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Abstract 

BACKGROUND: Critically ill patients often experience high levels of insulin resistance and stress-
induced hyperglycemia, which may negatively impact outcomes. However, evidence surrounding the 
causes of negative outcomes remains inconclusive. Continuous glucose monitoring (CGM) devices 
allow researchers to investigate glucose complexity, using detrended fluctuation analysis (DFA), to 
determine whether it is associated with negative outcomes.  

AIM: The aim of this study was to investigate the effects of CGM device type/calibration and CGM 
sensor location on results from DFA. 

METHODS: This study uses CGM data from critically ill patients who were each monitored 
concurrently using Medtronic iPro2’s on the thigh and abdomen, and a Medtronic Guardian Real-
Time on the abdomen. This allowed inter-device/calibration type and inter-sensor site variation to 
be assessed. DFA is a technique that has previously been used to determine the complexity of CGM 
data in critically ill patients. Two variants of DFA, monofractal and multifractal, were used to assess 
the complexity of sensor glucose (SG) data, as well as the pre-calibration raw sensor current. 
Monofractal DFA produces a scaling exponent (H), where H is inversely related to complexity. The 
results of multifractal DFA are presented graphically, by the multifractal spectrum. 

RESULTS: From the 10 patients recruited, 26 CGM devices produced data suitable for analysis. The 
values of H from abdominal iPro2 data were 0.10 [0.03 – 0.20] higher than those from Guardian 
Real-Time data, indicating consistently lower complexities in iPro2 data. However, repeating the 
analysis on the raw sensor current showed little or no difference in complexity. Sensor site had little 
effect on the scaling exponents in this data set. Finally, multi-fractal DFA revealed no significant 
associations between the multifractal spectrums and CGM device type/calibration or sensor 
location. 

CONCLUSIONS: Monofractal DFA results are dependent on the device/calibration used to obtain CGM 
data, but sensor location has little impact. Future studies of glucose complexity should consider the 
findings presented here when designing their investigations. 

 

Abbreviations: 

BG – blood glucose 

CGM – continuous glucose monitoring 

FDA – Food and Drug Administration 

DFA – detrended fluctuation analysis 

ICU – intensive care unit 

STAR – Stochastic TARgeted 

SG – sensor glucose 

BGA – blood gas analyser 

IQR – inter-quartile range 

MARD – mean absolute relative dfference  



1.0 Introduction 

Critically ill patients often experience high levels of insulin resistance [1-7] and stress-induced 

hyperglycemia, which may negatively impact outcomes [1-3, 8, 9]. The 2001 landmark study by Van 

den Berghe et al was the first data showing lower blood glucose (BG) levels in critically ill patients were 

associated with improved outcomes [9]. Many subsequent studies tried to replicate those results with 

some showing reduced mortality [10, 11], others failing to match the results [12-14], and many seeing 

no difference [15]. Since then it has been determined that that glycemic variability also plays a very 

important role [16-21].  

 

With FDA approval of the first commercially available continuous glucose monitoring (CGM) device in 

2004, glycaemic dynamics could be captured at a much higher resolution compared to conventional 

BG monitoring. More recently, CGM devices have allowed researchers to test the latest hypothesis, 

that glucose complexity could also be associated with mortality in critically ill patients [22, 23]. Glucose 

complexity, in a very simplistic view, is a measure of the 'fuzziness' of a glucose trace.  

 

The current hypothesis is that a healthy glucose regulatory system will be highly reactive to 

disturbances and make many small adjustments to keep glucose concentration within a normal range 

[22]. Conversely, a failing glucose regulatory system will be ‘sluggish’ and the glucose profile should 

appear smooth with very few high frequency adjustments. To date, there have been two studies that 

have investigated glucose complexity in critically ill patients [22, 23]. Both studies used Detrended 

Fluctuation Analysis (DFA) to quantify glucose complexity, reporting an association between the 

results of DFA and mortality.  

 



Outside of glycemia research, DFA has been widely used to quantify the scaling and correlation 

properties of other non-stationary, physiological time series. For example, DFA has been applied to 

inter-breath-interval of human respiration, inter-beat-interval of human heartbeat and inter-stride-

interval of human stride to differentiate between healthy and pathological conditions [24-30]. The aim 

of this study was to extend the knowledge of glucose complexity in critically ill adults by investigating 

the effects of CGM device type/calibration and CGM sensor location on DFA results.   



2.0 Methods 

2.1 Patients 

This study uses CGM data from patients admitted to the Christchurch Hospital ICU, a mixed surgical 

and medical ICU, between June and November 2012. Inclusion criteria for the study were an expected 

duration of ICU admission longer than 5 days and 2 consecutive BG measurements > 144mg/dL, 

indicating the need for glycaemic control using the STAR protocol [31]. STAR is a model based 

glycaemic control protocol that modulates insulin and nutrition to control BG concentration. Written 

and signed consent was obtained from the patient or next of kin if the patient was unable to consent. 

This study and use of data was approved by the Upper South A Regional Ethics Committee, New 

Zealand.  

 

2.2 Continuous Glucose Monitoring 

Each participant in the study was monitored using 3 Medtronic CGM devices (Medtronic Diabetes, 

Northridge, CA) for a period of up to 6 days. Two sensors were located on the patient’s abdomen, one 

of which was connected to a Medtronic Guardian Real-Time monitor and the other connected to a 

Medtronic iPro2 recorder. The third sensor was located on the patient’s thigh and was connected to 

a second Medtronic iPro2 recorder. This configuration allowed comparison of results between 

different devices and sensor locations within each subject. Importantly, all sensors in the study had 

the same Medtronic Enlite glucose sensor technology. It should be noted that these CGM devices and 

sensors were not designed for use in the ICU and were being used off-label in this study.  

 

One significant difference between the Guardian and iPro2 CGM devices is the calibration algorithm. 

Calibration algorithms use independent calibration BG measurements to convert the raw sensor 



current (ISIG) into a series of sensor glucose (SG) values for the user. The iPro2 device stores the sensor 

signal information internally and it is retrospectively calibrated after the device has been removed 

from the patient. Retrospective calibration allows the calibration algorithm to use information both 

before and after the time point of interest to obtain an optimal calibration to each reference point. 

However, the Guardian CGM device displays a glucose value in real time and the calibration algorithm 

can only use prior data for calibration. Otherwise, all sensor technology was identical. 

 

Calibration BG measurements were obtained by specifically trained ICU nurses at least 3 times per 

day, per manufacturer guidelines. A blood sample was drawn from the patients arterial line and a 

blood gas analyzer (BGA) was used to determine the glucose concentration. The value from the BGA 

was immediately entered into the Guardian Real-Time device and then recorded for retrospective 

calibration of the iPro2 devices. In addition to BGA measurements, glucometer BG measurements 

using arterial blood samples were done every 1-3 hours for glycemic control. These measurements 

were independent of CGM and could therefore be used to assess CGM performance. 

 

2.3 Glucose complexity 

Glucose complexity was quantified in this study using DFA, which has been widely used to quantify 

the scaling and correlation properties of non-stationary, physiological time series. For a self-similar 

time series (X), the scale invariant structure can be described by 𝑋(𝑐𝑡) = 𝑐𝐻𝑋(𝑡), where the power 

law exponent (H) describes the scaling and is used to quantify complexity. In some cases, the scaling 

properties of a time series are associated with changes in physiology and may be useful to help better 

understand certain illnesses or medical conditions [26, 28].  

 



In terms of glucose complexity, the current hypothesis is that a healthy glucose regulatory system will 

make many small adjustments to keep glucose concentration within a healthy range and the high 

complexity is characterized by a low value of H. In contrast, a failing glucose regulatory system will be 

‘sluggish’ and appear smooth with low complexity, characterized by high values of H.  

 

Two modes of DFA are available depending on the properties of the signal or time series. Monofractal 

DFA is used when the scaling properties of the time series can be quantified by a single power law 

exponent, which is independent of time and space. However, a limitation of monofractal DFA is that 

real world physiological signals often do not exhibit simple monofractal scaling behavior over the 

entire time period [28, 32]. In these cases, multiple scaling exponents are required to fully characterize 

the correlation properties of the signal and multifractal DFA should be employed.  

 

The results of a multifractal DFA are typically displayed in a multifractal spectrum (see the 

supplementary file for details). The width, shape and location of the multifractal spectrum can all be 

used to give important information about the relationship between the time series and the 

physiological phenomenon being studied. This capability has been illustrated in previous studies that 

have used multifractal DFA to help differentiate between healthy and pathological conditions, such as 

heart disease [28].  

 

An example of two spectrums produced using multifractal DFA are shown in Figure 1. The spectrum 

plotted with red dots was produced from a signal with monofractal scaling properties and the 

spectrum plotted with blue crosses was produced from a signal with multifractal scaling properties, 

data for both of which were provided by Ihlen [32]. Note the spectrum for the monofractal signal is 

very narrow compared to the multifractal signal, indicating the scaling exponents are almost 



independent of time and space. Thus, a single H from monofractal DFA is sufficient to characterize the 

scaling and correlation properties of the signal. 

 

 
Figure 1: Example of multifractal spectrum that is produced from multifractal DFA. Note the 

monofractal signal produces a very narrow spectrum, indicating monofractal scaling is present and 
monofractal DFA is sufficient to characterize the scaling and correlation properties of the signal. 

 

This study uses both monofractal DFA and multifractal DFA implemented in MATLAB (Mathworks, 

Natick, MA), based on the descriptions provided in [32, 33]. A thorough discussion of both methods 

can be found elsewhere (monofractal DFA [27] and multifractal DFA [33]). However, a general 

implementation for both methods is summarized in the supplementary file with examples. 

 

2.4 Analysis 

This study uses DFA to investigate the glucose complexity of critically ill patients who were monitored 

by 3 simultaneous CGM devices during their ICU stay. Specifically, it investigates: 
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1. Whether CGM device type/calibration or CGM sensor location affects DFA results. 

2.  Whether monofractal or multifractal DFA is more appropriate for CGM signals, given the use 

of monofractal DFA as a discriminator in [22, 23]. 

 

Each patient enrolled in the study had 3 CGM devices monitoring glucose levels for up to 6 days. The 

warm-up period for these devices is 1-2 hours [34, 35], but due to off-label use here the first 12 hours 

of SG data were excluded to ensure the devices were performing properly during the period of 

interest. Data sets with less than 500 SG measurements were excluded and SG data sets with less than 

1000 SG measurements were analyzed with increased care to ensure robust results as this value is a 

recommended minimum [32]. The SG data were analyzed using both monofractal DFA and multifractal 

DFA to determine whether the analysis method has an impact on results.   

 

In particular: 

 Data from the two iPro2 CGM devices, one on the thigh and one on the abdomen, were 

compared to assess sensor location effects independent of technology.  

 Data from the iPro2 on the abdomen were compared to data from the Guardian Real-Time 

located on the opposite side of the patient’s abdomen, to assess the impact of CGM device 

type/calibration on DFA results.  

 Analyses were repeated using the ISIG, which removed any effects induced by device 

calibration. 

 

Monofractal DFA results are presented in a table, as the result from each analysis is a single scaling 

exponent; H. Results from the multifractal DFA are presented in figures containing a plot of the 



multifractal spectrum. When comparing results, similar values of H from the monofractal analysis and 

spectrums of similar shape/position from the multifractal analysis indicate little or no difference in the 

scaling properties of the time series.  

 

Numerical results are presented as median [25th – 75th percentile] where applicable. The Wilcoxon 

signed-rank test was used to determine statistical significance when comparing inter-sensor site or 

inter-device type results. This test was used because the results are not independent or normally 

distributed.   



3.0 Results 

During the study period, 10 patients were recruited and consented to participate in the study. Table 

1 shows the cohort demographics, as well as measures of BG control for these patients. The results 

show that 81% of BG measurements were within the 72 - 144mg/dL euglycemic range and no BG 

measurements were recorded below 54 mg/dL. 

 

Table 1: Cohort demographics and blood glucose control results 
Displayed as Median [IQR] where applicable 

 
SAPS - Simplified Acute Physiology Score 
APACHE - Acute Physiology And Chronic Health Evaluation 

 

Of the 30 CGM sensors used during the study, 26 sensors from 9 patients produced enough data for 

use in the DFA analysis. The 4 excluded data sets contained less than 500 measurements and were 

considered too short for analysis.  Three of the excluded data sets were from a short stay patient 

eliminating all their CGM data, and the other excluded data set was from a sensor with adhesion issues 

that was dislodged early in the monitoring period. 

 

Demographics

Patients 10

Age (years) 51 [39 - 64]

Sex (M/F) 5/5

APACHE II 24 [17 - 27]

APACHE III 85 [52 - 99]

SAPS II 52 [30 - 59]

Length of stay (days) 20 [10 - 33]

Outcome (L/D) 6/4

Diabetes (None/T1/T2) 10/0/0

Blood glucose control

Time between BG (hours) 1.5 [0.9 - 2.3]

Median [IQR] BG (mg/dL) 124 [112 - 137]

Percent BG in 72 -144 mg/dL band 81%

Percent BG < 72 mg/dL 0.14%

Percent BG < 54 mg/dL 0%



3.1 Monofractal DFA 

The results from the monofractal DFA are shown in Table 2. The top half shows the results of DFA 

when analyzing SG data from the CGM devices. It is important to reiterate that the Guardian and iPro2 

devices use different calibration algorithms with the same sensor technology. Thus, these results 

include any effects of calibration on DFA results.  

 

The CGM device type section shows the results when comparing CGM device type. Across the cohort, 

the retrospectively calibrated iPro2 reported higher scaling exponents of 1.56 [1.46 – 1.60] compared 

to 1.43 [1.37 - 1.48] for the Guardian Real-Time device. Furthermore, when comparing the two 

different abdominal devices monitoring the same individual, the H values for iPro2 data were 0.10 

[0.03 – 0.11] higher than the H values for Guardian data (p = 0.08).  

 

The Sensor location section shows the results comparing a sensor inserted in the abdomen to a sensor 

inserted in the thigh of the same CGM device type (iPro2). There is no significant difference in the H 

values for different sensor locations (p = 0.64). Furthermore, performance at both sites relative to 

independent BG measurements was similar, at 11.8% MARD (mean absolute relative difference) in 

the abdomen and 12.4% MARD in the thigh.  

 

The bottom half of Table 2 shows results from a similar analysis conducted on ISIG, which removes the 

effects of CGM device calibration. The data sets are stratified into the same groups as the top half of 

Table 2 based on CGM type and sensor location. When the effects of calibration are removed, the 

results show no significant differences between the groups, in any of the sub analyses. 

 



Table 2: Results from monofractal DFA of SG and ISIG data over cohort 

  
* Wilcoxon signed Rank test 

 

 

3.2 Multifractal DFA 

Monofractal DFA revealed all 26 CGM data sets have H values between 1.2 - 1.8, as shown in Table 2. 

Thus, for the multifractal DFA the integration step (Equation 1 in the supplementary file) was omitted 

and the resulting H values from the analyses were adjusted by +1 [32].  

 

Figure 2 shows the multifractal spectrums for all SG and ISIG data sets used in the analyses. The two 

subplots on the left side were created using SG data, comparing CGM device type (top), and sensor 

location (bottom). Equivalent plots on the right side of Figure 2 were created using ISIG data. There 

Guardian iPro2 P value

Number of data sets 9 8

Scaling exponent (H) 1.43 [1.37 - 1.48] 1.56 [1.46 - 1.60]

Difference in H (iPro2 - Guardian) 0.08*

Abdomen Thigh P value

Number of data sets 8 9

Scaling exponent (H) 1.56 [1.46 - 1.60] 1.52 [1.50 - 1.61]

Difference in H (Thigh - Abdomen) 0.64*

Guardian iPro2 P value

Number of data sets 9 8

Scaling exponent (H) 1.42 [1.34 - 1.52] 1.54 [1.37 - 1.60]

Difference in H (iPro2 - Guardian) 0.53*

Abdomen Thigh P value

Number of data sets 8 9

Scaling exponent (H) 1.54 [1.37 - 1.60] 1.51 [1.47 - 1.60]

Difference in H (Thigh - Abdomen) 0.38*0.04 [-0.03 - 0.09]

CGM device type (both in abdomen)

Sensor location (both iPro2)

0.10 [0.03 - 0.20]

0.04 [-0.06 - 0.11]

Analysing pre-calibration ISIG data

Analysing calibrated SG data

CGM device type (both in abdomen)

Sensor location (both iPro2)

0.06 [-0.04 - 0.10]



were no significant or obvious associations between sensor site or CGM device type and the shape, 

width or location of the multifractal spectrums. 

 

Figure 3 shows four examples of how monofractal and multifractal DFA can give contradicting results 

and why the results must be interpreted with care. In all four cases, monofractal DFA of the two SG 

data sets resulted in the same scaling exponent. However, the multifractal DFA resulted in significantly 

different spectrums for each of the paired data sets. Furthermore, the width of the spectrums suggests 

the scaling properties of the time series are multifractal and that multifractal DFA is a more 

appropriate analysis technique [28, 32]. 

 

Figure 4 shows two examples of SG data from patients in this study and the subsequent results of 

multifractal DFA. Example ‘A’ shows SG data from three sensors that report similar glucose traces 

throughout the monitoring period, but the multifractal DFA produces three quite different multifractal 

spectrums. In contrast, example ‘B’ shows SG data from two sensors that do not track each other very 

well and despite the discrepancies in SG data, the multifractal DFA resulted in two multifractal 

spectrums that are almost identical.   



 

Figure 2: Multifractal spectrums comparing CGM device types and sensor locations. The plots on the 
left were created using SG data and the plots on the right were created using ISIG data. 

 

 

Figure 3: Multifractal Spectrum comparison for data sets that had the same scaling exponent from 
monofractal DFA. 
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Mulitfractal Spectrum for two data sets with H=1.38
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Figure 4: A) This example shows good agreement between SG data for each of the three CGMs, but 
the multifractal spectrums for each data set are quite different. B) This example shows average 
agreement between SG data for two CGMs, but the multifractal spectrums for each data set overlap.  
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4.0 Discussion 

The aim of this study was to investigate the effects of CGM device type/calibration and CGM sensor 

location on DFA results in critically ill patients. Due to the configuration of CGM devices and sensor 

locations in this study, there was a unique opportunity to study the effects of these parameters on 

DFA results. 

 

4.1 Monofractal DFA 

The effects of CGM device type on monofractal DFA results revealed an important trend. The two 

sensors located in the patient’s abdomen were identical, but one CGM device was an iPro2 and one 

was a Guardian Real-Time. H values from the iPro2 data were consistently higher than H values from 

the Guardian device. This outcome is most likely due to the calibration algorithms used to process the 

raw sensor data and estimate the underlying blood glucose concentration. The retrospective 

calibration utilized by the iPro2 device potentially has a higher degree of smoothing/filtering that leads 

to lower complexity of the output CGM trace. Due to privacy restrictions placed on the calibration 

algorithms, this could not be fully confirmed by comparing the algorithms directly. However, an 

analysis of the raw pre-calibration ISIG data from the sensors showed no significant difference between 

the H values from each device. Thus, the difference in H observed when assessing SG data can be 

attributed to the calibration algorithm and/or potentially the CGM hardware used. 

 

Sensor location (thigh iPro2 data vs. abdomen iPro2 data) had little effect on the scaling exponent 

determined through monofractal DFA and the range of H values for each sensor location were similar. 

Furthermore, comparing the results from two sensors monitoring the same individual showed no 

consistent trend of one sensor having a higher H value than the other. Repeating the analysis using 

the raw sensor ISIG to eliminate any calibration effects gave similar results and the scaling exponent 



was not dependent on location. These results suggest that CGM sensor location, at least thigh vs. 

abdomen, should not have a significant effect on the results of a study using monofractal DFA. 

 

4.2 Multifractal DFA 

The two previous studies of DFA in ICU patients only used monofractal DFA to assess glucose 

complexity [22, 23], but this study also tested multifractal DFA. Analyses of SG data using multifractal 

DFA in this study were unable to associate the shape, width or position of the multifractal spectrum 

with CGM device type or sensor location. Furthermore, overlaying all of the multifractal spectrums 

from all sensors in a single figure, similar to Figure 2, showed no clear trends to differentiate between 

CGM device types or sensor locations. The ISIG results showed essentially the same results.  

 

However, one very important finding from the multifractal DFA was the width of the multifractal 

spectrums. Each spectrum was spread across a wide range of exponents, which suggests the scaling 

of SG data is multifractal, and not monofractal, by nature. Thus, future studies that investigate glucose 

complexity using CGM data should test for multifractal scaling and consider multifractal DFA in their 

analyses. 

 

Another interesting finding from the multifractal analysis is depicted in the subplots of Figure 3. In 

these four cases, monofractal DFA of both data sets produced the same H value, but their multifractal 

spectrums were clearly and significantly different. These differences between monofractal and 

multifractal results are important as they could skew the interpretation of results and lead to incorrect 

conclusions from studies of this nature. These results reiterate the need for a thorough analysis and 

highlight why care must be taken when interpreting results. 



 

Figure 4 illustrates an important secondary observation from this study, that complexity analysis 

provides different information to other metrics such as mean glucose or glycaemic variability.  

Example ‘A’ shows three SG traces that track each other well and report similar overall glycaemia. 

Although the mean and variability of the traces are similar, their multifractal spectrums are very 

different, indicating each SG trace has unique scaling properties. Conversely, example ‘B’ shows two 

SG traces that have quite different dynamics and don’t track each other very well, but the multifractal 

spectrums for each sensor show very similar scaling properties.  

 

4.3 Limitations 

There are several limitations of this study that need to be addressed. First, the data set used here 

contains 26 sets of CGM data from a relatively small cohort of critically ill patients, compared with the 

two previous studies of DFA in critically ill patients. Despite this limitation, the analysis did highlight 

several important aspects that should be considered in future studies including the effects of sensor 

location and CGM device/calibration on DFA results. Equally, the total number of sensors available for 

assessing the impact of calibration and location ensure novel results that are robust. 

 

Second, the patients in this study all had stress-induced hyperglycemia due to the severity of their 

illness, rather than pre-existing diabetes. A similar study investigating patients with diabetes in the 

ICU may yield different results leading to different conclusions. Thus, the findings presented here are 

not necessarily generalizable to all patient types.  

 



Third, the sensors and devices used in this study were different to those used in the two previous 

studies of DFA in critically ill patients. Therefore, a direct comparison between all three studies is not 

appropriate. The devices in those studies were no longer available when this study data was collected 

and a newer generation of technology was used. Thus, the study conditions that would allow an exact 

comparison could not be replicated. However, any potential differences due to advancing technology 

would, again, indicate the impact of technology on DFA assessment of physiology. 

 

Fourth, the quality of results from DFA depends on the quality of CGM data. While an MARD of ~12% 

is considered good performance by current CGM device standards, it cannot be guaranteed that the 

device has accurately and reliably recorded only true physiological glycemic dynamics without 

interferences or noise. Fortunately, sensor technologies are constantly evolving and their accuracy 

improving. It is also possible that clinical factors, such as certain drugs and/or illnesses may have an 

impact on sensor performance. However, the impact of such clinical factors were mitigated in this 

study by strictly comparing SG data from devices monitoring the same individual, ensuring sensors 

were exposed to the same monitoring conditions.  



5.0 Conclusion 

The results of this study revealed three key findings that should be considered when analyzing glucose 

complexity in critically ill adults: 

1. Monofractal DFA results were sensitive to the type of CGM device used to collect the glucose 

data, and the calibration in particular. Data from the iPro2 CGM device gave consistently 

higher DFA results compared to data from the Guardian Real-Time CGM device.  

2. Sensor location (abdomen vs. thigh) had no significant effect on DFA results.  

3. Multifractal DFA results were not always consistent with monofractal DFA results. 

Furthermore, the width of the multifractal spectrums suggests that multifractal DFA should 

be considered in future glucose complexity studies. 

 

Further investigations of glucose complexity are required before solid conclusions can be drawn. 

However, this study clearly highlights where care should be taken in the design of those studies and 

the analysis of the results.   
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 Supplementary file - DFA implementation 

First, the time series (x) is summed and mean subtracted using Equation S1. 

𝑌(𝑖) = ∑ [𝑥𝑘 − 〈𝑥〉],       𝑖 = 1, … , 𝑁𝑖
𝑘=1        Equation S1 

Second, the profile 𝑌(𝑖) is divided into Ns non-overlapping segments of equal length s and the trend 

for each segment is approximated using a least-square fit, as shown in Figure S1 for segment sizes of 

32, 64 and 128 SG measurements.  

 

Figure S1: Three examples showing segmented SG data with linear regression lines. The segment size 
increases from top to bottom. The variance between each regression line and the corresponding SG 

data in that segment is calculated using Equation 2. 

 

The variance between the time series and the least-square fit for each segment 𝑣 is calculated using 

Equation S2. 

𝐹2(𝑣, 𝑠) =
1

𝑠
∑ (𝑌[(𝑣 − 1)𝑠 + 𝑖] − 𝑦𝑣(𝑖))2𝑠

𝑖=1            Equation S2 



Third, the qth order fluctuation function is calculated using equation S3, where a monofractal DFA is 

obtained by holding q=2. Essentially, Equation S3 gives a qth order RMS of the variances calculated 

using Equation S2. For positive q, large deviations from the fitted trend will have more influence on 

the fluctuation function than small deviations, and, for negative values of q small deviations will have 

a larger influence on the fluctuation function. The degree to which the fluctuation function is 

influenced by q is determined by the magnitude of q.  

𝐹𝑞(𝑠) = {
1

𝑁𝑠
∑ [𝐹2(𝑣, 𝑠)]

𝑞
2⁄𝑁𝑠

𝑣=1 }
1

𝑞⁄
           Equation S3 

The scaling behavior of the fluctuation functions is illustrated by analyzing a plot of log(𝐹𝑞(𝑠)) versus 

log (s) for each q. For a scale invariant series, the relationship is linear and the slope represents the 

power law exponent, H, as in Figure S2 (left). For a multifractal time series, the scaling exponent will 

change for different values of q, as shown in Figure S2 (right). 

 

  

Figure S2: (left) Example plot of log(F) versus log(s) for a single value of q, where the slope of the 
linear regression line is the scaling exponent, H. (right) Example of how H changes for different 

values of q, for a multifractal time series 

 

Slope 

= H 

H for q 

= -5 

H for 

q = 5 



For the case of q=0, Equation S3 cannot be employed so a logarithmic averaging procedure is used 

instead (Equation S4). 

𝐹0(𝑠) = 𝑒𝑥𝑝 {
1

2𝑁𝑠
∑ log[𝐹2(𝑣, 𝑠)]𝑁𝑠

𝑣=1 }              Equation S4 

Multifractal DFA performs best when the signal being analyzed is noise-like rather than a random walk. 

To determine the type of signal a monofractal DFA can be run prior to multifractal DFA. If the power 

law exponent, H, is between 0.2 – 0.8 then the time series is noise-like and multifractal DFA can be 

run without modification. However, if H is between 1.2 – 1.8 then the time series is more like a random 

walk. For random walk signals, the integrating process (Equation S1) can be skipped, and +1 should be 

added to the power law exponents determined in the multifractal analysis [32]. 

 

To aid the interpretation of the multifractal scaling properties of a time series, the mass exponent 

(𝜏(𝑞)), q-order singularity exponent (ℎ(𝑞)) and q-order singularity dimension (𝐷(𝑞)) are calculated 

using Equations S5-S7. 

𝜏(𝑞) = 𝑞. 𝐻(𝑞) − 1      Equation S5 

ℎ(𝑞) = 𝜏′(𝑞)              Equation S6 

𝐷(𝑞) = 𝑞. ℎ(𝑞) −  𝜏(𝑞)        Equation S7 

A plot of 𝜏(𝑞) vs. 𝑞 (Figure S3 - left) or ℎ(𝑞) vs. 𝑞 (Figure S3 - right) can be used to determine the 

degree of multifractal scaling in a time series. A plot of 𝐷(𝑞) vs. ℎ(𝑞) displays the mulitfractal 

spectrum. The width, shape and location of the multifractal spectrum can all be used to give important 

information about the relationship between the time series and the physiological phenomenon being 

studied.  



 

Figure S3: (left) plot of 𝜏(𝑞) vs. 𝑞 and (right) ℎ(𝑞) vs. 𝑞, either of which can be used to interpret the 
scaling properties of a multifractal time series. 

 


