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Abstract: Continuous glucose monitoring (CGM) devices can measure blood glucose levels through 

interstitial measurements almost continuously (1-5min sampling period). However, they are not as accurate 

as glucose readings from blood measurements. The relation between tissue and blood glucose is dynamic 

and the sensor signal can degrade over time. In addition, CGM readings contains high frequency noise and 

can drift between measurements. However, maintaining continuous glucose monitoring has the potential to 

improve the level of glycemic control achieved and reduce nurse workload. For this purpose, a simple model 

was designed and tested to see the effect of inherent CGM error on the insulin therapy protocol, STAR 

(Stochastic TARgeted).   

 

An error model was generated from 9 patients that had one Guardian Real-Time CGM device (Medtronic 

Minimed, Northridge, CA, USA) inserted into their abdomen as part of an observation trial assesing the 

accuracy of CGM measurements compared to a blood gas analyser and glucometer readings. A resulting 

error model was then used to simulate the outcomes if the STAR protocol was guided by CGM values on 

183 virtual patients. CGM alarms for hyper- and hypo-glycaemic region were included to improve patient 

safety acting as ‘guardrails’. The STAR CGM protocol gave good performance and reduced workload by 

~50%, reducing the number of measurements per day per patient from 13 to 7. The number of hypoglycaemic 

events increased compared to the current STAR from 0.03% <2.2mmol/L to 0.32%. However, in comparison 

to other published protocols it is still a very low level of hypoglycaemia and less than clinically acceptable 

value of 5% <4.0mmol/L. More importantly this study shows great promise for the future of CGM and their 

use in clinic. With the a newer generation of sensors, specifically designed for the ICU,  promising less noise 

and drift suggesting that a reduced nurse workload without compromising safety or performance is with in 

reach.



1. INTRODUCTION 

Continuous glucose monitoring (CGM) devices, with their 1-

5 minute measurement interval, have recently been used to 

monitor critical care  patients’  blood glucose (BG) in a more 

effective, less invasive manner than intermittent bedside BG 

measurements alone (Pretty et al., 2010, Signal et al., 2010, 

Beardsall et al., 2005, Harris et al., 2010, Holzinger et al., 

2010, Brunner et al., 2011). CGM devices typically consist of 

a small pager-like monitoring device that receives a signal 

from a sensor inserted into the subcutaneous layer, just beneath 

the skin. Calibration algorithms convert the signal into a 

meaningful glucose concentration by comparing it to known 

calibration BG measurements, which are entered into the 

monitor by the user every 6-12 hours. 

 

Typical glycaemic control protocols require BG measurements 

every 1-4 hours (Evans et al., 2012, Lonergan et al., 2006, 

Plank et al., 2006, Blaha et al., 2009), resulting in 

approximately 13 blood draws a day per patient. This 

represents a significant part of nurse workload(Carayon et al., 

2005, Holzinger et al., 2005). CGM devices have the potential 

to drastically reduce the number of BG measurements per day 

while ensuring patient safety and increased time in the desired 

BG target band.  

 

However, CGM devices can display suboptimal accuracy 

resulting from error or delay in calibration measurement, 

sensor drift and delayed glucose diffusion (Castle et al., 2010, 

Facchinetti et al., 2014). Thus, before CGM can become 

ubiquitous in the care of critically ill patients these errors and 

the effects of these errors on BG control must first be 

quantified and understood.    

 

This paper presents a simple CGM error model, including drift, 

created by comparing CGM readings and true BG values using 

data from 9 patients admitted to the Christchurch Intensive 

Care Unit (ICU). The impact of the CGM error is then 

evaluated in virtual trials using the STAR protocol (Stochastic 

TARgeted) (Evans et al., 2012), which is now standard care in 

Christchurch ICU.  Alarms and guardrail threshold settings 

were also investigated to insure patient safety especially in the 

hypoglycaemic region. These alarms are typically built in to 

CGM devices and would thus require no extra programming 

to use.  



 

 

     

 

 

2. PATIENTS & METHODS 

2.1 CGM Error Model  

 2.1.1 Patients 

This part of the study uses data from 9 patients admitted to the 

Christchurch Hospital ICU that were enrolled in an 

observational pilot study of CGM (Signal, 2013). Inclusion  

criteria  was  two consecutive  BG  measurements  greater  than  

8mmol/L,  indicating  the  need  for insulin therapy using the 

STAR protocol. Exclusion criteria were an anticipated ICU 

admission period of less than 3 days. All patients had one 

Guardian Real-Time CGM device (Medtronic Minimed, 

Northridge, CA, USA) inserted into their abdomen, providing 

real-time CGM values every 5 minutes. The patients all 

remained under insulin therapy treatment for > 24 hours. This 

study was approved by the Upper South Regional Ethics 

Committee, New Zealand. Table 1 summaries the patient 

demographics.  

Table 1. Summary of CGM study patient characteristics. Data 

are show as median [interquartile range] where appropriate. 

N 9 

Age (years) 57 [38-64] 

Gender (M/F) 5/4 

APACHE II score  22 [17 – 28] 

Hospital mortality (L/D) (5/4) 

Duration of CGM (days) 3.6 [2.5 – 5.7]  

 

 2.1.2 Model   

A simple CGM error model was created, separating the error 

in to two distinct parts of noise and drift defined:  

                   𝐶𝐺𝑀 =  𝐵𝐺𝑟𝑒𝑎𝑙 + 𝑛𝑜𝑖𝑠𝑒 + 𝑑𝑟𝑖𝑓𝑡              Eq.1 

Where drift was assumed to be a constant linear bias. It was 

defined as the rate of increase in discrepancy between the 

CGM trace and reference BG measurements over time 

between calibration BG measurements. Thus, drift was 

assumed to start at a calibration measurement and finish at the 

following calibration measurement.  

The magnitude of the accumulated drift between any two 

calibrations was found using a drift distribution created by 

comparing true BG values and CGM values for each paired 

data. The absolute values of the drift error was taken and the 

errors were normalised with regards to the time spent since last 

CGM calibration to obtain a drift per hour value. Figure 1 

shows the error distribution achieved for each patient and the 

entire cohort.  

The error distribution of the entire cohort was best described 

by an exponential distribution with a mu = 0.4764. It was 

assumed that positive and negative drifts are equitably 

distributed (50-50).  

 

Figure 1: Distribution for each individual patient (A) and the 

entire cohort (B) 

 

High frequency sensor noise was generated using Gaussian 

noise distribution from Golberg et al. (Goldberg et al., 2004). 

This distribution can been seen in Figure 2 where it is ¼ of the 

size of the original distribution published. This value was 

selected to match the data observed in the observational trials. 

The reduction represents the significant improvement in 

sensor noise since its publication. It is evident then from Figure 

3 that this combination of error models to create a CGM trace 

in simulation displays trends and measurement error to that of 

a real CGM trace. A range of type CGM traces were chosen to 

be displayed in Figure 3 to illustrate the robustness of the 

model.     
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Figure 1: 1/4 Goldberg noise distribution used to model the 

high frequency noise seen in CGM signals 

 

2.2 Virtual Trials  

The effect of CGM error on insulin therapy was tested using a 

clinically validated virtual trial approach (Chase et al., 2010). 

This approach uses virtual patients, each comprising an insulin 

sensitivity (SI) profile identified from the clinical data of a real 

patient using a pharmacokinetic-pharmacodynamic (PK-PD) 

model of the glucose-insulin system (Lin et al., 2011). The SI 

profile can then be used with the PK-PD model to simulate the 

glycaemic outcome of different insulin and nutrition 

interventions. 

In this study the STAR protocol was tested. In addition, CGM 

measurements were simulated using Equation 1. The impact 

on performance and safety using CGM instead of the ~13 

measurements/day required by STAR (Fisk et al., 2012) was 

then assessed.     

 2.2.1 Patients  

Virtual trials were performed using retrospective data from 

183 patients treated by accurate glycaemic control protocols at 

Christchurch Hospital ICU between 2011 and 2013. All 

patients were treated with the tablet-based STAR protocol for 

> 24hrs. Cohort demographics are presented in Table 2.  

Table 2. Cohort demographics of the patients used for virtual 

trials. Data are presented as median [interquartile range] where 

appropriate. 

N 183 

Age (years) 65 [54-72] 

Gender (M/F) 123/60 

APACHE II score  21 [15 – 25]  

Hospital mortality (L/D) 131/52 

 

Figure 3: Comparing CGM traces simulated using the CGM 

error model and BG calibration measurements to the real CGM 

trace from observational trials.  
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 2.2.2 Alarm Design  

To ensure patient safety from hypoglycaemia (BG < 4.5 

mmol/L) or hyperglycaemia (BG > 9 mmol/L), CGM alarms 

were used in simulation. Every time CGM BG values reach the 

upper or lower threshold, a BG measurement was performed. 

If the BG value at the lower threshold (CGM BG < 4.5 

mmol/L) differed by more than 0.5mmol/L the CGM device 

was recalibrated, correcting the sensor drift. The same process 

was undertaken at the upper threshold (CGM BG > 9 mmol/L) 

if the measurements differed by more than 1.0mmol/L. The 

threshold values were selected to optimise performance, safety 

and workload. Otherwise CGM measurements were used as 

BG measurements in STAR to determine insulin and nutrition. 

These alarms values were optimised by repeated simulation 

with hypoglycaemic alarm values ranging from 3-5mmol/L 

and hyperglycaemic alarm values ranging from 8-10mmol/L 

both in steps of 0.5mmol/L. The alarm values selected 

provided the best trade off between performance, safety and 

workload.     

    

2.3 Analysis Methods  

Monte Carlo (MC) methods were employed to reduce the 

impact of randomly sampled outliers on results. A 50-run MC 

simulation was completed for each virtual patient. Blood 

glucose values were generated using the clinically validated 

Intensive Control Insulin-Nutrition-Glucose (ICING) model 

of the glucose-insulin system (Lin et al., 2011) was used. 

Sensor drift and noise was added to the measurements using 

the CGM model. These BG measurements were then given to 

the STAR protocol generate insulin and nutrition 

interventions. This situation simulates what it would be like if 

CGM devices were being used to guide the protocol in clinic.  

 Metrics such as %time in the desired 4.4 – 8mmol/L band, 

%time below 2.2mmol/L and number of blood draws per 

patient per day were used to assess the performance, safety and 

resulting workload of using CGM devices to guide the STAR 

protocol. Results were compared to a 50-run MC of the STAR 

protocol without CGM error and the clinical results of the 183 

patients.  

 

3. RESULTS & DISCUSSION 

 

3.1 Virtual Trials Results  

During virtual trials, the STAR protocol guided by CGM 

measurements achieved a median BG of 7.0 mmol/L with 

72.2% time in the desired 4.4-8.0 mmol/L target band. Table 3 

summarises the performance of the STAR CGM protocol and, 

for comparison, also shows clinical data and results from 

virtual trials of the same patients with the STAR protocol 

without the additional CGM error model. 

Table 3 illustrates the compromise in target-band performance 

that was necessary with the STAR CGM protocol to meet 

safety and workload requirements. Compared with clinical 

results and STAR, time in the 4.4-8.0 mmol/L band was 

reduced by approximately 15%. However, the average 

measurement interval increased by ~50%.  

Importantly, the STAR CGM protocol is still safe for patients 

even with the increased error in BG measurements. STAR 

CGM has less time in the hypoglycaemic region than many 

other published protocols (Finfer et al., 2012, Preiser et al., 

2008, Brunkhorst et al., 2008, Bagshaw et al., 2009, Treggiari 

et al., 2008) which require much hire number of blood draws 

per day. The time below 4.0mmol/L is below a clinically 

specified value of 5%. 

 

Table 3. Results of virtual trial simulations as well as clinical 

data. Data are presented as median [interquartile range] where 

appropriate. STAR MC contains no variation as error is not 

added to the measurements generated in simulation. Hence, 

there is no median [IQR] for these values.    

Whole 

cohort 

statistics 

STAR MC STAR CGM 

MC 

Clinical 

N 183 183 183 

BG 

meas/day/

patient 

13.5 [12-16] 7.00 [5.9-8.6] 13.0 

BG 

(mmol/L) 

6.99 [6.0-

8.2] 
7.06 [6.0-8.3] 

6.80 [5.9- 

8.0] 

% time in 

4.4-8.0 

mmol/L 

81.0 72.2 [72-73] 81.3 

% time < 

4.4 

mmol/L 

1.59 4.7 [4.6-4.9] 1.69 

% time < 

2.2 

mmol/L 

0.03 
0.320 [0.28 - 

0.37] 
0.01 

 

 

It is worth to noting that these results represent a worst case 

scenario as the STAR protocol was not modified to take into 

account the real-time BG readings available or the trend data. 

Thus, additional dextrose/insulin boluses when hypo/hyper 

alarms are triggered and proved accurate would most likely 

increase the performance and safety seen. However, this would 

increase the workload required and this initial investigation 

aimed to see how much the current workload could be reduced 

using the current standard of care.  

Also the real-time Guardian devices the error model was 

created from were not designed for clinical use. These CGM 

devices are designed to help Type I and II diabetic patients 

regulate their BG levels. Thus, there are many factors when 

using these devices in critical care that are known to impact 

the performance, such as patients diagnosed with sepsis, septic 



 

 

     

 

shock and peripheral oedema (Lorencio et al., 2012). 

Additionally certain medications/therapies commonly used in 

ICU, such as paracetamol, can influence CGM performance 

(Moser et al., 2010). Therefore, the newer generation of 

sensors that are emerging specifically designed for hospital 

use, such as the Medtronic Sentrino (Medtronic, 2012), are 

likely to be more accurate and be less affected by these factors 

all of which would improve performance.  

Drift reduces performance the most as it is an unseen bias. To 

investigate the effect of reduced drift half guardian noise was 

simulated with on the same cohort. This produced less draws 

per day, only 1.38% time <4.4mmol/L and 78% time in the 

desired 4.4-8mmol/L band. These results are much improved 

and show great promise for the future CGM devices being 

developed to aid in reducing nurse workload.   

 

4. CONCLUSIONS 

The study aimed to show the effects of using a CGM device to 

guide insulin therapy. The STAR CGM protocol gave good 

performance and reduced workload by ~50%. The increase of 

hypoglycaemic events compared to the current STAR protocol 

was of concern but in comparison to other published protocols 

it is still a very low level of hypoglycaemia and is well under 

the clinically acceptable value of 5% below <4.0mmol/L. The 

amount of hypoglycaemic could be reduced by integrating 

trend data and hypoglycaemic alarms in to the STAR protocol 

allowing glucose boluses to be delivered after alarms 

identified as accurate.  

More importantly this study shows great promised for the 

future of CGM and their use in clinic. With the newer 

generation of sensors being specifically designed for the ICU 

environment promising less error and drift. Results from MC 

using half the noise of guardian data suggests that a workload 

can be significantly reduced without compromising safety or 

performance.  
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