compensate
for the lower relative density with adapting its architecture.
An alternative to the precise but slow high resolution finite element method is given
by the beam finite element models. Instead of being made up of hundreds different
elements, a single trabecula is modeled with a single beam element which normally
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include axial, bending and shear deformation. This ”coarse grain” approach has been
successfully used in combination with the possibility to reduce the complex trabecular
architecture into its basic rod and plate elements (see Fig. 4.6) [114]. This approach
was more than a thousand fold faster than the high resolution finite element method
and the predicted elastic modulus of different trabecular bone samples was in a very
good agreement with the result of the more detailed method.

Figure 4.6: The micro-computed tomographical image (left) is reduced to its basic
elements (middle): rods and plates. Each rod is modeled with a single beam element,
whereas a plate with various interconnected beam elements. The correlations (right)
between the apparent Young’s modulus as assessed by the beam finite element models
were in excellent agreement with the Young’s modulus as assessed by voxel finite
element models (from [114]).

4.3.2 Spring models

Another simple, fast and successful computational technique is to view the trabecular
architecture as an elastic network where each trabecula is modeled with an elastic
spring. The potential energy of such networks depends both on the change in length
of the single springs, δr, and of the change in the bond angle between adjacent
springs, δθ. This last term takes into account that trabeculae are not freely pivoted
and therefore changing angles between adjacent trabeculae requires energy. The total
potential energy of such a network can be expressed as

U =
1

2

∑
struts

kδr2 +
1

2

∑
angles

κδθ2 , (4.3.1)

where k and κ are the stretching and the bond bending rigidity respectively. Trabec-
ular failure can be also introduced by removing those springs whose strains exceeds a



60 CHAPTER 4. BONE ARCHITECTURAL QUALITY

given threshold. This is in agreement with the experimental findings that, in trabec-
ular bone, breaking strains are almost constant independent of age [107]. Employing
such a model, the relationship between strength and density for trabecular bone was
investigated, in particular the reduction in strength causes by the isotropic removal of
trabeculae. Gunaratne et al. [115] used two dimensional square networks of springs
to study the differences in the ability to transmit the load of a model for healthy and
osteoporotic trabecular bone. Starting from a network which represents a healthy ver-
tebra, an osteoporotic scenario was simulated by removing a fraction of springs inside
the network. The resulting ”stress backbone”, i.e. the collection of springs that are
experiencing high stresses, for both cases was investigated. In the ”healthy” network
the majority of the springs are active in the transmission of the load and the springs
experiencing high stress are evenly distributed. Conversely in the ”osteoporotic” net-
work only a small fraction of the springs carry the load which is transmitted along
a few coherent pathways. On the basis of these observations an expression to relate
breaking stress and density in trabecular bone different to a simple power law, like
Eq. 4.3.2, was proposed [115, 116].

4.3.3 Analytical methods

Analytical approach for characterizing the mechanical response of cellular solids was
pioneered by Gibson and Ashby using classical beam theory [84]. They described
cellular solids with simple periodic microstructures - like honeycombs in 2 dimensions
and cubic cells in 3 dimensions (Fig. 4.7) - which, under given loading conditions,
can be characterized by a prevalent mode of deformation.

(A) (B)

Figure 4.7: (A) honeycomb model for two dimensional materials. The deformation
mechanism responsible for the macroscopic properties is cell wall bending. (B) cubic
model for 3 dimensional open cell foams. Again the cell edges bend during linear
elastic deformation (from [84]).

Introducing also a material failure mode (e.g., elastic bucking, plastic hinges or brittle
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failure), the model predicts a power law dependence of the cellular solid stiffness, E∗,
and strength, σ∗, on relative density, ρrel, which is defined as the ratio of the density
of the cellular solid, ρ∗, to the density of the material, ρs,

E∗

Es
= CE (ρrel)

αE and
σ∗

σs
= Cσ (ρrel)

ασ . (4.3.2)

Es and σs are material properties. The value of the density exponents αE and ασ
depends on the governing deformation mechanism and failure mode. For structures
and loading directions where the microscopic deformation is stretching or compress-
ing, the Young’s modulus changes linearly with the density. The maximum value for
αE is obtained in pure bending and is 3 in two-dimensions and 2 in three-dimensions.
For three dimensional structures which fail by elastic buckling ασ is 2, whereas if the
failure is through the formation of plastic hinges or brittle crushing, ασ=3/2. Ac-
cording to this model, more complex geometries only enter in the coefficients CE and
Cσ.
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4.4 Architecture-mechanical properties connection

Only a few of the very different architectural descriptors of trabecular bone can be
directly connected to mechanical properties. The connection with mechanics is easier
within the cellular solid framework (trabeculae are idealized as cylinders) where both
analytical methods as well as numerical simulations are generally employed to esti-
mate the mechanical behavior. Despite their intrinsic strong idealization, cellular solid
models have been used successfully to explain both qualitatively and quantitatively
why the mechanics of trabecular bone should depend on architectural parameters like
relative density, orientation, connectivity and trabecular geometry.

4.4.1 Relative density, stiffness and strength

The main predictor of the mechanical properties of trabecular bone and, more in
general, of cellular materials is the volume fraction or relative density. When the
power law model of Gibson and Ashby [84] is applied to trabecular bone (see Fig.
4.8), despite the substantial scatter, the Young’s modulus scales approximately with
an exponent from 2 to 3 and the strength with an exponent of 3. This suggests a
deformation mode by bending and failure by buckling of the trabeculae.

Figure 4.8: Trabecular bone stiffness against its relative density is plotted on the left.
The resulting scaling law suggests that trabecular architecture deforms primarily by
bending of the trabeculae. Compressive strength versus relative density plotted on
the right (from [84]).
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4.4.2 Fabric and and elastic coefficients

Continuum mechanics theory can be applied to trabecular bone when it is studied
at the proper length scale. A representative volume element covering at least 5
trabecular spacings, i.e., about 5 mm, can be described with an equivalent continuum
medium [117] which follows the general Hooke’s law

σij = Cijklεkl , (4.4.1)

where σij are the components of the stress tensor, εkl are the components of the
strain tensor and Cijkl are the coefficients of the elastic matrix forming a 4-th order
tensor. From the continuum elasticity point of view, it was found that trabecular
bone possesses orthotropic symmetry [118], therefore its elastic matrix is charac-
terized only by nine independent elastic coefficients. Cowin [119] was the first to
introduce an algebraic procedure to relate the elasticity tensor to the fabric ten-
sor under the assumption that the maximum mechanical anisotropy allowed is or-
thotropic. In Cowin’s equations the stiffness properties are related to the eigenvalues
of the fabric tensor (H1, H2 and H3), the second invariant II of these eigenvalues
(II = H1H2 + H2H3 + H1H3), and nine functions depending on the relative density
(k1(ρrel) − k9(ρrel)) as follows [120]:

Ciiii = Es
(
k1 + 2k6 + (k2 + 2k7) II + 2 (k3 + 2k8)Hi + (2k4 + k5 + 4k9)H2

i

)
(4.4.2)

Ciijj = Es
(
k1 + k2II + k3 (Hi +Hj) + k4

(
H2
i +H2

j

)
+ k5HiHj

)
(4.4.3)

Cijij = Es
(
k6 + k7II + k8 (Hi +Hj) + k9

(
H2
i +H2

j

))
, (4.4.4)

where
ki = kia + kib (ρrel)

p . (4.4.5)

In these relationships eighteen constants, kij, i = 1, ..., 9, j = a, b, which do not have
any clear physical meaning, must be determined by a fit with the mechanical param-
eters. Making use of the Fourier expansion of the orientation distribution function
that characterizes the trabecular microstructure, Zysset and Curnier [121] developed
an alternative model reducing the number of free parameters to five.
The fabric-elasticity framework has been successfully applied to trabecular bone. In
two separated studies Kabel et al. [122] and Zysset et al. [123] showed that the
predicted values of the elastic coefficients using relative density and fabric tensor are
in good agreement with results from finite element computations. Homminga et al.
[120] extended the method to the analysis of osteoporotic trabecular bone and showed
that the relations (in terms of the fit parameters) for normal bone are valid for os-
teoporotic bone as well.
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4.4.3 Connectivity and deformation mechanism

The influence of connectivity on the mechanical performance of trabecular bone is
still controversial. The lack of correlations between the results form high resolution
finite element simulations with measurements of connectivity (computed from the
Euler number) suggests that connectivity has basically no influence on the linear
elastic properties of trabecular bone [124, 125]. Conversely, cellular solids theory
predicts that the mode of deformation, and therefore the mechanical performance of
periodic cellular structures is dependent on the node connectivity, i.e., the number
of struts joined at a node. Periodic lattices have stiff stretching-dominated architec-
tures (meaning that each beam of the lattice deforms only by tension/compression)
for all loading states if the node connectivity is at least 6 in 2 dimensions and 12 in 3
dimensions. For smaller connectivities, less mechanically efficient bending-dominated
architectures are attained [126]. In trabecular bone, however, such high node connec-
tivity values are never observed.
The impact of connectivity is also evident when studying the effects of thinning versus
removal of struts in two and three dimensional cellular solid models as well as in dis-
ordered cubic networks. Silva et al. [90] and Vajjhala et al. [43] found that stiffness
and strength are reduced more dramatically when the relative density of a cellular
material is decreased by a random removal of struts than by a uniform thinning.
Random removal of struts reduces both the trabecular number and the connectivity
of the network. Similar results were obtained by Gunaratne et al. [115] where the
trabecular architecture was mapped into a network of elastic springs with stretching
and bond-bending potentials. Again the breaking stress of the network was strongly
influenced by removing those springs rather than by softening them.
In the next chapter we present our own attempt to define a local predictor based on
trabecular architecture and on cellular solid theory.



Chapter 5

Mechanical analysis based on node
properties

In the second part of this thesis, the possibility to define a more ”local” and ”me-
chanical - motivated” descriptor of the trabecular architecture will be investigated.
The idea is to look at how the behavior of local ”nodes” in the trabecular structure
influences the mechanics of the trabecular network. A node is defined by a certain
number of trabeculae which come together to a junction point (see Fig. 5.1). Assum-
ing constant material properties, the mechanical performance of such nodes depends
locally on the number and thickness of the trabeculae (node relative density), on the
spatial directions of the trabeculae (node geometry) and on the type of load coming to
the node which is dictated by the surrounding environment. The aim of the analysis
is to characterize nodes as weak, meaning they could act as starting points for failure
and the failure bands could pass through those points. A trabecular structure with
a lot of weak nodes possibly concentrated in a small region should be more prone to
fracture than a structure with fewer more isolated weak nodes.

“node”

Figure 5.1: An example of trabecular architecture inside a vertebra. The zoom shows
a typical ”node” which is the local mechanically-motivated ”basic building block”
that will be investigated in this thesis.

65
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Due to the rather complex architecture of trabecular bone it is easier to develop this
new method with the analysis of a 2-dimensional cellular solids. Even if those model
systems are a strong idealization of the trabecular microstructure, they can provide
useful insights in the mechanical behavior of more intricate materials.
In the cellular solid framework a node is defined by a junction point and by the set
of beams connected to this point. In their pioneer analysis of cellular materials Gib-
son and Ashby [84] mainly looked at single beams. Focusing on nodes could be the
”next step” of that approach in the sense of a ”cluster expansion” as performed in
other fields of physics. Only nodes with a coordination number of 3 - which results
in honeycomb structures - will be considered since they are easier to characterize and
standard Cauchy elasticity can still be used [127, 128].

node

periodic lattice regular lattice with a defect

?

Figure 5.2: Starting with a given node (top), a periodic lattice can be build by tiling
the space with infinite copies of the same node (left). The node can be introduced in
a regular lattice where it acts as a defect being different from all the other nodes of
the lattice. The question is how much of the behavior that a node has in the periodic
lattice will be ”inherited” when the node is place inside the regular lattice.

In principle the mechanical behavior of a node depends on its geometry and on the
surrounding environment. To understand the relative contributions of those two quan-
tities the following procedure is introduced (see Fig. 5.2). First a node, characterized
by a given geometry, is chosen. The second step is to build a periodic lattice by tiling
space by periodically repeating the node (Fig. 5.2, left) . In this situation, since the
lattice is made up of infinite copies of the same node, the geometry of this single node
is sufficient to determine the ”global” mechanical performance of the lattice which
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coincides with the ”local” performance of each constituent node. The last step is to
place the same node, which has been characterized in a periodic lattice, in a differ-
ent environment. A natural choice is to locate the node as a defect inside a regular
hexagonal lattice where all the other nodes are identical (Fig.5.2, right).
In this work the following question will be investigated: How much can we learn from
a node in its own periodic environment, to understand its mechanical behavior when
it acts as a defect in a regular lattice. In particular when a given node is ”globally”
weak, i.e., in the periodic lattice, does it also behave ”locally” weak, i.e., when it is
placed as a defect inside a regular lattice?
If the local node geometry is sufficient to define (or at least to suggest) the local
node behavior, the application to trabecular bones follows in a natural way. Ideally
one could scan the trabecular architecture, identify local weak regions and, without
performing a direct mechanical test, estimate the strength of the structure.



68 CHAPTER 5. MECHANICAL ANALYSIS BASED ON NODE PROPERTIES

5.1 Choosing the nodes

To assess the importance of nodes on the mechanical properties of lattice structures,
the first step is to select the different node geometries that will be investigated. A
node with a coordination number of three (i.e., three beams joined at a junction
point) is characterized by 11 parameters: 3 lengths, 3 thicknesses, 2 angles and 3
different elastic moduli. A significant reduction of the parameters space is obtained
when the characterization is restricted to nodes that can - geometrically speaking -
act as defects inside a regular lattice. A regular lattice is made up of regular hexag-
onal cells, all having equal edge length a. Different defects in the regular lattice are
generated following the scheme in Fig. 5.3.

O

a

1x

2x

a75.0

a3.1

a5.1

a65.0

Figure 5.3: Close up of a regular hexagonal lattice where a single node can be per-
turbed by shifting the position of its junction point O inside a given region (green
area). The size of this region is given in terms of the lattice dimension a. The
rectangular shape of this region is chosen for convenience.
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Starting from a node in the regular lattice which has its junction point O in the
origin of the coordinate system (X1, X2), a new node is obtained simply by shifting
this junction point to a new position within the predefined green area. Examples are
the red and blue nodes in Fig. 5.3, obtained first by positioning the junction point
and then by attaching this junction point at the fixed frame of the regular lattice.
Defining a new junction point position is therefore equivalent to defining a new node.
It is then convenient to choose a specific region, inside which the new junction points
(and therefore the nodes) are generated. The size and shape of this area are given in
Fig. 5.3. After generating a node, a periodic lattice made up of infinite copies of that
node is build and its elastic properties are solved analytically (section 5.2). The same
node is then considered as a defect in a regular lattice (like in Fig. 5.3 for the red or
blue nodes) and its behavior as well as the behavior of its neighborhood is computed
numerically (section 5.3).
A comparison is then performed between what the node is doing in a periodic lattice
and what it is doing when inserted as a defect in a regular lattice. The aim is to
check how much of the node behavior can be understood in terms of only local node
geometry. For computational reasons, the comparison is restricted only to symmetric
defects, i.e., only at nodes that are obtained by shifting their junction points along
the vertical X2 direction of the coordinate system shown in Fig. 5.3.
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5.2 Node in a periodic lattice - analytical solution

When a given node is surrounded by infinite copies of itself it defines a periodic lattice.
The mechanical behavior of the lattice can be derived analytically by looking only at
a single node. Under the assumption that each beam of the node is described with
standard beam theory with axial and bending deformations (no shear is considered),
the full elastic matrix of the periodic lattice can be derived as a function of the node
geometry and material properties [127].

3L

1L

2L

3θ 2θ
1x

2x

1

2

3

0

Figure 5.4: The node on the left is the basic building block of the periodic lattice on
the right (not in scale). The node is defined by three beam lengths (L1, L2 and L3)
and two angles (θ2 and θ3) which meet at a junction point O.

Fig. 5.4 shows, on the left, a node with its geometrical properties and, on the right, the
resulting periodic lattice obtaining by reflecting and inverting this node. In general
each of the beams belonging to a node could have different geometries (length, cross
section and orientation) and different material properties (Young’s modulus). This is
visualized using different colors in Fig. 5.4. The dashed triangle between points 1, 2,
and 3 identifies the area corresponding to the node which is defined by the intersection
of the lines connecting all the midpoints of the same periodically repeating beams
(beams with the same color in Fig. 5.4).
The mechanical formulation to obtain the elastic matrix of the periodic lattice is based
on the fact that the deformation of the node is completely defined by the displacement
of two beam midpoints (e.g., point 1 and 2 in Fig. 5.4) relative to a reference point
(e.g., point 3 in Fig. 5.4) and by the relative displacement and rotation of the junction
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point (point O in Fig. 5.4). The rotations of the beam midpoints are not independent
variables since the moments there are zero due to symmetry conditions, therefore
these rotations do not have to be taken into account explicitly. This last observation
motivated the choice to study structures with a coordination number Z = 3 which
can still be described as an equivalent Cauchy continuum. For coordination number
Z > 3 the rotations at the unit cell midpoints become independent variables and
therefore the node is equivalent to a Cosserat or micropolar medium [128]. Following
the method suggested by Overaker et al. [127], the periodic lattice can be described
by an equivalent continuum material with a general constitutive relation expressed
(in Voigt notation) as 

σ11

σ22

σ12

 =


C11 C12 C13

C12 C22 C23

C13 C23 C33




ε11

ε22

2ε12

 (5.2.1)

where, in general, each term of the stiffness matrix is a function of 11 parameters
which characterized the node

Cij = f(r1, r2, r3, L1, L2, L3, θ2, θ3, Es1, Es2, Es3) . (5.2.2)

An important case which will be considered as a ”reference” situation when studying
the influence of different node geometries, is the regular node where all the beams have
equal lengths (L1 = L2 = L3 = L), cross sections (r1 = r2 = r3 = r), orientations
(θ2 = θ3 = π/3) and material properties (Es1 = Es2 = Es3 = Es). The resulting
lattice, called regular lattice, is mechanically isotropic and its stiffness matrix can be
given in a quite simple form

C =


√

3(N+3M)
12M(N+M)

√
3(N−M)

12M(N+M)
0

√
3(N−M)

12M(N+M)

√
3(N+3M)

12M(N+M)
0

0 0
√

3
6M(N+M)

 , (5.2.3)

where M and N are the axial and bending compliances. When the beam cross section
is circular, they read as

M =
L

AEs
=

L

πr2Es

N =
L3

3EsI
=

4L3

3πr4Es
. (5.2.4)

For the general case the expressions of the stiffness coefficients as a function of the
node geometry are extremely long. They have been computed using a symbolic
mathematic software.
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5.3 Node as a defect in a regular lattice - numeri-

cal solution

In our context a regular lattice is defined as a mechanically isotropic lattice and its
basic building block is the regular node. When a node inside the regular lattice is
perturbed, as described in section 5.1, a defect is created. The mechanical behavior of
this node as well as the behavior of the resulting lattice cannot be solved analytically.
To investigate this situation one has to use numerical simulations and the finite ele-
ment method (FEM) is probably the most suitable and precise tool available to solve
such mechanical problems. In this thesis the finite element calculations are performed
with the commercial package ABAQUS. Each beam of the lattice in the finite element
approach is modeled with 4 Timoshenko beam elements with quadratic interpolation
functions. They allow for axial, bending and transverse shear deformations. The
resulting mesh is accurate enough to model linear elastic properties [129]. Each beam
has the same material properties (Young’s modulus of 1 MPa and Poisson ratio of
0.3) and equal circular cross section. The slenderness ratio of the beams, i.e., the
length divided by the thickness, is 0.001. This low value was chosen for two reasons.
First to have a low relative density (ca. 1.1% for the regular lattice) that allows the
analytical solution to be very precise. Second, to reduce the influence of transverse
shear deformations, which are not included in the analytical model presented in sec-
tion 5.2 and therefore to allow a better comparison between the obtained results.
When simulating finite structures, in order to avoid end effects in term of localization
of deformation at the boundaries [130], periodic boundary conditions (PBC) have
to be used. In the present work, PBC for the displacement field have been imple-
mented. Those conditions are attained by coupling opposite faces and linking the
corresponding degrees of freedom. Each boundary point has 3 degrees of freedom,
two translational and one rotational. The PBC requires that

uJa − uIa = εαβ
(
xJβ − xIβ

)
, θJ − θI = 0 (5.3.1)

where εαβ is the average macroscopic strain, uJα, θJα and xJβ are respectively the dis-
placement, the rotation and the coordinates of two representative point J and I at
the edge of the macroscopic structure [131].
To choose the proper size of the lattice for the simulations, one needs to reach a
compromise between two different requirements. First, since PBC are used, the lat-
tice must be big enough to ensure that a defect located in the center of the lattice
does not see its periodic images. The second requirement is to keep the lattice rather
small to guarantee a reasonable computational time. In this work the lattices have 61
unit cells in the horizontal direction and 69 unit cells in the vertical direction, which
results in square-shaped system with a side length of approximately 105a.
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5.4 Mechanical scenarios investigated

The lattices have been studied under three different loading conditions, which corre-
spond to uniaxial stress along the X1 direction, uniaxial stress along X2 and hydro-
static stress.
For periodic lattices, where the analytical solution is available, the characterization
is done for all the node inside a given area (see Fig. 5.3). The numerical simulations,
computationally more expensive, are restricted to lattices with symmetric defects.
In addition, a case where the defect is not geometrical but comes from reducing the
radius of all the three beams belonging to a node by 1/5, is studied. The types of
defects introduced in the regular lattice are shown in Fig. 5.5.

(A) (B) (C) (D)

Figure 5.5: (A) defect obtained by displacing the junction point along the positive
vertical direction X2 by 0.5a. (B) T-shaped defect resulting when shifting along X2

the junction point by -0.5a. (C) arrow-shaped defect with the junction point at -0.75a.
(D) regular node with thinner beams; the thickness is reduced by 1/5.

In the following section all the local mechanical quantities are always referred to the
nodes. Further the quantities are normalized to the corresponding value of the regular
node to see the amount of improvement or degradation in the mechanical performance
with respect to the isotropic regular lattice. In the analytical case the deformations
of the nodes are computed by the compliance matrix of the nodes multiplied by the
applied stress. When numerical simulations are used the node deformations are de-
rived on the basis of the three displacements at the node boundaries [127]. The strain
energy density is derived analytically according to

SED =
1

2

Cε2

Anode
(5.4.1)

where C is the elastic matrix, ε the strain tensor and Anode the area corresponding
to the node. Numerically it is obtained first by summing the strain energy in the
three beams coming together at the junction point and then dividing by the node
area. In order to visualize the strain energy density distribution inside the lattice
(e.g., Fig. 5.8) a rectangular patch is drawn at the center of each junction point and
the strain energy density of the node containing the junction point is used as an index
to determine the color of the patch.
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5.5 Results and discussion

The mechanical behavior of a node depends on its morphology, relative density and
orientation with respect to the loading direction. The environment in which the node
is placed is also fundamental in translating the global far-field stresses or strains in
local mechanical actions. In the framework of 2-dimensional cellular solids, when a
node is placed in a periodic lattice, its mechanical behavior, corresponding to the
performance of the entire lattice, can be derived analytically in terms of the node
geometry. Conversely, numerical simulations are needed to solve the behavior of
a node acting as a defect inside a regular lattice. In the following, the behaviors
of periodic lattices and regular lattices with different defects are investigated and
compared. The aim is to see by which extent the behavior of a node in a periodic
lattice can explain what the same node is doing as a defect inside a regular lattice.

5.5.1 Periodic lattices

The linear elastic analysis of periodic lattices is fast to perform since the elastic
and compliance matrices of those structures are known as a function of the their
geometry. Fig. 5.6 shows the maximum strain and strain energy density for the
different periodic lattices constructed (section 5.1). The maximum strains in the
lattice are evaluated on the basis of the eigenvalues of the strain tensor. When a given
lattice is compressed along the horizontal X1 direction, the minimum deformation is
obtained when the junction point (from which the node and therefore the lattice is
derived) belong to a line parallel to the X1 axis. This occurs for a junction point
with the coordinates (0, -0.5a) (see Fig. 5.6A). In this situation, the beams L2 and
L3 are aligned with the loading direction which results in extremely stiff lattices since
the underling deformation mechanism is only beam-compression. In this case the
strain energy adsorbed is approximately four order of magnitude less then the strain
energy stored in the regular lattice (Fig. 5.6D). Moving the junction point along
the vertical X2 direction (which is perpendicular to the loading condition) results in
lattices which have bigger strains and strain energy variations than when the junction
point is shifted along horizontal paths.
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Figure 5.6: Contour plots of the maximum strain and strain energy density for dif-
ferent loading conditions and for constant relative density of the different periodic
lattices.
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For a compressive load in the vertical X2 direction the stiffest lattice is not the
regular isotropic one but a lattice which is obtained when the junction point is moved
along the vertical X2 direction of about -0.2a (Fig. 5.6B, E). This can be under-
stood in terms of simple beam bending. The bending moment acting on the beam
L2 (or equivalently L3) is proportional to L2 sin(θ2). As the junction point is moved
in the negative X2 direction, L2 decreases and θ2 increases. There is a minimum in
L2 sin(θ2) which occurs approximately in -0.2a.
Hydrostatic compression results in much stronger variations in maximum strain and
strain energy density with respect to the regular lattice (Fig. 5.6C, F). Interestingly
the hydrostatic load of the regular lattice is characterized by pure axial deformations.
This is an optimal condition for light load bearing materials, since the elastic prop-
erties scales only linearly with the relative density [84] which can therefore be quite
low without a strong degradation in the mechanical performance. Small deviations
from the regular geometry leads to bending and therefore to a strong increase in the
amount of energy absorbed.
In general, different periodic lattices, obtained by varying the junction point positions
as sketched in Fig. 5.3, not only have different geometries but also different relative
densities. To weight this effect on the mechanical properties, the Young’s moduli and
Poisson ratios of constant versus variable relative densities structures are compared.
To keep a constant relative density which correspond to the relative density of the reg-
ular lattice, the beam lengths are uniformly rescaled. The plots in Fig. 5.7 show the
normalized apparent stiffness along the global X1 and X2 directions and the Poisson
ratios for periodic lattices. Those structures are generated by varying continuously
along the vertical X2 direction the position of the node’s junction point. The Young’s
moduli are normalized by the Young’s modulus of the regular lattice. The dramatic
decrease in the strain energy for uniaxial compression along X1 direction observed in
Fig. 5.6D when the junction point is at −0.5a, corresponds here to a huge increase in
the stiffness: E1 is in this case more than three orders of magnitude bigger than E1−0

as can be seen in the semi-logarithmic plot in Fig. 5.7A. Interestingly the normalized
Young’s modulus in the X2 direction (Fig. 5.7B) both for constant and for variable
relative density displays a maximum not when the junction point is at position zero
(regular lattice) but for a somewhat negative displacement of the junction point. This
reflects the minimum in the strain energy observed in Fig. 5.6E and again is under-
stood by considering that the uniaxial deformation mainly involved beam bending
which in turn is governed by the length L2 and the angle θ2. In the case of variable
relative density, what intuitively seems to be the weaker lattice (T-shaped node),
turned out to be the stiffer one due to the particular combination of strut lengths and
angles. However, in both cases the stiffening effect is quite small (maximum increase
in E2 is about 15%) compared to the degradation of the elastic properties obtained
when the junction point has other positions along X2. The Poisson ratios ν12 and ν21,
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Figure 5.7: Elastic properties of periodic lattices obtained by shifting the node junc-
tion points along the vertical X2 direction.

which relate deformations perpendicular to the loading direction with deformations
in the same direction of the load, show a behavior independent of the relative density
and basically dictated by the angle θ2 (and equivalently θ3). When θ2 < 90 (junction
point positions > −0.5a) the orientation of the tilted beams is such that, under uni-
axial compression, they will tend to rotate ”outward” hence producing compression
forces on the adjacent nodes and therefore a positive Poisson ratio effect. Conversely,
when θ2 > 90 (junction point position < −0.5a) the beams in the node will try to
rotate ”inward”, yielding tensile stress in the lateral direction and thus a negative
Poisson ratio effect. The transition from positive to negative Poisson ratio occurs at
the junction point position of −0.5a where the X1 and X2 directions are decoupled.
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5.5.2 Defect in regular lattice

In general a node within a lattice responds to an external mechanical load not only
as a function of its geometry but also depending on the neighboring environment.
A symmetric type of defect was introduced inside a regular lattice (as described in
section 5.1) and the mechanical behavior of the imperfection as well as of the entire
lattice is investigated. The focus is on the spatial distribution of the strain energy
density (SED), a scalar quantity which summarizes the complex tensorial nature of
the stress and strain fields. In a regular lattice each node absorbs the same amount
of energy during the linear deformation process and obviously the SED is uniformly
distributed. When a defect is introduced, a redistribution of the SED occurs with the
possibility of SED localization somewhere in the lattice. Those regions may be weak
zones in the structure since they could act as sites of failure initiation.
In the following plots the SED has been normalized by SED0 which is the amount of
energy adsorbed by a node in a regular lattice (defect free) and which corresponds
(approximately) to the SED of nodes far from the defect. For clarity, only a subregion
of the simulated lattice with the size of 16 times 15 unit cells, and containing approx-
imately 960 nodes, i.e., approximately 1/40 of the lattice, is plotted. Already a first
look at Fig. 5.8, which corresponds to uniaxial compression along X1, reveals the
intricate effect of perturbations. In Fig. 5.8A a node of the regular lattice has been
perturbed by displacing its junction point in the positive X2 direction of an amount
equal to 0.5a. The SED shows a pronounced anisotropic behavior with a horizontal
band, where the absorption of strain energy is reduced. The band involves a number
of nodes on both sides of the defect. Fig. 5.8B shows the behavior of a T-shaped
node. Intuitively and according to the analytical study of section 5.2, this node is as
stiff as possible in X1 direction since its beams are align with the loading. Another
characteristic, still in the periodic lattice, is that its Poisson ratio equals zero mean-
ing that horizontal and vertical deformations are decoupled. Placed inside a regular
lattice, this node has a very low SED adsorption (90% less than the nodes located far
away from the defect), and in turn produces a strain energy density increase (almost
100%) in its neighboring node placed just above it. When the defect is arrow shaped
(Fig. 5.8C), which corresponds to a very weak mechanical behavior according to the
periodic lattice point of view, the SED increases more than 150%. The node that
feels this SED concentration once again is not the perturbed one, but the nearest
neighbor located just above the defect. Even more surprising is the complex pattern
obtained when the node has similar morphology but different beam thickness (Fig.
5.8D). The beam thicknesses of the node are reduced to 1/5 of the thickness of all the
other beams, therefore increasing the axial and bending compliances (see Eq. 5.2.4)
by 25 and 625 times, respectively. This extremely weak node give rise to a 75% SED
increase which, also does not occur at the location of the weak node itself but in the
third neighbors.
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Figure 5.8: Compression in X1 direction and strain energy density (SED) normalized
by the strain energy density of the regular lattice without defects (SED0). In (A)
the node is obtained by a positive displacement of the junction point. (B) shows
a T-shaped node and (C) an arrow-shaped defect. Case (D) instead illustrates the
effect of a reduced cross-section keeping the same morphology. The red nodes on the
upper left corner represents the type of defect introduced in the middle of the regular
lattice.
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Figure 5.9: Compression in X2 direction and strain energy density (SED) normalized
by the strain energy density of the regular lattice without defects (SED0). Note
the different ”background” color with respect to Fig. 5.8, which is due to a slightly
different scaling of the colorbar to account for different extreme values of the SED. In
(A) the node is obtained by a positive displacement of the junction point. (B) shows
a T-shaped node and (C) an arrow-shaped defect. Case (D) instead illustrates the
effect of a reduced cross-section keeping the same morphology. The red nodes on the
upper left corner represents the type of defect introduced in the middle of the regular
lattice.
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Figure 5.10: Hydrostatic compression and strain energy density (SED) normalized
by the strain energy density of the regular lattice without defects (SED0). Here the
scale is logarithmic to better visualize the higher strain energy localization. In (A)
the node is obtained by a positive displacement of the junction point. (B) shows
a T-shaped node and (C) an arrow-shaped defect. Case (D) instead illustrates the
effect of a reduced cross-section keeping the same morphology. The red nodes on the
upper left corner represents the type of defect introduced in the middle of the regular
lattice.
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The above observations are qualitatively valid also when the lattice is compressed
along the vertical X2 direction (Fig. 5.9). Here the ”background” color, correspond-
ing to the far field SED, is slightly different from the one of Fig. 5.8 because the
maximum and minimum SED observed in the lattice under different loading direc-
tions are different and the colorbars are accordingly rescaled. Again in the cases (A),
(B) and (C) the perturbed node is the one that adsorbed less energy during defor-
mation. In addition, it creates elaborate and anisotropic SED distributions with the
common characteristics that the maximum SED is always occurring at the second
neighbor. It should be pointed out that this is the location of the first regular node,
since the first neighbor of the defected node is geometrically slightly different from
the regular node.
A different behavior is attained when the lattice is compressed hydrostatically (Fig.
5.10). Now, the node which has been perturbed, is indeed the one subjected to the
higher SED. Another difference with the uniaxial compression is the dramatic SED
concentration caused by the defect. In (C) for instance the SED increases more than
3 orders of magnitude (note the logarithmic scale) with respect to the far field value.
This is understood in terms of micro-mechanical behavior. In hydrostatic compres-
sion of the regular lattice, no beam bending is taking place and the only deformation
mechanisms is axial compression. Introducing a single defect, locally modified the
deformation mechanism from stretching to bending which in turn increases the en-
ergy adsorption in the node. Although not well presented by the logarithmic scaling,
the SED returns very rapidly to SED0, when moving away from the defect. For the
case of the thinned regular node (Fig. 5.10D), it is interesting to notice how the
localization only occurs at the weak node, thus leaving the remaining region of the
regular lattice unaffected.

In summary, the SED patterns present three prominent characteristics. First, they
are all symmetric, which simply reflects the symmetry of the defects. Second, the SED
pattern display strong anisotropy, which result in strain energy ”localization” along
specific directions. Third, for the uniaxial cases, the defect causes a significant change
in the SED of the neighbors also far away from its position.
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5.5.3 Strain energy density comparison

In order to test whether the ”global” behavior of a node, i.e., extended to a periodic
lattice, could help to understand its ”local” behavior, i.e., inserted as a defect in
a regular lattice, the normalized SED in those two situations are compared. For
computational reasons the evaluation is restricted to symmetric defects.
The three plots of Fig. 5.11 show the SED for periodic lattices -both for constant
(black) and variable (red) relative density-, the SED for symmetric defects (blue) and
the maximum SED of a node observed inside the regular lattice with a defect (green).
All the SED are normalized by SED0 of the regular node.
For uniaxial compression along the X1 direction (Fig. 5.11A) the behavior of the
node which acts as a defect inside a regular lattice, is partly similar to the behavior
of the same node inside a periodic lattice. When the node is obtained starting with
a junction point which is moved along the negative X2 direction, both the SED
in the periodic and in the regular lattice decreases substantially. A proportional
corresponding increase in the SED is seen in the neighborhood of the defect (Fig.
5.11A, green). For positive displacements of the junction point, the node behavior in
the periodic and the regular lattice is quite different.
When the compression occurs along the X2 direction (Fig. 5.11B) the perturbed
node in the regular lattice shows the opposite behavior of that calculated from the
periodic lattice. Nodes which are defined as globally weak, (displaying a high SED
in the periodic lattice) show in the regular lattice a low SED, as can be seen by the
different curvature of the black and blue lines.
When the compressive load is hydrostatic, the perturbed node is the weakest point in
the regular lattice (see Fig. 5.11C). Therefore what the node is doing globally, as part
of the periodic lattice, corresponds to what it does locally, acting as a defect. This is
only true in a qualitative way since quantitatively the SED still differ considerably.
For example the SED for the T-shaped node is almost three times bigger in the
periodic lattice than in the regular one.
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Figure 5.11: The SED/SED0 calculated for the periodic lattices, for constant and
variable relative density, is compared with the values predicted by the finite element
analysis for the regular lattices with a defect. The maximum strain energy density in
the finite element lattice is also shown.



5.6. CONCLUSIONS AND OUTLOOK 85

5.6 Conclusions and outlook

Our simulations demonstrated that, at least for the uniaxial cases, when a node dif-
fers too much from its environment, it is ”protected” instead of being locally subject
to concentrated mechanical actions. The inability of the regular lattice to load its
defect could be interpreted looking at the serial/parallel arrangement of a two phase
composite material, imaging that the regular lattice is like a matrix (black in Fig.
5.12) and the symmetric defect acts like a weak inclusion (red stripe in Fig. 5.12).

Voigt Reuss

“regular lattice”

“symmetric defect”

Figure 5.12: Voigt and Reuss mechanical arrangement of the regular lattice with a
symmetric defect.

In the serial arrangement (Reuss) both the matrix and the inclusion feels the same
stress, therefore the weak inclusion is fully loaded and its global behavior will be
sufficient to explain the local one. Conversely, in the parallel arrangement (Voigt),
the two phases are subject to the same deformation. Now this stiff matrix protects
the soft inclusion by being loaded.
The situation in the regular lattice with a symmetric defect is surely more complex
than this simple Voigt/Reuss arrangement. Nevertheless the SED redistribution and
the comparison with the global node behavior seems to suggest that under uniax-
ial loading all the nodes have a more ”parallel” behavior whereas under hydrostatic
compression, from a mechanical view point, they are ”arranged in series”.
The main conclusions of the node analysis is that the ”globally” weak nodes are not
necessary ”locally” weak. This is due to the fact that beside node geometry, the in-
teraction with the environment, seems to be important as the node geometry itself in
defining the node behavior. Nevertheless, nodes with a mechanically disadvantageous
geometry contribute to a weakening of the lattice by concentrating the strain energy
on their neighbors. The simulations have been performed on hexagonal lattices with
coordination number three. An important next step is to test whether our results
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transfer also to square-like lattices which are closer to the architecture of trabecu-
lar bone. The observation that weak elements in the structure are shielded by the
neighborhood deserves attention also when thinking about bone remodeling. Inside
a honeycomb-like architecture, thinner or weaker trabeculae are not necessary highly
loaded. Algorithms for bone remodeling are based on the paradigm that thinner
structures obtain a higher local SED and therefore thicken following the Wolff-Roux
law [33, 132]. In honeycomb structures, since weaker nodes do not seem to concen-
trate the SED, instead of being reinforced by adding new material they seem to be
even more prone for resorption. Therefore it may not be possible to mechanically
control a remodeling of such type of architectures. One could speculate that this may
be the reason why only a small fraction of lattice geometries are realized in nature.



Appendix A

Finite volume method

The explicit numerical integration scheme for solving equation 3.1.6 is based on the
finite volume method presented in section 3.1.4. As already mentioned, Eq. 3.1.6 is
first subdivided into two subproblems and only problem (A) needs to be solved with
the finite volume method.
An explicit time marching algorithm, which accounts also for variable velocities, has
the following form

ρn+1
i = ρni −

∆t

∆c

(
viρ

n
i − vi−1ρ

n
i−1

)
− ∆t

∆c

(
F̃i+1/2 − F̃i−1/2

)
, (A.0.1)

where F̃i+1/2 and F̃i−1/2 are suitable numerical fluxes, obtained by controlling the
form of the solution, ρni , to avoid instabilities.
Here, only the expression for the flux at the left boundary of a grid cell is reported.
The flux at the right boundary is derived in a similar way. Within the finite volume
framework, F̃i−1/2 reads as

F̃i−1/2 =
1

2
ρni

(
1− ∆t

∆c
ρni

)
φ
(
θni−1/2

)
∆ρni−1/2 , (A.0.2)

where φ(θni−1/2) is a flux limiter function. One choice for the limiter can be the mono-

tonized central-difference limiter (MC limiter) which has the following expression [80]

φ(θni−1/2) = max

[
0,min

(
1 + θni−1/2

2
, 2, 2θni−1/2

)]
, (A.0.3)

where θni−1/2 is defined as

θni−1/2 =
∆ρni−1−1/2

∆ρni−1/2

=
ρni−1 − ρni−1−1/2

ρni − ρni−1/2

(A.0.4)

and ρni−1−1/2 = vi−2ρ
n
i−2/vi−1, ρni−1/2 = vi−1ρ

n
i−1/vi. Good results were obtained with

this choice of the limiter.
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Abstract

The inhomogeneous mineral content and its topographical distribution on a microscopic scale are major determinants of the mechanical quality of
trabecular bone. The kinetics of bone tissue deposition and resorption together with the kinetics of the mineralization process determine the
distribution of mineral in the tissue. The heterogeneity of the mineral content is described by the well-established bone mineralization density
distribution (BMDD), which is experimentally accessible, e.g., using quantitative electron backscattering imaging (qBEI). In the present work, we
demonstrate that the shape of the BMDDhistogram of trabecular bone reflects directly the mineralization kinetics. Based on the experimental BMDD
data of trabecular bone from healthy human adults and using a mathematical model for the remodeling and the mineralization process, the following
main results were obtained. The peaked BMDD reflects necessarily a two-phase mineralization process with a fast primary phase and a slow
secondary phase where the corresponding time constants differ three orders of magnitude. The obtained mineralization law, which describes the
increase in the mineral content in a bone packet as a function of time, provides information not only about the initial mineralization surge, but also
about the slow increase afterwards on the time scale of years. In addition to the mineralization kinetics the turnover rate of the remodeling process has
a strong influence on the peak position and the shape of the BMDD. The described theoretical framework opens new possibilities for an analysis of
experimentally measured BMDDswith respect to changes caused by diseases or treatments. It allows addressing whether changes in the BMDD have
to be attributed to a variation in the turnover rate which consequently affects the density distribution or to a primary disorder in the mineralization
process most likely reflecting alterations of the organic matrix. This is of important clinical interest because it helps to find therapeutic approaches
directly targeting the primary etiological defects to correct the patients' BMDD towards normal BMDD.
© 2007 Elsevier Inc. All rights reserved.
Keywords: Bone mineralization density distribution; Theoretical model; Mineralization kinetics; Remodeling; Turnover
Introduction

The mean mineral content of the bone matrix and the
heterogeneity of the mineralization, together with its spatial
distribution are all fundamental factors for bone material
quality since they affect the basic mechanical properties of
bone tissue: the stiffness, the strength and the toughness [1–6].
The non-uniform mineralization in terms of bone packets of
different mineral content is the result of (i) the bone remodeling
⁎ Corresponding author. Fax: +49 331 567 9402.
E-mail address: richard.weinkamer@mpikg.mpg.de (R. Weinkamer).

8756-3282/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.bone.2007.01.012
process [7] and (ii) the kinetics of mineralization in the newly
deposited bone packet [8,9]. Once mineralization has started in
the unmineralized bone matrix (osteoid) deposited by the
osteoblasts, a continuous increase in its mineral content occurs.
The mineralization law describes this change as a function of
time. It has been reported that the mineralization process
initially results in a rapid increase in the mineral content during
the first few days up to 70% of the final value, a phase typically
referred to as primary mineralization, followed by a slow and
gradual maturation of the mineral component, called secondary
mineralization [9–14]. The kinetics corresponds to a miner-
alization law with a steep slope in the beginning and a sig-
nificant reduction of the slope afterwards [15]. However, a
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Fig. 1. (A) Backscattered electron image of transiliac bone biopsy (healthy
female, 35 years), the soft tissue or embedding medium is black while the
mineralized bone tissue is gray. The entire sectioned trabecular bone tissue area
is analyzed by the qBEI method to determine the BMDD. By zooming in,
individual bone packets of different degree of mineralization that composed the
trabecular bone can be seen. Dark gray means low mineral content, light gray
high mineral content. (B) Corresponding BMDD histogram with the definitions
of the most frequent calcium content (CaPeak), mean calcium content (CaMean)
and full-width at half maximum of the peak (CaWidth).
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more detailed mathematical formulation of the mineralization
law, especially its development beyond the first weeks, is still
missing.

The non-uniform distribution of the mineral content in
trabecular bone can be measured by a variety of experimental
techniques: quantitative microradiography (qMR) [16], quan-
titative backscattered electron imaging (qBEI) [17–20] and
synchrotron radiation microtomography (SR μCT) [21]. The
results of these measurements are often summarized in the so-
called bone mineralization density distribution (BMDD),
which is a frequency distribution of the calcium (Ca) content
found in the bone sample. qMR is based on unidirectional
X-ray projection and absorption within 100 μm thick bone
sections. The BMDD is derived from the contact microradio-
graph by pixel analysis (2-dimensional bone image elements).
However, this technique is flawed due to projection effect
errors [22]. qBEI makes use of the fact that the intensity of
electrons backscattered from the surface (surface-layer smaller
than 1 μm in thickness) of a sectioned bone area is
proportional to the concentration of bone mineral (calcium).
Darker areas represent lower levels of mineralization (younger
bone tissue) and lighter areas higher levels of mineralization
(older bone tissue) (Fig. 1A). The BMDD is derived from the
qBEI images on a pixel basis. The method is well established
and validated, it achieves a technical precision of 0.3% and a
histogram resolution in Ca content values in steps of 0.17
weight percent (wt%). SR μCT method is based on
multidirectional projection and absorption of a focused,
monochromatic X-ray beam by blocks of bone. The
information obtained from the three-dimensional measuring
technique is combined with an image processing method that
derives BMDD from analysis of voxels (three-dimensional
bone image elements). This method is rather new and still in
development.

Measurements with qBEI showed that the BMDD of
trabecular bone from healthy adults is almost constant
independent of age, sex, ethnicity and skeletal site [18,23].
This BMDD is bell shaped, with a peak at about 23 wt% Ca
content and a slight asymmetry towards lower Ca concentra-
tions (Fig. 1B). This mineral distribution will be referred to as
reference BMDD in the following. Metabolic bone diseases or
drug therapies, however, result in significant deviations from
this healthy BMDD [23]. For instance, in the case of
osteoporotic patients the peak of the BMDD is shifted towards
lower values of the Ca content with an increased heterogeneity
of the mineral content [24]. In contrast, an antiresorptive
treatment over a period of 2 to 3 years leads to a shift to higher
calcium contents and to a narrowing of the BMDD peak, i.e.,
the mineralization is more homogeneous [25–27]. At a longer
period of treatment (>5 years), the BMDD peak becomes wider
again [28,29]. When osteoporotic patients get anabolic treat-
ment by intermittent PTH administration, the BMDD shifts
towards lower mineralization density accompanied with an
increase in peak width [9].

The main purpose of this paper is to demonstrate that the
BMDD includes valuable information about the mineralization
kinetics. To show this, we introduce a model that relates changes
in the BMDD with the remodeling and the mineralization
process. Based on the experimental evidence that the reference
BMDD remains virtually unchanged with time [23], the model
allows a prediction of

(i) the mineralization law for healthy trabecular bone, and
(ii) how changes in the turnover rate are reflected in changes

of the mineralization distribution.
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The model

We present here a description of the model and a listing of all
the model assumptions without using mathematical expres-
sions. These ideas formulated in the language of mathematics
can be found in the Appendix A together with the equations
used for the quantitative predictions. The terminology of the
model is summarized in Table 1.

Trabecular bone at a certain point in time is composed of
many bone packets, which were deposited at different times and
therefore differ from each other in their age. A difference in age
corresponds to a difference in the mineral content of the bone
packet. The connection between age and mineral content is
given by the mineralization law (Fig. 2A). The well-known
result that the mineral content in each individual bone packet
increases with time due to the mineralization process is reflected
by the mineralization law being an increasing function. From a
“static” snapshot of trabecular bone, the BMDD is determined
by looking how frequent a specific mineral content occurs in the
patchwork formed by the bone packets.

The decisive step is now to go beyond this static description
of trabecular bone by including the dynamical processes of
mineralization and remodeling. As time elapses, the age of each
individual bone packet increases. The increase of the mineral
content due to the mineralization process is again given by the
mineralization law (Fig. 2A). The effect of the increasing
mineral content in the corresponding BMDD representation
(Fig. 2B) is a shift of a bar in the diagram corresponding to a
specific mineral content (which can, for simplicity, be thought
as representing a bone packet with this mineral content) to the
right towards higher values of the mineral content. The velocity
with which the bar moves in the BMDD diagram – we use the
term mineralization velocity – is given by the slope of the
mineralization law for the corresponding mineral content. For a
non-linear mineralization law, the slope can vary significantly
with mineral content. This means that the mineralization
velocity of a given bone packet will not be constant resulting
in a change in the shape of the BMDD. The overall effect of the
mineralization process on the BMDD is therefore a shift of the
BMDD to higher values of the mineral content with a con-
Table 1
Description of important quantities of the model together with their units and symb

Symbol Quantity Description

t Time Independent variab
τ Time in units of the turnover time tTO Independent variab
c Mineral content, Ca content Independent variab
cmax Maximal mineral content Fixed value cmax≈
BV(t) Bone volume Function of time,
ρ(c,t) Bone mineralization density distribution (BMDD) Describes the freq

given time—funct
ρ(c) Steady-state BMDD Solution of the tim

content only
c(t) Mineralization law Describes how the

as a function of tim
m cð Þu dc

dt
Mineralization velocity Derived differentia

jOB (t) Bone deposition rate Describes osteobla
ωOC(c,t) Bone resorption preference rate Describes osteocla
current shape change caused by the non-linearity of the min-
eralization law.

The effect of the remodeling process on the BMDD is easier
to imagine. The removal of bone of a specific mineral content
by the osteoclasts reduces the frequency of finding bone with
this mineral content. Consequently, the resorption of bone
lowers the BMDD curve (gray area in Fig. 2B). The osteoid
deposited by the osteoblasts is unmineralized and therefore
appears at the very left of the BMDD diagram, i.e., at zero
mineral content (symbolic hatched gray bar in Fig. 2B).

Summarizing, the changes of the BMDD due to the
mineralization can be seen as a “flow” from low to high values
of the mineral content with an unchanged area under the curve
corresponding to a constant bone volume. The effect of re-
modeling on the BMDD is that while flowing to the right
towards higher Ca values, some bone volume is lost due to some
“leakage” to the flow (osteoclast action). Additionally the flow is
fed from the very left (osteoblast action). Such “flow problems”
are common in physics and can be mathematically described by
a continuity equation [30,31]. The derivation of the correspond-
ing partial differential equation (Eqs. (A4) and (A5)) can be
found in the Appendix A, here we prefer the following symbolic
notation:

total temporal change of the BMDDf g
¼ increase in the mineral content

according to mineralization law

� �
� OC action : lowering of the BMDDf g
þ OB action : adding at zero mineral contentf g:

To predict the time evolution of the BMDD, only three
quantities have to be known. First the mineralization law, which
may have a different form for healthy or diseased individuals.
For instance, osteomalacia is characterized by both mineraliza-
tion defects and hypomineralization, while osteogenesis
imperfecta is connected to hypermineralization [32,33].
Although we investigate the effect of different mineralization
laws, we assume for simplicity that once a mineralization law
was chosen it remains fixed and does not change during
lifetime. Second, the bone deposition rate characterizing the
ols

Unit

le [days] or [years]
le Dimensionless
le [wt% Ca]
56 vol% Ca≈30 wt% Ca [wt% Ca]
can be derived from osteoblast and osteoclast actions [μm3]
uency of finding bone with a specified mineral content at a
ion of mineral content and time

[μm3/wt% Ca]

e-independent equation (B1)—function of the mineral [μm3/wt% Ca]

mineral content in a newly deposited bone matrix changes
e

[wt% Ca]

ting the mineralization law [wt% Ca/day]
st action—only a function of time [μm3/day]
st action—function of both mineral content and time [1/day]



Fig. 2. (A) The mineralization law connects the age of a bone packet with its
mineral content and describes how the mineral content changes with time
according to the mineralization velocity, defined as the slope of the
mineralization law for the corresponding mineral content. (B) Effect of
remodeling and mineralization on the BMDD curve. By resorbing bone, the
osteoclasts lower the curve (removed gray area) whereas the osteoblasts deposit
unmineralized bone matrix (symbolized by the hatched gray bar at the very left
of the diagram). Mineralization causes each bar in the BMDD histogram to
move with a different mineralization velocity v dependent on the mineral
content (see A). This results in a general shift of the BMDD from lower to higher
mineral content. In doing so the shape of the curve may change, but the area
under the curve remains constant.

1311D. Ruffoni et al. / Bone 40 (2007) 1308–1319
osteoblast action. In general the deposition rate depends on time,
since it can increase, for example, after administration of PTH
[9]. Third, the bone resorption preference rate characterizing the
osteoclast action. It was argued that osteoclasts could resorb
preferentially mechanically damaged bone [34,35], which
should be on average older and therefore be more highly
mineralized. Likewise, it can be argued that osteoclasts resorb
preferentially younger bone since they are more likely to
encounter younger bone at the bone/marrow interface. To take
into account this possible preference of resorption, the bone
resorption preference rate depends on both time and mineral
content. These two model parameters characterizing the
remodeling process are directly related to measurable quantities
of bone histomorphometry, bone formation rate (BFR/BV) and
bone resorption rate (BRs.R/BV) (see Appendix A). The bone
volume can be derived from the deposition and resorption rates
of the bone cells and is therefore not an independent model
parameter.

The computed BMDD is a function which depends on both
independent variables, mineral content and time. The value of the
mineral content can vary between 0 – corresponding to
unmineralized bone (osteoid) – and a maximum value, which
can be estimated based on the available volume to be about 56 vol
% [1], i.e., close to 30 wt%. The total area under the computed
BMDD curve corresponds to the bone volume. Following the
definitions in [23], the shape of the BMDD is characterized by
three quantities (Fig. 1B). The most frequent Ca content, i.e., the
position of the peak, is denoted by CaPeak. The mean Ca content,
CaMean, is defined as first moment of the BMDD, i.e., the “center
of gravity” of the curve. Beside the bone volume, it is the main
contributor to the bone mineral density (BMD) as obtained by
DXA measurements. The peak width of the BMDD, CaWidth, is
defined as full-width at half maximum (FWHM).

Experimental evidence for an almost constant BMDD and the
steady-state assumption

For healthy adult individuals, it was shown that the BMDD is
almost independent of sex, ethnicity, skeletal site and in
particular of age, therefore defining a reference BMDD
[18,23]. In the framework of our model this means that despite
the ongoing mineralization and remodeling process, this
reference BMDD remains unchanged. This experimental
observation can be exploited to simplify the mathematical Eqs.
(A4) and (A5) (Appendix A) for the time evolution of the
BMDD. Under the assumption that the solution for the BMDD
should not change with time (steady-state assumption), Eq. (A4)
can be solved analytically. The result consists of two
transformation formulas (Eqs. (B3) and (B5), Appendix B),
which connect the mineralization law with the steady-state
BMDD, which is now a function of the mineral content alone.
The steady-state assumption implies that the bone volume also
remains constant with time. The results that we present later on,
nevertheless, remain valid as long as the change in bone mass
occurs on a longer time scale than shape changes in the BMDD.
This allows the discussion of the shape of the BMDD also in
cases of age-related loss in bone mass. The transformation
formulas connecting the mineralization law and the BMDD
(Eqs. (B3) and (B5), Appendix B) further simplify under the
assumption that the osteoclasts resorb bone independent of its
mineral content (Eqs. (B6) and (B7), Appendix B). The steady-
state assumption leads further to a reduction of the number of
quantities that have to be known to predict the BMDD. Instead of
the bone deposition rate and the bone resorption preference rate,



1312 D. Ruffoni et al. / Bone 40 (2007) 1308–1319
a single parameter, namely the turnover time, tTO, is sufficient to
characterize the remodeling process. The turnover time is
defined as the time it takes to remodel an amount of bone equal to
the actual bone volume. A high turnover situation corresponds to
a short turnover time, while low turnover is characterized by a
long turnover time. With measuring time in units of the turnover
time, i.e., introducing the time variable τ≡ t/tTO, the simulation
results can be presented in a form independent of the remodeling
process. Where it is of interest to transform simulation time in
real physical time, we chose tTO=5 years, a value reported for
healthy adult humans [36].

Results

The relationship between the mineralization law and the
BMDD, which is mathematically summarized in Eqs. (B6) and
(B7) (Appendix B), will be exploited demonstrating the
importance of the BMDD as a fingerprint of the mineralization
kinetics. We start by demonstrating how different mineraliza-
tion laws influence the shape of the resulting steady-state
BMDD. In the next step we solve the “inverse” problem, i.e.,
starting from the experimental data of the reference BMDD we
derive the underlying mineralization law for healthy humans.
Eventually, using this mineralization law for healthy humans,
we can predict the influence of different turnover rates on the
BMDD.

Effect of mineralization law

Due to experimental difficulties in determining the increase
of the mineral content in a bone packet as a function of time, no
mineralization law has been quantitatively proposed in the bone
literature both for healthy humans and for patients with
disorders in the mineralization process. To gain a better
understanding of the effect of the mineralization law on the
resulting shape of the BMDD, we chose simple, hypothetical
mineralization laws and then calculated the corresponding
BMDDs using Eq. (B6) (Appendix B). In Table 2, the
results are summarized in mathematical and graphical form,
where Fig. 3 allows a quantitative comparison between the
predicted BMDDs and the measured peak-shaped reference
BMDD.

Since mineralization is described as a continuing increase in
the mineral content leveling off at a maximum value of Ca
content, a simple but instructive choice for the mineralization
law is an exponential function. The exponential growth law is
then characterized completely by the maximum Ca content
attainable and by a single time constant, τMI=tMI /tTO, which
describes how fast the mineralization process proceed (Table 2
and Fig. 3A).With this choice of mineralization law the resulting
BMDD is a power function (Table 2 and Fig. 3B). Depending on
how the time constant which characterizes the mineralization
process, tMI, relates to the turnover time of the remodeling
process, two different behaviors of the BMDD can be
distinguished. In the case where remodeling is faster than the
mineralization process (tMI> tTO, or equivalently, τMI>1), the
resulting BMDD is a monotonously decreasing function (light
gray in Fig. 3B). The opposite case of a faster mineralization
process than remodeling (tMI< tTO, or equivalently, τMI<1)
leads to a monotonously increasing BMDD (dark gray in Fig.
3B). The special case τMI=1 corresponds to a constant BMDD,
i.e., in this case bone is present with equal probability
independent of the mineral content. It is important to note that
for any choice of the time constant for the mineralization, the
result is always a monotonous, and not a peak-shaped BMDD.

In bone literature the mineralization kinetics is qualitatively
described as a two-step process with a fast primary and a much
slower secondary phase. As proposed in the literature [15], we
chose to model the mineralization law with two linear functions
characterized by two slopes and an intersection point (Table 2
and Fig. 3A). The resulting BMDD is composed of two
exponentially decaying functions (Table 2 and Fig. 3B) with a
kink at a mineral content corresponding to the change in slopes
in the mineralization law. Again, independent of the chosen
parameters, the resulting BMDD does not display a peak like the
measured reference BMDD.

Since a single exponential function with one time constant is
insufficient in producing a peak-shaped BMDD, a natural
refinement is to propose a mineralization law as a sum of two
exponential functions with two different time constants.
Assuming one time constant, τ1, larger than 1 and the other,
τ2, smaller than 1, the resulting BMDD displays a peak (Fig. 3B,
black dashed line). Trying to choose the time constants in such a
way that the resulting BMDD fits the measured reference
BMDD, however, is not feasible. Compared to the peak width of
the reference BMDD, the width of the calculated BMDD is
always smaller indicating a more homogeneous mineralization
than found in real bone.

A reasonable agreement with the reference BMDD is
obtained using a mineralization law consisting of a sum of two
hyperbolic growth functions as defined in Table 2. The ratio
between the two time constants obtained from the fit is larger
than 1500. The resulting fit function (gray line in Fig. 4A) is
almost over the whole range of mineral content within the
uncertainty of the measurement of the reference BMDD, as
defined by the standard deviation.

The mineralization law of healthy adult humans

Up to now we followed the more intuitive approach of
choosing a mineralization law, calculating the resulting BMDD
and then comparing the result with the measured reference
BMDD (Fig. 3). Being interested in the mineralization law that
results exactly in the reference BMDD, there is no need to
proceed with guessing adequate mineralization laws. Instead Eq.
(B6) (Appendix B) can be used which allows a back
transformation of the BMDD to the underlying mineralization
law. Since Eq. (B6) (Appendix B) defines a non-linear
transformation, it is important to start from the raw data which
was used to define the reference BMDD. The input data were the
BMDDs of 52 samples, both autopsies and biopsies, of healthy
adult humans having different age, sex, ethnicity and skeletal
site analyzed in reference [23]. Each data set consisted of 174
equidistant data points within Ca content between 0 and 30 wt%.



Table 2
Four different hypothetical mineralization laws and the corresponding BMDD
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Fig. 4A shows the average BMDD of this data, which defines the
reference BMDD for healthy adult humans, together with its
standard deviation. Using Eq. (B6) (Appendix B) the miner-
alization law for each of the 52 BMDDs was calculated
separately. The results were then averaged resulting in a
mineralization law of healthy adult humans and its standard
deviation describing the increase in the mineral content in a bone
packet over several decades in time (Fig. 4B, note the
logarithmic time scale of the insert). Since the input data are
only numerical data, the resultant mineralization law is not an
analytical mathematical function. In the previous section,
however, it was shown that a sum of two hyperbolic functions
gives a reasonable fit to the numerically calculated mineraliza-
tion law. According to the obtained law, mineralization proceeds
extremely fast up to a value of about 18 wt%Ca. After this initial
mineralization surge, a smooth transition follows, which leads
for later times to an approximately linear increase in the min-
eralization as a function of time. The slope in this regime is about
three orders of magnitude smaller than for the initial part of the
mineralization law.

Effect of turnover rate

The mineralization law obtained for healthy humans (Fig.
4B) was used to investigate the effect of changes in the
remodeling process on the form of the BMDD. With the help of
Eq. (B7) (Appendix B), the BMDD as a result of different values
for the turnover rate can be predicted. The effect of a higher
turnover rate is a shift of the peak to values of lower
mineralization, while a reduced turnover results in a shift to



Fig. 3. (A) Different hypothetical functions to describe the mineralization law:
Exponential growth with one slow time constant (τMI=5) or one fast time
constant (τMI=0.25); double linear function and sum of two exponentials with
two time constants (τ1=9 and τ2=0.09). (B) Comparison between the reference
BMDD and the simulated BMDDs considering the mineralization laws defined
in (A).

Fig. 4. (A) Measured reference BMDD: the black line shows the curve obtained
averaging 52 BMDDs from healthy adult humans with the standard deviation
boundaries (gray area). The gray line denotes the analytical fitting using a sum of
two hyperbolic functions for the mineralization law (Table 2). (B) The
corresponding calculated mineralization law: the black line shows the derived
mineralization law together with its standard deviation. In a semi-logarithmic
plot (insert) the biphasic nature of the mineralization law is evident.
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the right (dark and light gray line in Fig. 5, respectively). The
shift of the peak position is also reflected in the monotonously
increasing function of CaPeak plotted in Fig. 6. While in the
considered interval of the turnover time with respect to the
healthy turnover time between 0.1 and 4, CaPeak increases only
by a factor of 1.19, the mean Ca content CaMean increases by a
factor 1.56. This discrepancy of the behavior of CaPeak and
CaMean is due to the change in the shape of the BMDD as
characterized by the width of the peak, CaWidth, and its
asymmetry. The most homogeneous mineralization distribution,
i.e., a minimum value for CaWidth, is obtained when the turnover
is sped up by a factor of about 4. Both a further increase and
decrease of the turnover lead to a broadening of the BMDD. The
asymmetry of the BMDD changes from a prevailing part at the
left side of the peak for high turnover, to a leaning to the right in
low turnover situations.

Discussion

The bone mineralization density distribution (BMDD) is a
standard quantity to describe the heterogeneous mineral content
of bone as a result of the remodeling and the mineralization
process. In the present work, we developed a mathematical
model to extract from the BMDD information about the



Fig. 5. Effect of different turnover times keeping the same mineralization law:
the solid black line denotes the reference BMDD, the dark gray line presents a
high turnover situation (4 times increased turnover with respect to the normal
turnover time) and the light gray line is the result of a 2 times reduced turnover.
In both cases a constant bone volume and a steady state condition for BMDD is
assumed.

Fig. 6. Most frequent calcium content (CaPeak), mean calcium content (CaMean)
and full-width at half maximum of the peak (CaWidth) plotted against different
turnover times. The turnover times are normalized by the healthy turnover time,
which corresponds to the turnover of the reference BMDD (i.e., 0.1 refers to a 10
times increased turnover).
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mineralization process in trabecular bone. Two main assump-
tions deserve a more detailed discussion.

Accuracy of the reference BMDD

The accuracy of the theoretical result is limited by the
experimental accuracy determining the BMDD. The effects of
counting statistics inherent in the stochastic process of electron
emission, backscattering and detection cause a broadening of
the true distribution [37]. Furthermore the frequency of
appearance of bone in the concentration range below 10 wt%
Ca and close to 30 wt% Ca is extremely small and therefore
relative measurement errors are large. These regimes of very
low and very high Ca content correspond to times in the
mineralization process approximately less than 1 week and
more than 30 years after the start of the process, respectively.
The plots in this paper show results only in this limited interval
of the Ca content. The cement lines separating bone packets are
not excluded from the BMDD and will preferentially make
additional contributions to the high Ca content range of the
BMDD. In addition, the fast primary mineralization should give
rise to a sharp gradient of the mineral content around the
mineralization front of a forming bone packet. The spatial
resolution of the qBEI measurements of 4 μm×4 μm could lead
to some averaging over this mineralization front. As a
consequence the initial slope of the obtained mineralization
law at very early times might underestimate the real slope.

Steady-state assumption

The relation between the mineralization law and the BMDD
as described by Eqs. (B6) and (B7) (Appendix B) is only valid if
the BMDD has reached its steady state configuration. Our
reference BMDD for healthy adult trabecular bone based on
previous qBEI measurements [18, 23] is very likely to fulfill this
criterion because samples in the age range from 25 to 95 years
did not show a significant change in the shape of the BMDD.
Although there is no data of the bone volume available, it can be
assumed that the bone volume is reduced corresponding to age-
related bone loss. Since the area under the experimentally
obtained BMDD is always normalized to 100%, changes in the
bone volume are not reflected in the BMDD. This observation of
an unchanged shape of the BMDD despite a loss of bone volume
indicates that shape changes of the BMDD occur on a faster time
scale than the bone loss so that the BMDD is always in “shape
equilibrium”. With this assumption our calculations are applic-
able also for scenarios where the bone volume is not constant but
undergoes a slow decrease or increase. Nevertheless, the validity
of the approach, e.g., the resulting mineralization law of healthy
humans (Fig. 4B) is surely limited to time scales in the order of
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about 30 years. This is further underlined by the increasing error
bars with time.

Under these assumptions, the three main results are as
follows:

(1) the peak-shaped BMDD reveals the biphasic nature of the
mineralization law.

With our example of a hypothetical exponential mineraliza-
tion law, which includes only a single time constant, we showed
that the resulting BMDD is in obvious contradiction to the
measured BMDD (Fig. 3B). The example demonstrates the
“competition” between the mineralization and the remodeling
process. In the case that remodeling proceeds faster than
mineralization (τMI>1), deposited bone packets do not have
enough time to mineralize before they are remodeled again and
the maximum value of the BMDD is therefore at zero mineral
content. Conversely, in the case where mineralization is more
efficient and the remodeling “lags behind” (τMI<1) the majority
of bone attains the maximum mineral content cmax and the
BMDD is monotonously increasing. The peak-shaped form of
the reference BMDD of healthy adults is consistent with the
existence of more than one time regime in the mineralization
process. In the first time regime, the mineralization process
dominates, which leads to an increase in the amount of not yet
fully mineralized bone. Conversely when the mineralization
process slows down significantly and drops behind the remodel-
ing process, the amount of higher mineralized bone starts to
decrease due to bone resorption causing a peak in the BMDD.
According to the viewpoint of Fig. 2, the mineralization process
changes the BMDD since bone packets shift in the diagram from
low to highmineral content. The velocity of this shift depends on
the mineral content within each bone packet. Our mineralization
law predicts a strong reduction in the mineralization velocity at
about 18wt%Ca.This reduction leads to a kind of “traffic jam”of
the moving bone packets in the diagram, with the result that the
different bone packets “pile up” giving rise to a peak in the
BMDD. Following this line of argument, we conclude that the
more rapid the reduction in the mineralization velocity, the
sharper becomes the peak of the BMDD.

(2) Prediction of a mineralization law for healthy humans
based on an experimentally obtained reference BMDD.

The mineralization law of healthy human adults that we
obtained consists of a rapid primary phase that increases the
mineral content up to about 18 wt% Ca and a much slower
increase afterwards lasting years. This prediction agrees well
with what was concluded by observations from standard
tetracycline labeling technique combined with qBEI [12].
Nevertheless, systematic labeling experiments combined with
Ca content measurements over a larger time range up to months
and years are still lacking and will be interfered by the
remodeling process. The prediction of the mineralization law
of Fig. 4B describes the mineralization process over a time
period of several years. Although it seems that a double linear
mineralization law [15] gives a reasonable description of the
mineralization process, our analysis demonstrates that the
resulting BMDD is then far-off from the reference BMDD.
The BMDD seems to be a much more sensitive instrument to
learn about the mineralization kinetics than generally assumed.
(3) Quantitative prediction of the influence of changes in the
turnover on the BMDD.

Beside a full prediction of the shape of the BMDD (Fig. 5),
the most important result is the strong dependence of the mean
Ca content on the bone turnover. The mineral content shifts to
higher levels at reduced turnover and to lower levels at higher
turnover (Fig. 6, top). Antiresorptive therapies using bispho-
sphonates are known to significantly reduce turnover [26, 27],
while several bone diseases, most prominent osteoporosis, are
associated with increased turnover [24]. Our simulation results
are in good agreement with the experimentally measured
BMDD in such patients, who show increased mean mineral
content for antiresorptive treatment and decreased mean mineral
content when turnover is increased [24,27–29,38]. This relation
of bone turnover and mean Ca content has clinical relevance,
when bone mineral density (BMD) as measured by DXA is used
for diagnosis and evaluation of treatment efficacy in osteo-
porosis. The resulting BMD includes combined information
about the bone volume as well as the mean mineral content
(CaMean). Our calculations show that a five-fold increase in the
turnover would lead to a reduction of the BMD by 16.6% at
constant bone volume. Thus, the interpretation of BMD in terms
of bone loss or increase has to be done with caution.

Considering the peak width in a low turnover situation, our
model predicts a broadening. At a first glance, this is in
contradiction to measurements made after bisphosphonate
treatment, which show a narrowing of the BMDD. However,
experimental measurements and simulation consider different
situations. While the changes in BMDD were measured already
after 2 and 3 years of bisphosphonate administration, our model
calculations predict the shape of the BMDD for a reduced
turnover of constant value (steady state condition). An
agreement can therefore be expected only for late times after
a change in the turnover. Recently, measurements of the effect
of risedronate showed a narrowing after 3 years, followed by a
broadening and a return to normal peak width to baseline level
after 5 years [28,29]. An example of a high turnover situation is
anabolic treatment with intermittent PTH with increased peak
width, CaWidth, as measured by qBEI, which showed a strong
positive correlation with the bone formation rate (BFR/BS) as
determined histomorphometrically [9]. Again, it seems that this
is not in agreement with the predictions of the model. However,
it has to be taken into account that in this case the bone volume
changes fast in time. Dynamic simulations solving Eqs. (A4)
and (A5) (Appendix A) numerically would be necessary to
allow a closer comparison between experimental measurements
and simulations since they are able to predict the full-time
evolution of the BMDD after changes in the remodeling or in
the mineralization process.

In conclusion, the measured BMDD of human adult
trabecular bone is approximately in a steady state condition
and therefore reflects presumably an evolutionary optimum
distribution with respect to material quality and bone strength.
Hence, any deviations from this optimal distribution might
deteriorate the mechanical performance of the bone. The
described simulation of the BMDD gives us new insight in the
mechanism how such a fingerprint of bone mineralization is
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generated and how changes can be induced by diseases and
treatments. New possibilities of analysis of BMDDs measured
on various bone biopsies are opened and predictions can be
made on the BMDD shape after certain treatments. This is of
important clinical interest, especially when a patients' BMDD
should be corrected towards normal BMDD. Answering the
question whether changes in BMDD have to be attributed to a
change in the turnover rate or are due to a disordered
mineralization process will help to tailor treatment regimes of
higher efficiency.
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Appendix A. Time evolution equation for the BMDD ρ(c,t)

The bone volume having a mineral content between c1 and
c2 at a particular time t is given byZ c2

c1

qðc; tÞdc: ðA1Þ

After an infinitesimal time Δt this bone volume changes by Δρ
due to the following contributions:

(1) As bone mineralizes, a volume element of bone with a
mineral content initially below c1 enters our observation
interval [c1, c2]. Its volume is ρ(c1,t)v(c1)Δt because v(c1)Δt
corresponds to the change in the mineral content obtained inΔt.

(2) Similarly, the bone volume leaving our observation
interval [c1, c2] is −ρ(c2,t)v(c2)Δt.

(3) The resorbed bone volume by the osteoclasts in the
interval [c1, c2] of the mineral content is assumed to be
proportional to the available bone volume (Eq. (A1)). To
account for a possible preference of the osteoclasts to resorb, for
instance, high mineralized bone, we introduce the bone
resorption preference rate, so that the resorbed bone volume
in [c1, c2] amounts to

�
Z c2

c1

xOCðc; tÞqðc; tÞdcDt: ðA2Þ

Therefore, the total change Δρ as the sum of these
contributions equals

Dq ¼ qðc1; tÞvðc1ÞDt � qðc2; tÞvðc2ÞDt
�
Z c2

c1

xOCðc; tÞqðc; tÞdcDt: ðA3Þ

Using q c1; tð Þv c1ð Þ � q c2; tð Þv c2ð Þ ¼ �
R c2

c1

AðqvÞ
Ac

dc and divid-

ing by Δt, in the limit Δt→0 with
Dq
Dt

¼
Z c2

c1

Aq
At

dc leads to the

following partial differential equation

Aq
At

c; tð Þ
total temporal change

¼ � A

Ac
qðc; tÞvðcÞ½ �

change due to mineralization process

� xOCðc; tÞqðc; tÞ
bone resorption due to osteoclasts

: ðA4Þ
(4) The deposition of unmineralized bone by the osteoblasts
is modeled by the boundary condition at c=0. Since the bone
deposition rate jOB (t) is defined as bone volume deposited
per time unit, the bone volume deposited during Δt equals
jOB (t)Δt. Following the argument given in (1) results in a
boundary condition for ρ at c=0:

qðc ¼ 0; tÞvðc ¼ 0Þ ¼ jOBðtÞ: ðA5Þ

A different way to write the balance in bone volume between
resorption and deposition is that the sum of the resorbed and
the deposited bone volume has to be equal to the total change
in bone volume, i.e.,

�
Z cmax

0
xOC c; tð Þq c; tð Þdcþ jOB ¼ dBV

dt
: ðA6Þ

Standard bone histomorphometric parameters for the osteo-
blast and osteoclast action are the bone formation rate (BFR/
BV) defined as the percentage of bone formed per year, and
the bone resorption rate (BRs.R/BV) defined as the
percentage of bone resorbed per year. Since both parameters
refer to the duration of 1 year, we have to perform an
integration over 1 year of our instantaneously defined
quantities to obtain the relationships between model para-
meters and parameters of bone histomorphometry:

BFR=BV ¼
Z 1year

0

jOBðtÞ
BVðtÞ dt ðA7Þ

BRs:R=BV ¼
Z 1year

0

Z cmax

0

xOCðc; tÞqðc; tÞdc
BVðtÞ dt: ðA8Þ

Appendix B. Steady state solution

Under the steady state assumption all the time dependencies
are removed, i.e., ρ(c,t) and ωOC (c,t) become functions only of
mineral content: ρ(c) and ωOC (c). Eq. (A4) and its boundary
condition (Eq. (A5)) become also time independent and
simplify to

d
dc

q cð Þv cð Þ½ � ¼ �xOC cð Þq cð Þ
qðc ¼ 0Þvðc ¼ 0Þ ¼ jOB

(
ðB1Þ

This ordinary differential equation can be solved analytically to
compute the mineralization law from a given mineralization
distribution ρ(c). The mineralization velocity reads as

v cð Þ ¼ 1
qðcÞ

Z cmax

c
xOCðc VÞqðc VÞdc V

� �
; ðB2Þ

and since t cð Þ ¼
R c

0

dc V
vðc VÞ, we find for the mineralization law

expressed as t(c),

t cð Þ ¼
Z c

0

qðc VÞdc VR cmax

c V xOCðcWÞqðcWÞdcW
ðB3Þ
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For the inverse transformation, starting from a mineralization
law, we obtain for the mineralization distribution,

q cð Þ ¼ jOB
vðcÞ exp �

Z c

0

xOCðc VÞ
vðc VÞ dc V

� �
; ðB4Þ

and with v cð Þ ¼ dc
dt

cð Þ and using integration by parts leads to

q cð Þ ¼ jOB
dt
dc

cð Þexp �xOC cð Þt cð Þð Þ

exp �
Z c

0

dxOC

dc V
c Vð Þt c Vð Þdc V

� �
: ðB5Þ

The BMDD depends on both, the mineralization law and a
possible preference of bone resorption as a function of the
mineral content. In the case discussed in the main text that ωOC

is a constant independent of c, jOB=ωOC BV, and with the

dimensionless time parameter s ¼ t
tTO

¼ t
jOB
BV

, Eq. (B3) reduces

to

s cð Þ ¼ �ln
Z cmax

c

qðc VÞ
BV

dc V; ðB6Þ

where the logarithm enters because Eq. (B3) is then an integral

with the expression in the numerator equal to the derivative of

the denominator. The reduction from Eq. (B5) to

qðcÞ
BV

¼ � d
dc

exp �s cð Þð Þ½ � ðB7Þ

is straightforward since the last exponential function on the right

hand side of Eq. (B5) becomes equal to 1.
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