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SUMMARY

The present work investigates the shape optimization of bimaterial structures. The problem is formulated
using a level set description of the geometry and the extended finite element method (XFEM) to enable
an easy treatment of complex geometries. A key issue comes from the sensitivity analysis of the structural
responses with respect to the design parameters ruling the boundaries. Even if the approach does not imply
any mesh modification, the study shows that shape modifications lead to difficulties when the perturbation
of the level sets modifies the set of extended finite elements. To circumvent the problem, an analytical
sensitivity analysis of the structural system is developed. Differences between the sensitivity analysis using
FEM or XFEM are put in evidence. To conduct the sensitivity analysis, an efficient approach to evaluate
the so-called velocity field is developed within the XFEM domain. The proposed approach determines
a continuous velocity field in a boundary layer around the zero level set using a local finite element
approximation. The analytical sensitivity analysis is validated against the finite differences and a semi-
analytical approach. Finally our shape optimization tool for bimaterial structures is illustrated by revisiting
the classical problem of the shape of soft and stiff inclusions in plates. Copyright c© 2010 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

There is a general interest in developing optimization tools dealing efficiently with multiphase
materials. Advanced shape and topology optimization capabilities are necessary to investigate
adequately challenging problems such as designing multimaterial high performance structural
components or designing novel multiphase materials with prescribed or extreme properties.

There is little evidence in the literature of successful application of classical shape optimization
to design multiphase structures and microstructures. Shape optimization methods were mainly
developed in the nineties, but the technology still faces difficulties to address industrial problems.
In fact, state-of-the-art shape optimization approach is based on parametric computer aided design
(CAD) models and takes advantages of modern automatic meshing tools. However, the approach
still suffers from a lack of robustness mostly related to the large modifications of the boundaries
leading to major modifications of the mesh, to the degeneracy of the CAD model definition and
to possible severe finite element errors after several redesign steps. Therefore, shape optimization
requires frequent remeshing operations intended to maintain the conformity of the mesh through
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Lise.Noel@ulg.ac.be

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using nmeauth.cls [Version: 2010/05/13 v3.00]
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the simulation. These operations are extremely costly and time consuming. Furthermore, shape
sensitivity analysis requires the resolution of the so-called velocity field problem describing the
perturbation of the nodal positions with respect to modifications of the boundaries.

With the seminal work by Bendsøe and Kikuchi [7], topology optimization experienced an
enormous expansion taking benefit of a huge research effort to extend its scope to various application
fields while simultaneously experiencing a growing impact in industrial applications. Even if void-
solid problems have received most of the attention, the literature review reports several applications
of topology optimization to design structures made of several materials. Among others, one can
point out the design of microstructures by Sigmund and Torquato [26], the reinforcement of
structures or compliant mechanisms [37, 35, 21], or the selection of composite materials from a
discrete catalog [23].

In 1988, Osher and Sethian [20] developed the level set method, offering a flexible formalism
to deal with moving boundaries. The latters are described implicitly and the method allows
an easy handling of shape modifications. Very early, the method was exploited in optimization
by Allaire et al. [2] and by Wang et al. [34] and provided an alternative to the widely used
Simply Isotropic Material with Penalization (SIMP) description [8]. The level set method offers
the opportunity to represent complex geometries with few design parameters, to handle easily
large shape modifications and to allow merging and disappearance of certain geometrical entities.
Moreover the implicit description of the geometry overcomes some restrictions encountered when
implementing the SIMP approach or the explicit description used in CAD. Therefore, the level set
method was widely exploited to perform shape and topology optimization in many different ways
as referred in the review by Van Dijk et al. [27]. Among other applications, shape and topology
optimization using the level set method was successfully applied to design structures involving
multiple materials. For instance, Wang and Wang [33] considered the optimal distribution of several
material phases in a reference volume using colored level sets. Guo et al. [15] extends the work to
the design of multiphase structures subject to local stress constraints while, in Chen et al. [11], the
level set method is used to design multiphase energy harvesting devices. More recently Vermaak et
al. [31] also investigated the impact of non-monotonous effective properties in multiphase interfaces
over the optimal topology of multimaterial structures.

In 1999, Moës et al. [19] proposed a finite element method for crack propagation without
remeshing, known as the extended finite element method (XFEM). The method allows taking
into account particular behaviors and discontinuities within the elements using an appropriate
enrichment of the approximation fields. This approach greatly reduces the difficulty of considering
moving boundaries and complex geometries since fixed meshes are used. Taking advantage of the
capabilities of the method, difficulties related to remeshing operations, inherent to classical shape
optimization, can be mitigated. In addition, the XFEM can be advantageously combined with the
level set representation to offer a flexible description of complex geometries as shown in Sukumar
et al. [24], Belytschko et al. [6] or Moës et al. [18]. Van Miegroet and Duysinx [30] proposed a
generalized shape optimization tool based on a parametric level set description and XFEM. The
approach proved to be flexible and efficient in solving 2D and 3D optimization problems [29].
Soon, this opportunity was exploited to perform structural topology optimization as in Li et al. [16]
or Wei et al. [36]. Some enhanced XFEM scheme were developed to deal with small feature size by
Makhija and Maute [17].

The present research is continuing along and extending the works initiated by Van Miegroet and
Duysinx using both XFEM and a level set description to tackle the shape optimization of structures
exhibiting interfaces between two or several materials. In fact, there is a great interest in using a
flexible geometric description combined with a non-conforming analysis in shape optimization as it
enables to consider complex design problems involving local stress and manufacturing constrains.
As suggested in works by Van Migroet [29] or by Rotthaus and Barthold [22], carrying out an
efficient and rigorous sensitivity analysis is not trivial as using finite perturbation of the level set can
lead to modifications of the enrichment field. To circumvent these difficulties in the most general
way, they suggested to use analytical derivatives. Some approaches to perform analytical derivatives
with XFEM were proposed. Barthold and Materna [3] used a modified XFEM scheme to evaluate
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ANALYTICAL SENSITIVITY OF BIMATERIAL STRUCTURES 3

the design sensitivity analysis. In the fracture mechanics field, Waisman [32] also developed an
analytical derivative of the stiffness to extract crack tip strain energy release rates.

Evaluating the derivatives analytically, the key issue of the sensitivity analysis is the determination
of a velocity field describing the material flow around the boundaries. The velocity field computation
is a classical problem in shape optimization that was investigated within many research works.
Besides finite difference methods relying on meshing tools, several approaches to evaluate the
velocity field are reported in the literature and summarized in Choi and Chang [12] and Choi
and Kim [13]. Among those, one can mention approaches in which the velocity field is naturally
determined since it is directly related to the curvilinear coordinates of Bezier or B-Spline curves used
to represent the moving boundaries as in Braibant and Fleury [10], [9]. Velocity fields can also be
determined by solving an auxiliary problem with prescribed forces as in the fictitious load method
by Belegundu and Rajan [5] or with prescribed displacements as in the boundary displacement
method by Beckers [4].

The idea of this paper is to tackle the optimization of bimaterial structures and microstructures
within an XFEM-level set framework. Dealing with material interfaces, the enrichment functions
used to create the extended approximation field are no longer the same as the ones used for void-
material interfaces. Therefore, at first the paper shows that the sensitivity analysis has to be adapted
and then, focuses on the theoretical development and the implementation of the sensitivity analysis
using an analytical approach. In particular, the derivative of the stiffness matrix of the structures is
a key central issue. Starting from its discretized expression, the derivative of the stiffness matrix is
obtained by deriving with respect to the design parameters. Once this analytical expression of the
stiffness matrix derivative is available, the sensitivity of various objective and constraint functions,
such as the compliance, the displacements or the local stresses, can be easily evaluated.

The paper proceeds as follow. The XFEM-level set framework exploited in this paper is recalled in
section 2. Then, different methods are proposed to perform the sensitivity analysis in section 3. The
section focuses on the problems encountered using classical methods, such as the finite differences,
in the bimaterial XFEM-level set framework. Then, the analytical method is introduced. In section
4, the analytical sensitivity analysis is developed and explained in details. The computation of the
derivatives requires the evaluation of a velocity field. Section 5 focuses on the original approach
developed to evaluate the velocity field exploiting the level set description of the geometry. In section
6, the analytical sensitivity analysis is tested and validated against classical methods on academic
examples. Finally, the sensitivity analysis is illustrated by solving a classical shape optimization
benchmark, revisiting the optimal shape of an elliptical stiff or soft inclusion in a plate.

2. OPTIMIZATION FRAMEWORK

2.1. Problem formulation

This work focuses on the evaluation of the sensitivity analysis necessary to solve optimization
problems such as finding the optimal geometry of elastic structures made of two materials. Two
different materials are distributed within a given design domain to minimize some objective while
satisfying some prescribed design constraints. The generic statement of the optimization problem to
solve is given as follow:

min
s

g0(x, s)

s.t. gj ≤ 0, j = 1, . . . , nj

si ≤ si ≤ si, i = 1, . . . , ni

(1)

where g0 is some objective function, gj some given constraint, x the space variables and s the set of
design parameters.

To achieve this goal, the XFEM is combined with a level set description of the geometry. The
basic principles of these methods, necessary for further developments in this paper, are recalled in
the following sections.
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2.2. Level set description of geometry

A level set description is used to represent the geometry of the boundaries within the design domain.
A level set function φ describes the repartition of the materials over the design domain. The level
set function is dependent of the design parameters s:

φ = φ(x, s). (2)

The most common level set function is the signed distance function. The latter is used through
this work. In general, the material A domain is identified by positive values of the level set function
φ and the material B domain lies where φ is negative:

φ(x, s) > 0, ∀x ∈ ΩA

φ(x, s) = 0, ∀x ∈ ΓAB

φ(x, s) < 0, ∀x ∈ ΩB

, (3)

where ΩA is the domain filled with material A, ΩB the domain filled with material B and ΓAB the
interface between the two materials A and B, as depicted in Figure 1.

ΩA

φ > 0

ΩB

φ < 0

ΓAB

Figure 1. Repartition of materials on the domain Ω using a level set function.

Conversely to the works by Allaire et al. [2] and Wang et al. [34], where the level set function is
updated by solving the Hamilton-Jacobi equation, here the level set function is updated through the
evolution of the design parameters s using mathematical programming tools.

2.3. The extended finite element method

The response of the elastic structures is obtained using the XFEM. This method allows taking
into account discontinuous behaviors within the elements by adding specific shape functions to
the classical finite element approximation field:

uh(x) =
∑
i∈I

Ni(x) ui︸ ︷︷ ︸
FEM

+
∑
i∈I?

N?
i (x) ai︸ ︷︷ ︸

Enrichment

, (4)

where I is the set of all the mesh nodes,Ni(x) are the standard finite element shape functions, ui are
the degrees of freedom associated to the standard shape functions Ni(x), I? is the set of enriched
nodes, N?

i (x) are the enriched shape functions and ai are the additional unknowns related to the
enrichment. The enrichment is local and is only used for the elements that have to represent the
discontinuities, i.e. the elements crossed by the interface as shown in Figure 2.

Combining the XFEM and the level set description of geometry, the material interface is directly
represented by the iso-zero level set and there is no need to introduce any additional field of density
to describe the interface, as in the SIMP approach. Working on a discretized mesh, the level set
function is conveniently represented using its nodal values and interpolated using classical finite
element shape functions:

φh(x) =
∑
i

Ni(x) φi. (5)
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FEM

XFEM

Enriched node

Figure 2. Selection of the enriched nodes and elements on a mesh.

2.4. XFEM for material interfaces

This work focuses on discontinuities related to interfaces between two materials exhibiting different
properties. Interfaces between materials are characterized by a continuous displacement field, but
they introduce a discontinuity in the strain field. These kinds of discontinuity are commonly treated
using the ridge function introduced by Moës [18] as enrichment function. This particular enrichment
function ψ is used in this work and is given as:

ψ(x) =
∑
i

Ni(x) |φi| −
∣∣∣∣∣∑
i

Ni(x) φi

∣∣∣∣∣ . (6)

The enriched shape function Ni(x)? are built by multiplying the classical finite element shape
functions Ni(x) by the enrichment function ψ(x):

Ni(x)? = ψ(x) Ni(x). (7)

Proceeding this way, the obtained enriched function N?
i (x) presents terms up to the power two

for bars or linear T3 triangles and up to the power four for bilinear Q4 quadrangles. Therefore,
to capture precisely the discontinuity behavior, a suitable number of Gauss points is necessary to
perform the integration over the elements. An investigation of the influence of the number of Gauss
points used is performed later in Section 6.

2.5. XFEM implementation

This section is devoted to the exploitation of the XFEM to tackle the problem of material interfaces.
Some implementation details are reminded and will be used in the coming developments.

2.5.1. Element subdivision The location of the interface is given by the iso-zero level set and the
level set function is used to perform the subdivision of the element into a subdomain filled with
material A and a subdomain filled with material B.

For the sake of simplicity, the level set function is approximated by a straight line when searching
for the intersections between the material interface and the elements edges as shown in Figure 3. In
2D, the coordinates of the intersection (ξ?, η?) are easily determined using the level set nodal values
φ1, φ2 and the nodal coordinates (ξ1, η1), (ξ2, η2): ξ? = t ξ2 + (1− t) ξ1

with t =
|φ1|

|φ1|+ |φ2|
.

η? = t η2 + (1− t) η1

(8)

2.5.2. Integration Working with XFEM, some elements are filled with two different materials. For
those elements, integration requires some particular care because of the strain field discontinuity that
exists at the interface. Integration can no longer be performed using a classical Gauss quadrature. In
fact, the obtained results would not be satisfactory even if resorting to a tremendous amount of Gauss
points. To perform an accurate integration, each part of an element across the material interface is
treated independently by introducing an integration mesh on XFEM elements. Dividing the parent
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1

2

(ξ1, η1)

(ξ2, η2)

(ξ?, η?)

φ exact

φ approximated

φ1

φ2

Figure 3. Computation of the intersection between the level set function and the element edges in 2D.

element into subdomains in a first parametric space (ξ, η) and mapping these subdomains to a
second parametric space (l,m), a sufficient number of suitably located Gauss points is obtained. The
classical Gauss quadrature procedure can anew be applied. This integration procedure is illustrated
in Figure 4.

x

y

1

2

3

4

J1 ξ

η

1 2

34

J2

l

m

Figure 4. Integration procedure for extended finite elements illustrated on a quadrangle. The quadrangular
element is mapped to a parent reference element using a first mapping J1. The interface is approximated
by a straight line to carry out the subdivision of the parent element. The subdomains of this element are
mapped to a second reference space based on a set of mappings J2. Gauss points are then brought back from

the second reference space to the first one, where classical Gauss quadrature can be performed.

In this work, the integration procedure detailed before is mainly exploited for the evaluation of
the stiffness matrix K. The elementary stiffness matrix is computed for each element by adding the
contribution of all the Gauss points:

Ke =

∫
Ωe

[
BT
u

BT
a

]
H
[
Bu Ba

]
dΩe

=

∫
Ωe

[
BT
u

BT
a

]
H
[
Bu Ba

]
|J1| |J2| dξ dη

'
∑
gp

wgp

[
BT
u

BT
a

]
gp

Hgp

[
Bu Ba

]
gp
|J1|gp |J2|gp ,

(9)

where Ωe is the element domain,
∑

gp is the sum over all the element Gauss points, Bu is the part of
the B matrix of the derived shape functions related to the classical degrees of freedom ui, Ba is the
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part of the B matrix of the derived shape functions related to the additional degrees of freedom ai, H
is the Hooke’s matrix, |J1| is the determinant of the first Jacobian mapping, |J2| is the determinant
of the second Jacobian mapping, wgp are the weights associated to Gauss points.

3. DESIGN SENSITIVITY ANALYSIS

Several approaches can be exploited to carry out the sensitivity analysis as reviewed in Van Keulen
et al. [28] or Adelman and Haftka [1]. The paper aims at comparing these approaches when applied
to an XFEM-level set framework with material interfaces. In particular, an analytical approach is
developed. This analytical approach, although more complex, is highly appropriate and efficient in
the specific framework that is considered. It will be showed that it offers the most general and robust
approach in practice.

3.1. Global finite difference

A first approach, that is the easiest and the most straightforward to implement, is the global finite
difference over the objective g0 and constraint functions gj . This approach can be widely used to
solve any optimization problems:

dg0

ds
' g0(s+ δs)− g0(s)

δs
,

dgj
ds

' gj(s+ δs)− gj(s)
δs

.

(10)

However, with an XFEM-level set framework, some problems can occur when the interface is
perturbed. As the geometry is slightly modified, some elements can undergo status changes, i.e.
they can change their status from cut (resp. uncut) by the interface to uncut (resp. cut), and so
change their nature from XFEM (resp. FEM) to FEM (resp. XFEM). At the occurrence of changes
of element status, the number of degrees of freedom associated to the structures as well as the
approximation fields used are modified. These modifications lead to the introduction of errors in the
finite difference computation of the derivatives.

3.2. Discrete semi-analytical and analytical sensitivity

The sensitivity analysis can be performed on the discretized system Ku = f where K is the global
stiffness matrix, u the vector of the generalized displacements and f the vector of the external
forces. After discretizing the governing continuum equations, one derives these with respect to the
design parameters s. In the particular case of linear elastic problems and deriving with respect to a
particular design parameter s, the procedure leads to the following expression:

du

ds
= K−1

(
∂f

∂s
− ∂K

∂s
u

)
, (11)

where d
ds and ∂

∂s are respectively the total and the partial derivatives with respect to s. This equation
allows evaluating the derivative of the vector of the generalized displacements u with respect to the
considered design parameter s, provided that the derivatives of the stiffness matrix K and of the
vector of external forces f can be computed.

In this work, the external forces are considered independent of the design parameters s, so its
derivative is equal to zero. The following sections focus on tailoring a convenient and efficient
approach to evaluate the stiffness matrix derivative.

3.2.1. Semi-analytical approach A first approach is obtained combining Eq.(11) and a finite
difference computation of the derivative of the elementary stiffness matrices, as given in Eq.(12).
This approach is known as the semi-analytical method. The latter was successfully implemented
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8 L. NOËL, L. VAN MIEGROET, P. DUYSINX

to solve shape optimization problems within an XFEM-level set framework for void-material
interfaces by Van Miegroet et al. [29]. This method can be extended to the case of materials
interfaces.

∂Ke

∂s
' Ke(s+ δs)−Ke(s)

δs
, (12)

where Ke is the stiffness matrix of element e.
As previously mentioned for the global finite difference method, some problems arise as element

status changes occur during finite perturbation of the boundary. In this case, as the number of degrees
of freedom is modified, a finite difference on the stiffness matrices can no longer be carried out since
the dimensions, before and after interface perturbation, mismatch.

In the case of void-material interfaces, Van Miegroet and Dusyinx [30] apply a strategy called
the ignore strategy. The latter consists in ignoring the contribution of elements undergoing a status
change, introducing an error in the computation of the derivative.

Several strategies were developed to prevent the changes of the elements status. It mainly consists
in some preprocessing operations aiming at applying a convenient interface perturbation. Three of
these methods are explained below and illustrated in Figure 5.

A first strategy consists in perturbing the interface forward and backward to check whether
a change of element status occurs or not. If not, a central finite difference can be applied to
evaluate the derivatives. If there is a change of element status while moving the interface forward
(resp. backward), a backward (resp. forward) finite difference is used. This strategy requires extra
computation to determine which kind of finite differencing scheme should be performed.

A second strategy consists in perturbing the interface forward or backward to insure that no
element initially cut by the interface becomes uncut or vice versa. If some elements undergo a status
change, the mesh nodes are relocated so that the interface perturbation does not lead to any status
change anymore. However, relocating the mesh nodes weakens the advantages of using XFEM,
especially implemented to work on fixed meshes and to avoid remeshing operations.

A third strategy consists in perturbing the interface forward and backward to know if the interface
is going out of the elements. If so, a maximum perturbation size is determined. This perturbation
size is adapted to be sufficiently small so that no change of element status occurs. This strategy
exhibits an inherent drawback as the perturbation size can become so small that it could introduce
round-off errors and lead to errors in the derivative evaluation.

δs

δreloc−δs

Strategy 1 Strategy 2 Strategy 3

Figure 5. Preprocessing strategies to avoid element status change.
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Preprocessing operations imply additional computational time and so a potential CPU time
penalty. To avoid preprocessing operations, an analytical approach is developed to perform the
sensitivity analysis and is considered in the following sections.

3.2.2. Analytical approach To circumvent the problems related to the change of element status and
to avoid any preprocessing operations or remeshing operations, the stiffness matrix derivative can be
evaluated analytically. Although this method is more complex and difficult to implement, it exhibits
several advantages over the previous approaches since no interface perturbation is required.

The analytical derivative expression of the stiffness matrix can be obtained starting from its
discretized expression, as written in Eq.(13). The Hooke’s matrix H is assumed independent of
the design parameters s. For the sake of simplicity, the subscripts and the dependence on the design
parameters are dropped in coming developments.

K =
∑
gp

wgp

 Bu(s)T

Ba(s)T


gp

Hgp

[
Bu(s) Ba(s)

]
gp
|J1(s)|gp |J2(s)|gp . (13)

Deriving Eq.(13) with respect to a design parameter s, the following expression is found:

∂K

∂s
=

∑
gp

w

 ∂Bu

∂s

T

∂Ba

∂s

T

 H
[
Bu Ba

]
|J1| |J2|

+
∑
gp

w

 BT
u

BT
a

 H

[
∂Bu

∂s

∂Ba

∂s

]
|J1| |J2|

+
∑
gp

w

 BT
u

BT
a

 H
[
Bu Ba

] ∂ |J1|
∂s

|J2|

+
∑
gp

w

 BT
u

BT
a

 H
[
Bu Ba

]
|J1|

∂ |J2|
∂s

.

(14)

The main issue is now to determine the derivatives of the B matrices ∂Bu

∂s , ∂Ba

∂s and of the
determinants of the Jacobian mappings ∂|J1|

∂s , ∂|J2|
∂s .

4. ANALYTIC SENSITIVITY ANALYSIS

This section details the expressions needed to perform the analytical sensitivity analysis taking into
account the particularities of working with XFEM.

4.1. Derivatives with XFEM

The perturbation of the interface, i.e. the perturbation of a design parameter s, does not lead to the
same situation while working with XFEM or FEM. With XFEM, since the mesh is fixed, parameter
perturbations do not modify the geometry of the mesh in the physical space. However, it modifies
the respective volumes allocated to each material since it changes the integration mesh used on
XFEM elements. The derivative expression of the stiffness matrix is thus different if working with
FEM or XFEM. The particularities related to the XFEM are detailed in the schematic representation
sketched in Figure 6.

In the physical space (x, y), the perturbation of a design parameter s does not lead to any mesh
modifications. Thereby, the nodal coordinates (x, y) in the physical space remain independent of the
design parameter s.
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10 L. NOËL, L. VAN MIEGROET, P. DUYSINX

As an element in the physical space (x, y) remains unchanged, it is mapped to the same reference
element in the first parametric space (ξ, η) regardless of the interface perturbation. Therefore, the
first Jacobian mapping J1 is independent of the design parameters and the shape functions Ni(ξ, η)
remain unchanged. However, the subdivision of the reference element into subdomains is modified
and the coordinates (ξ, η) of a point interior to the parent element in the first parametric space are
dependent of the design parameter.

Subdomains from the initial and perturbed configurations are mapped to the same reference
element in the second parametric space (l,m), even though they are different. Thus, the second
Jacobian mapping J2 is different and specific for each subdomain and is sensitive to the design
parameters. Since the reference element remains the same, the shape functions Ni(l,m) are not
modified. The coordinates (l,m) in the second parametric space are also independent of the design
parameters.

Dealing with material interfaces, special enriched shape functions are added to the approximation.
These additional shape functions N?

i = ψ Ni are dependent of the design parameters and they
introduce new terms in the expression of the derivative.

x

y

1

2

3

4

x

y

1

2

3

4
δs

s 7→ s+ δs

ξ

η

1 2

34

ξ

η

1 2

3
4

δs

l

m

J1 J1

J2 J?2

Figure 6. Computation of analytical derivatives within an XFEM framework.

Finally, working with XFEM, the derivative of the stiffness matrix is reduced to the expression
given in Eq.(15). The two first terms represent the variations of the derivative of the shape functions
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with the design parameter s. The third term represents the sensitivity of the integration domains
respectively attributed to each material as the design parameter s is modified.

∂K

∂s
=

∑
gp

w

 ∂Bu

∂s

T

∂Ba

∂s

T

 H
[
Bu Ba

]
|J1| |J2|

+
∑
gp

w

 BT
u

BT
a

 H

[
∂Bu

∂s

∂Ba

∂s

]
|J1| |J2|

+
∑
gp

w

 BT
u

BT
a

 H
[
Bu Ba

]
|J1|

∂ |J2|
∂s

.

(15)

4.2. Computational details

This section of the paper gives all the detailed expressions of the derivatives, focusing on a two
dimensional framework for the sake of simplicity.

4.2.1. Derivative of the determinant of the second Jacobian mapping J2 The second Jacobian J2

is given by Cook [14]:

|J2| =
(∑

i

∂Ni
∂l

ξi

)(∑
i

∂Ni
∂m

ηi

)
−
(∑

i

∂Ni
∂m

ξi

)(∑
i

∂Ni
∂l

ηi

)
. (16)

Deriving the equation (16) with respect to the design parameter s, one obtains:

∂|J2|
∂s

=
∂

∂s

(∑
i

∂Ni
∂l

ξi

)(∑
i

∂Ni
∂m

ηi

)
+

(∑
i

∂Ni
∂l

ξi

)
∂

∂s

(∑
i

∂Ni
∂m

ηi

)

− ∂

∂s

(∑
i

∂Ni
∂m

ξi

)(∑
i

∂Ni
∂l

ηi

)
−
(∑

i

∂Ni
∂m

ξi

)
∂

∂s

(∑
i

∂Ni
∂l

ηi

)
.

(17)
Working with XFEM, the derivative with respect to the design parameter s of the first derivatives

of the shape functions are equal to zero and the equation is reduced to:

∂|J2|
∂s

=

(∑
i

∂Ni
∂l

∂ξi
∂s

)(∑
i

∂Ni
∂m

ηi

)
+

(∑
i

∂Ni
∂l

ξi

)(∑
i

∂Ni
∂m

∂ηi
∂s

)

−
(∑

i

∂Ni
∂m

∂ξi
∂s

)(∑
i

∂Ni
∂l

ηi

)
−
(∑

i

∂Ni
∂m

ξi

)(∑
i

∂Ni
∂l

∂ηi
∂s

)
.

(18)

The derivative of |J2| can be calculated provided that ∂ξ
∂s and ∂η

∂s are known. These derivatives
describe the sensitivity of nodal positions in the first reference parametric space (ξ, η) with respect
to the modification of the boundary. Referring to classical literature terminology,

(
∂ξ
∂s ,

∂η
∂s

)
is the

velocity field in the first reference parametric space (ξ, η).

Derivative of the FEM part of the B matrix Bu The FEM part of the B matrix is built using the
following terms: 

∂Ni(ξ, η)

∂x
∂Ni(ξ, η)

∂y

 = J−1
1


∂Ni(ξ, η)

∂ξ
∂Ni(ξ, η)

∂η

 . (19)
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Deriving the equation (19) with respect to the design parameter s and making use of:

d(X−1) = −X−1dXX−1, (20)

one gets:

∂

∂s


∂Ni
∂x
∂Ni
∂y

 = −J−1
1

∂J1

∂s
J−1

1


∂Ni
∂ξ
∂Ni
∂η

+ J−1
1


∂2Ni
∂ξ2

∂ξ

∂s
+
∂2Ni
∂ξ∂η

∂η

∂s
∂2Ni
∂η∂ξ

∂ξ

∂s
+
∂2Ni
∂η2

∂η

∂s

 . (21)

Working with XFEM, the derivative of the first Jacobian J1 is equal to zero and the derivative of
the FEM part of the B matrix, as given in Eq.(21), is reduced to the following equation:

∂

∂s


∂Ni
∂x
∂Ni
∂y

 = J−1
1


∂2Ni
∂ξ2

∂ξ

∂s
+
∂2Ni
∂ξ∂η

∂η

∂s
∂2Ni
∂η∂ξ

∂ξ

∂s
+
∂2Ni
∂η2

∂η

∂s

 . (22)

Similarly to the derivative of |J2|, the derivative of the FEM part of the B matrix requires the
evaluation of the velocity field

(
∂ξ
∂s ,

∂η
∂s

)
in the first reference parametric space (ξ, η).

4.2.2. Derivative of the enriched part of the B matrix Ba The XFEM part of the B matrix is built
using the following terms:


∂N?

i (ξ, η)

∂x
∂N?

i (ξ, η)

∂y

 = J−1
1




∂Ni(ξ, η)

∂ξ
∂Ni(ξ, η)

∂η

ψ +


∂ψ

∂ξ
∂ψ

∂η

Ni(ξ, η)

 . (23)

Deriving the equation (23) with respect to the design parameter s and given Eq.(20), one gets:

∂

∂s


∂N?

i

∂x
∂N?

i

∂y

 = −J−1
1

∂J1

∂s
J−1

1




∂Ni
∂ξ
∂Ni
∂η

ψ +


∂ψ

∂ξ
∂ψ

∂η

Ni


+J−1
1




∂2Ni
∂ξ2

∂ξ

∂s
+
∂2Ni
∂ξ∂η

∂η

∂s
∂2Ni
∂η2

∂η

∂s
+
∂2Ni
∂η∂ξ

∂ξ

∂s

ψ +


∂Ni
∂ξ
∂Ni
∂η

 ∂ψ∂s

+
∂

∂s


∂ψ

∂ξ
∂ψ

∂η

Ni +


∂ψ

∂ξ
∂ψ

∂η

(∂Ni∂ξ

∂ξ

∂s
+
∂Ni
∂η

∂η

∂s

) .

(24)
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Working with XFEM, the derivative of the first Jacobian J1 is equal to zero and the derivative of
the XFEM part of the B matrix, as given in Eq.(24), is reduced to the following equation:

∂

∂s


∂N?

i

∂x
∂N?

i

∂y

 = J−1
1


 ∂2Ni

∂ξ2

∂ξ

∂s
+
∂2Ni
∂ξ∂η

∂η

∂s
∂2Ni
∂η2

∂η

∂s
+
∂2Ni
∂η∂ξ

∂ξ

∂s

ψ +


∂Ni
∂ξ
∂Ni
∂η

 ∂ψ∂s

+
∂

∂s


∂ψ

∂ξ
∂ψ

∂η

Ni +


∂ψ

∂ξ
∂ψ

∂η

(∂Ni∂ξ

∂ξ

∂s
+
∂Ni
∂η

∂η

∂s

) .

(25)
In equations (18), (22) and (25), the following terms appear: ∂ξ∂s and ∂η

∂s . These terms accounts for
the variation of the position of the points in the first parametric space (ξ, η) with the design parameter
s. They can be interpreted as a velocity field V . Computing the velocity field is an important issue
and the practical methods used to evaluate it are detailed in the next section.

5. VELOCITY FIELD COMPUTATION

In classical shape optimization, the knowledge of the velocity field is necessary to perform the
sensitivity analysis. The velocity field describes the first order update of the mesh node positions
with respect to a small perturbation of the boundary design variables. From a theoretical point
of view [13], the velocity field remains partly arbitrary provided that it matches the prescribed
displacements at the material interface boundaries. That is the velocity field is assigned to the
modification of the material interfaces. Starting from its prescribed value on the boundary, the
velocity field can be extended in the interior of the domain. This extension must remains sufficiently
smooth. This condition is satisfied with the same smoothness properties as the displacement field.
Since the sensitivity analysis is a key issue in shape optimization, computing an accurate velocity
field is a critical operation. Therefore, a lot of efforts were focused on velocity field computation
and many procedures were developed.

This work focuses on two methods to deal with the velocity field: the finite difference method
and an original method inspired from the boundary displacement method.

5.1. Finite difference approach to determine the velocity field

To compute the velocity field, a finite difference on the intersection location of the material interface
before (a(s), b(s)) and after (a(s+ δs), b(s+ δs)) perturbation can be applied as shown in Figure
7. This method is straightforward and easy to implement.

x

y

1

2

3

4

b(s)

a(s)

x

y

1

2

3

4

b(s + δs)

a(s + δs)

s 7→ s+ δs

Figure 7. Evaluation of the velocity field by finite differences.
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The velocity field values at the intersections a and b are evaluated by finite differences as
expressed in Eq.(26). Since the mesh is fixed, it sounds natural to extend the velocity field over
the thin boundary layer made of the XFEM across the material interface. Over this boundary layer,
the velocity field is set to zero. It comes that the velocity field values at the nodes belonging to the
parent element are set to zero.

On the boundary


Vξi =

dξi
ds

=
ξi(s+ δs)− ξi(s)

δs
, i = a, b

Vηi =
dηi
ds

=
ηi(s+ δs)− ηi(s)

δs
, i = a, b.

(26)

Inside the domain, a virtual displacement field is used. This one results from the finite element
interpolation of the background mesh used for Gauss integration on XFEM. Finite element shape
function insures a sufficient smoothness of the velocity field while the computation of the local
value can be performed easily with a low computational effort.

Inside the domain


Vξ =

dξ

ds
=
∑
i

Ni(l,m) Vξi ,

Vη =
dη

ds
=
∑
i

Ni(l,m) Vηi .

(27)

This method holds as long as there remains at least one intersection between the element edges
and the iso-zero level set, i.e. there is no change of element status. If there is no intersection left,
applying the finite difference method is no longer possible for the material interface. Whenever this
case occurs, the velocity field on the interface can not be computed. Then the strategies developed
for the finite differences, as detailed in section 3.2.1, can be applied.

5.2. Adapted boundary displacement method

To avoid finite difference computations, a method, inspired from the boundary displacement method,
is developed. The boundary displacement method consists in evaluating the velocity field by solving
an auxiliary problem with prescribed interface displacements. The proposed method is adapted to
the XFEM framework and an extra problem has to be solved for each element initially cut by the
interface.

The subdivision of an element can be performed introducing extra inner nodes in the integration
mesh or not, as shown in Figure 8. Choosing either way leads to different auxiliary problems to
solve. The formulations obtained in each case are given in Table I, where K̃ is a stiffness matrix
related to the auxiliary problem, V collects the prescribed displacements on the interface and the
zero displacement on the nodes belonging to the parent element, V are the displacements of the
integration mesh inner nodes.

ξ

η

(a) With an inner node.

ξ

η

(b) Without inner node.

Figure 8. Subdivision strategy with or without introducing extra inner nodes.
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Table I. Auxiliary problem formulation

With extra inner nodes

 K̃V V K̃V V

K̃V V K̃V V


 V

V

 =

 0

0


Without extra inner node

[
K̃V V

] [
V
]

= 0

To solve the auxiliary problem, the related stiffness matrix K̃ has to be evaluated. Since this
matrix is different from the elementary one, this can lead to an extra cost. However, if no inner
node is introduced, the displacements at each node are already known and no extra computation is
needed. For this reason, in this paper, the subdivision is achieved without introducing extra nodes,
even if it could lead to less regular subelements.

To apply this adapted boundary displacement method, appropriate interface displacements have
to be prescribed. As the interface is represented by the iso-zero level set, the level set description
can be advantageously exploited to compute the velocity field on the interface.

As explained in section 2.5.1, the level set function is approximated by a straight line within each
XFEM element to find the interface location. This approximation provides an analytical expression
of the coordinates of the intersections. To obtain the velocity field on the interface, the equation of
the coordinates Eq. (8) is derived with respect to the design parameter s, leading to the following
results:

d

ds

[
ξ?

η?

]
=

d

ds

[
t ξ2 + (1− t) ξ1
t η2 + (1− t) η1

]
=

[
dt
ds (ξ2 − ξ1)
dt
ds (η2 − η1)

]
, (28)

with
dt

ds
=

d

ds

( |φ1|
|φ1|+ |φ2|

)
.

The derivative of t requires the computation of the derivatives of the level set nodal values. For
the sake of simplicity, these derivatives are here evaluated by finite differences, since it is always
possible regardless of the change of the element status.

Since the velocity field nodal values are known, the velocity field values can be recovered
anywhere within the subelements using a classical FEM approximation in the second parametric
space, as expressed in Eq.(27).

6. NUMERICAL VALIDATION

The analytical computation of the stiffness matrix derivative is now validated against numerical
examples. The results are compared to those provided by global finite differences and the semi-
analytical approach.

6.1. Bar made of quadrangular elements

The first test case focuses on a structure made of five bilinear Q4 quadrangles assembled to form a
bar-like shape, as shown in Figure 9. The left side of the structure is fixed in both x and y directions,
while the right side is submitted to an uniform distributed force f . The structure is divided in two
subdomains ΩA and ΩB , filled with two materials A and B, exhibiting different properties. All the
parameters used in this test case are summarized in Table II.

In this test case, the sensitivity of the compliance of the structure is evaluated for successive
locations of the material interface. The external forces are assumed independent of the design
parameter s and the derivative of the compliance C is expressed as [8]:

dC

ds
= −uT ∂K

∂s
u (29)
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x

y

2 4 6 8 10

fΩA ΩB

Figure 9. Validation test case: bimaterial bar geometry, boundary conditions and finite element mesh.

Table II. Validation test case: parameters.

Dimensions [m] L× l × t = 10× 2× 1
Elastic moduli [N/m2] EA = 1, EB = 10
Poisson’s ratio [−] νA = νB = 0
Distributed load [N/m] f = 1
Level set function φ(x, s) = x− s
Mesh 5× 1 bilinear Q4
Gauss points per subelement ngp = 7

Test case results The compliance derivative is evaluated using the three following approaches:
a global finite difference computation (FD), a semi-analytical approach (SA) and the analytical
approach developed in this paper (A). Moreover, as the Poisson’s ratio is equal to zero, the structure
behaves as a 1D bar and an exact solution can be computed. All the used equations are reminded in
Table III.

Table III. Summary of the sensitivity analysis approaches used.

Finite difference (FD) dC
ds '

C(s+δs)−C(s)
δs , δs = 10−4s

Semi-analytical (SA) dK
ds '

K(s+δs)−K(s)
δs , δs = 10−4s

Analytical (A) ∂K
∂s ' ∂

∂s

(∑
gp w BT H B |J1| |J2|

)
The values of the compliance derivative for various locations s of the interface are given in Table

IV as well as the exact analytical solution. One can remark that the results coming from the three
different approaches are in excellent agreement. Furthermore, the errors with respect to the exact
analytical solution is very small. Focussing on the central element, similar results are found and are
represented in Figure 10.

Focusing on the behavior of the three approaches near the boundary between elements provides
more interesting conclusions. Table V shows that the analytical approach developed allows to deal
with the sensitivity analysis even if the interface is very close to the boundary between elements
while other approaches based on finite differences fall into trouble. Using the analytical approach
allows to widen the range where the sensitivity analysis can be performed. However, when the
interface location coincides with some mesh nodes, the sensitivity analysis can not be performed.
This drawback is inherent to the XFEM approach that was chosen to perform the analysis.

Varying the test case parameters The same test case is used but setting the Poisson’s ratio value
from 0 to 0.3. As the Poisson’s ratio value differs from zero, the structure doesn’t behave as a 1D bar
anymore and no exact analytical results is available. The compliance derivative values for various
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Table IV. Test case results for ν = 0.

s Exact FD central SA central A

2.5 −1.8 −1.799999 −1.800000 −1.799999
3 −1.8 −1.800000 −1.800000 −1.800000
3.5 −1.8 −1.799999 −1.800000 −1.800000
4.5 −1.8 −1.800000 −1.800000 −1.799999
5 −1.8 −1.799999 −1.800000 −1.799999
5.5 −1.8 −1.799999 −1.800001 −1.799999
6.5 −1.8 −1.800000 −1.800001 −1.800000
7 −1.8 −1.800000 −1.800001 −1.800000
7.5 −1.8 −1.799999 −1.800002 −1.800000

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

−1.8

−1.7

−1.6

−1.5

Design parameter s

C
om

p
li
an

ce
d
er
iv
at
iv
e
d
C d
s

FD central
SA central
Analytical

Figure 10. Test case results on the central element for ν = 0.

Table V. Test case results for ν = 0 near one element boundary.

s Exact FD forward FD backward FD central

3.999 −1.8 −1.800000 −1.800000 −1.800000
3.9992 −1.8 −1.799999 −1.799999 −1.799999
3.9994 −1.8 −1.800000 −1.800000 −1.800000
3.9996 −1.8 −1.800000 −1.799999 −1.800000
3.9997 −1.8 −1.800000 −1.800000 −1.800000
3.9998 −1.8 −1.800000 −1.799999 −1.799999
3.9999 −1.8 −1.799999 −1.800000 −1.799999

s SA forward SA backward SA central A

3.999 −1.803238 −1.796762 −1.800000 −1.800000
3.9992 −1.803238 −1.796762 −1.800000 −1.799999
3.9994 −1.803239 −1.796761 −1.800000 −1.799999
3.9996 −1.803239 −1.796761 −1.800000 −1.800000
3.9997 /∗ −1.796761 /∗ −1.800000
3.9998 /∗ −1.796761 /∗ −1.799999
3.9999 /∗ −1.796760 /∗ −1.799999

*Procedure is unable to compute the sensitivity.

locations s of the interface are given in Table VI. The sensitivity results from the three approaches
(FD, SA and A) are again in excellent agreement. Focussing on the central element, similar results
are found and are represented in Figure 11.

Focusing on the behavior of the three approaches near the boundary between elements, Table
VII shows again that the analytical approach allows to expand the domain in which the sensitivity
analysis can be performed without any trouble or technical difficulties. One can also remark that the
finite difference and the semi-analytical approach give erroneous results very close to the boundary
between elements and that some preprocessing strategies have to be applied.

6.2. Shape optimization of a stiff and a soft inclusion in an infinite plate

To illustrate the efficiency of the developed analytical approach to perform the sensitivity analysis,
a classical shape optimization problem is investigated. The problem aims at finding the optimal
elliptical shape of a stiff and a soft inclusions in a plate.
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Table VI. Test case results for ν = 0.3.

s FD central SA central A

2.5 −1.7952710 −1.7952712 −1.7952710
3 −1.7864811 −1.7864814 −1.7864811
3.5 −1.7990212 −1.7990217 −1.7990212
4.5 −1.7950962 −1.7950969 −1.7950962
5 −1.7864488 −1.7864496 −1.7864488
5.5 −1.7989892 −1.7989905 −1.7989892
6.5 −1.7950783 −1.7950798 −1.7950783
7 −1.7864612 −1.7864629 −1.7864612
7.5 −1.7980988 −1.7981011 −1.7980987

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
−1.94

−1.92

−1.9

−1.88

−1.86

−1.84

−1.82

−1.8

−1.78

Design parameter s

C
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p
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d
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d
C d
s

FD central
SA central
Analytical

Figure 11. Test case results on the central element for ν =
0.3.

Table VII. Test case results for ν = 0.3 near one element boundary.

s FD forward FD backward FD central

3.999 −2.1046103 −2.1034229 −2.1040166
3.9992 −2.1052065 −2.1040159 −2.1046112
3.9994 −2.1058042 −2.1046105 −2.1052074
3.9996 −2.1064036 −2.1052066 −2.1058051
3.9997 73.6810921 −2.1055053 35.7877934
3.9998 73.7457260 −2.1058043 35.8199608
3.9999 73.8104376 −2.1061037 35.8521669

s SA forward SA backward SA central A

3.999 −6.8337315 2.6245374 −2.1045970 −2.10401559
3.9992 −9.4257274 5.2146782 −2.1055245 −2.10461021
3.9994 −14.9996938 10.7860069 −2.1068434 −2.10520638
3.9996 −30.8509364 26.6319040 −2.1095162 −2.10580409
3.9997 /∗ 48.7483057 /∗ −2.10610352
3.9998 /∗ 111.7920428 /∗ −2.10640334
3.9999 /∗ 451.40897744 /∗ −2.10670356

*Procedure is unable to compute the sensitivity.

Description of the problem The problem is symmetric and only a quarter of the plate is studied.
The geometry as well as the boundary conditions applied are summarized on Figure 12. A plane
stress state is assumed.

The optimization problem consists in finding the optimal shape of a stiff inclusion. An elliptical
shape is assumed. The design parameters are the semi-axes of the ellipse sT = [a b]. The compliance
of the structure is minimized, while the volume of the inclusion remains smaller than a given bound
Vmax. No other constraint is prescribed, except some side constraints on the design parameters. The
convergence criterion chosen is the variation of the objective function. This relative variation must
be smaller than 10−3. Two different meshes are used: a 50× 50 Q4 quadrangular mesh (element
size = 0.2) and an equivalent T3 triangular mesh (element size ' 0.2) presented in Figure 13.The
optimization problem is solved by the Method of Moving Asymptotes (MMA) of Svanberg [25].
All the parameters used through the optimization process are listed in Table VIII. Finally, the
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E1

ν1

E2

ν2

σx

σy

c

a

b

Figure 12. Finding the optimal shape of a stiff inclusion in an infinite plate.

optimization problem is stated as follow:

min
s

C = uT K u,

s.t. Vincl ≤ Vmax,

s ≤ s ≤ s.

(30)

(a) Structured mesh with Q4 (element size = 0.2). (b) Unstructured mesh with T3 (element size ' 0.2).

Figure 13. Stiff inclusion in an infinite plate: meshes.

XFEM integration validation: Number of Gauss points per subelement To emphasize the
importance of using a sufficient number of Gauss points to perform the integration with XFEM,
the optimization problem of a stiff inclusion in an infinite plate, described in Figure 12 and Table
VIII, is used. The analysis is performed on the structured mesh presented in Figure 13. The analysis
and the sensitivity analysis for the initial configuration of the problem are carried out. The latter
is performed using the global finite differences (FD), the semi-analytical approach (SA) and the
developed analytical approach (A). One, three, seven and twelve Gauss points per subelement are
successively used. The results, i.e. the compliance and its derivatives, are shown in Table IX. One
Gauss point is definitely not sufficient to capture discontinuous behaviors around the interface. With
twelve Gauss points, the results are really expensive for no further improvement observed in the
results. Seven Gauss points seems to be a good compromise between computational efficiency and
precision.
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Table VIII. Stiff inclusion in an infinite plate: parameters.

Dimensions [m] c = 10, t = 1
Elastic moduli [N/m2] E1 = 1, E2 = 10
Poisson’s ratio [−] ν1 = ν2 = 0.3
Distributed loads [N/m] σx = 1, σy = 0.5
Bound on Vincl [m2] Vmax = 2
Bounds on design variables [m] 0 ≤ a ≤ 4, 0 ≤ b ≤ 3

Level set function φ(x, s) =
(
x
a

)2
+
(
y
b

)2 − 1
Gauss points per subelement ngp = 7
Convergence criterion ∆C ≤ 10−3

Table IX. Sensitivity of the developed analytical approach to the number of Gauss points used per
subelement.

GP Compliance s FD central SA central A

1GP 94.78122 a −0.5160554 −0.5160557 −0.5159780
b −0.3859520 −0.3859522 −0.3858941

3GP 94.76729 a −0.5774089 −0.5774091 −0.5773223
b −0.3709876 −0.3709877 −0.3709319

7GP 94.76728 a −0.5771527 −0.5771529 −0.5770661
b −0.3710224 −0.3710225 −0.3709667

12GP 94.76728 a −0.5771497 −0.5771499 −0.5770632
b −0.3710101 −0.3710102 −0.3709545

Validation of the developed analytical approach The developed analytical approach is validated
by evaluating the sensitivity of the initial configuration of the problem with respect to the design
parameters s. The derivative of the objective function is evaluated with the three following
approaches on the structured and unstructured meshes: the global finite differences (FD), the semi-
analytical approach (SA) and the developed analytical approach (A). The results are listed in Table
X. The three approaches are clearly in great agreement.

Table X. Validation of the developed analytical approach by evaluation of the sensitivity of the initial
configuration of the problem with respect to the design parameters s.

Mesh s FD central SA central A Error A-FD (%)

Structured Q4 a −0.5771527 −0.5771529 −0.5770661 1.5005 10−2

b −0.3710224 −0.3710225 −0.3709667 1.5013 10−2

Unstructured T3 a −0.5922506 −0.5922506 −0.5921618 1.4998 10−2

b −0.3593348 −0.3593348 −0.3592809 1.5012 10−2

Problem results The results obtained with the structured and the unstructured meshes are very
close. Therefore, the solutions are only presented for the structured mesh. The initial and the
optimized configurations of the elliptical inclusion are given in Figure 14. The optimized shape
is obtained after 13 iterations. One can see that the stiff inclusion aligns with the applied loads. The
obtained configuration becomes similar to a reinforcement fiber in a soft matrix.

The evolution of the objective and the constraint functions are provided in Figure 15. As shown
on Figure 15(b), the constraint becomes active after few iterations. On Figure 15(a), one can see that
the compliance diminishes from one iteration to another and the optimization process stops as its
relative variation between two iterations becomes smaller than 10−3. If a smaller tolerance on the

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



ANALYTICAL SENSITIVITY OF BIMATERIAL STRUCTURES 21

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 14. Initial (a = b = 0.5) and optimized (a = 3.60, b = 0.71) elliptical shape of the stiff inclusion in
an infinite plate.

compliance variations is chosen, the ellipse tends to form a layer and flattens to align with the loads
as a becomes bigger and b smaller.
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(b) Constraint function.

Figure 15. Evolution of the objective and the constraint functions along the optimization process for the stiff
inclusion in an infinite plate.

To observe the convergence process in details, the values of the compliance and the volume are
computed over the design domain. Figure 16 shows the path followed iteration after iteration through
the optimization process.

Varying the parameters: Soft inclusion The same optimization problem is solved but modifying
the elastic moduli of the materials so that the inclusion is now soft (E2 = 1) with comparison to the
plate (E1 = 10). The optimization problem still consists in finding the optimal shape but of a soft
inclusion. An elliptical shape is assumed. The optimization problem is now formulated as:

min
s

C = uT K u,

s.t. Vincl ≥ Vmin,

s ≤ s ≤ s.

(31)
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Figure 16. Iteration path along the optimization process for the stiff inclusion in an infinite plate.

The same results as the ones obtained for the stiff inclusion are provided. Here, only the structured
mesh shown in Figure 13 is used. Figure 17 provides the initial and optimized configurations of the
elliptical soft inclusion. Figure 18 shows the evolution of the objective and constraint functions.
Figure 19 illustrates the convergence path followed through the optimization process. The optimal
shape is now an ellipse with main axes aligned with the far field principal stresses. The ratio a

b
between the two axes tends to 2 which would be the analytical solution when Esoft tends to zero.
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Figure 17. Initial (a = b = 2) and optimized (a = 2.183, b = 1.176) elliptical shape of the soft inclusion in
an infinite plate.

6.3. Dealing with complex geometries using overlapping level set functions

In general, several level set functions can be used to represent complex geometries in optimization
problems. Each of the level set functions are characterized by its own geometric features used as
design parameters. Applying boolean operations, as the union, the difference or the complement, a
global level set function can be obtained starting from several independent level set functions.

This section demonstrates that multiple or overlapping level set functions can be handled by
the developed analytical sensitivity analysis. In fact, during the optimization process, the level set

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



ANALYTICAL SENSITIVITY OF BIMATERIAL STRUCTURES 23

1 1.5 2 2.5 3 3.5 4 4.5 5

9.85

9.9

9.95

10

10.05

10.1

10.15

10.2

Iterations

O
b
je
ct
iv
e
fu
n
ct
io
n
:
C

(a) Objective function.

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Iterations

C
on

st
ra
in
t
fu
n
ct
io
n
:
V
in
cl
u
si
o
n

(b) Constraint function.

Figure 18. Evolution of the objective and the constraint functions along the optimization process for the soft
inclusion in an infinite plate.
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Figure 19. Iteration path along the optimization process for the soft inclusion in an infinite plate.

functions can overlap or merge. However, performing the sensitivity analysis, the design parameters,
i.e. the geometric features of the initial level set functions, are still treated independently. Processing
this way, no additional treatment is necessary to carry out the analytical approach.

To illustrate the efficiency of the developed approach when overlapping occurs, the case of two
stiff circular inclusions in a plate submitted to tension is studied. The inclusions are described using
two distinct level set functions φ1 and φ2 that are combined by the boolean union operation to create
a global level set function φglobal.

Description of the problem The geometry of the plate as well as the boundary conditions are
provided in Figure 20. A plane stress state is assumed. The problem of finding the inclusions
locations along the y axis as well as their radii is addressed. The design parameters are the locations
of the inclusions along the y axis as well as their radii: s = [s1 R1 s2 R2]. The compliance of the
structure is minimized, while the total volume of the inclusions must remain smaller than a given
bound Vmax. No other constraint is prescribed, except some side constraints on the design parameters.
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The chosen convergence criterion is the variation of the objective function. The relative variation of
the compliance must be smaller than 10−3. The problem is solved on a 50× 50 Q4 quadrangular
mesh (element size = 0.2 m), identical to the one presented in Figure 13, and using MMA. All
parameters used in the optimization process are listed in Table XI. Finally, the optimization problem
is formulated as follow:

min
s

C = uT K u,

s.t. Vincl ≤ Vmax,

s ≤ s ≤ s.

(32)

E2

ν2

E1

ν1

ff

c

s2

s1

R1

R2

Figure 20. Finding the optimal location and size of two stiff circular inclusions in a plate.

Table XI. Two stiff circular inclusions in a plate: parameters.

Dimensions [m] c = 10, t = 1
Elastic moduli [N/m2] EA = 1, EB = 100
Poisson’s ratio [−] νA = νB = 0.3
Distributed load [N/m] f = 10−1

Bound on Vincl [m2] Vmax = 10
Bounds on design variables [m] 4 ≤ s1, s2 ≤ 6; 0 ≤ R1, R2 ≤ 2.5

Level set function φ1(x, s1) =

√
(x− 5)

2
+ (y − s1)

2 −R1

φ2(x, s2) =

√
(x− 5)

2
+ (y − s2)

2 −R2

φglobal(x, s) = φ1 ∪ φ2 = max(φ1, φ2)
Gauss points per subelement ngp = 7
Convergence criterion ∆C ≤ 10−3

Problem results The initial and the optimized configurations for the two stiff circular inclusions
are given in Figure 21. The optimized locations along the y axis and the radii are obtained after five
iterations. One can observe that the two inclusions overlap through the optimization process.

The evolution of the objective and the constraint functions are provided in Figure 22. In Figure
22(a), the compliance diminishes through the process, that ends as the relative variation of the
compliance between two iterations becomes smaller than 10−3. If a smaller tolerance is chosen,
the two inclusions tend to merge to form a unique and bigger stiff inclusion in the middle of
the plate. However, when the inclusions are nearly perfectly superposed, the convergence process
becomes delicate. In fact, any small modification of the radii of the inclusions leads to a less
total superposition of the geometries. This makes the process unstable, until one of the inclusions
completely covers the other. Then, the covered inclusion has no influence on the structural design.
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Figure 21. Initial (s1 = 6, R1 = 0.75, s2 = 4, R2 = 0.75) and optimized (s1 = 5.96, R1 = 1.31, s2 = 4.04,
R2 = 1.32) configuration of the two stiff circular inclusions in a plate.
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Figure 22. Evolution of the objective and the constraint functions along the optimization process for the two
stiff circular inclusions in a plate.

Validation of the developed analytical approach To show that the developed analytical approach
is able to deal with multiple level set functions, the sensitivity analysis with respect to the four
design parameters s = [s1 R1 s2 R2] is performed on the initial and the fourth configurations,
i.e. the last configuration before convergence of the optimization process, carrying out the three
following approaches: the global finite differences (FD), the semi-analytical approach (SA) and the
developed analytical approach (A). The obtained results are presented in Figure XII and show that
the developed approach is consistent and robust.

7. CONCLUSION

This paper has presented an original shape optimization approach of bimaterial structures based
on a level set description of geometries and an XFEM discretization. The level set description
enables to consider complex boundaries in future work. The XFEM discretization is selected to
circumvent the technical difficulty of meshing operations in presence of mobile boundaries as in
classical parametric shape optimization. To pave the way for future complex investigations, the
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Table XII. Two stiff circular inclusions in a plate: validation on the initial and fourth configurations.

Configuration s FD central SA central A Error A-FD (%)

1 s1 −0.0037668 −0.0037668 −0.0037519 3.951 10−1

R1 −0.0556912 −0.0556912 −0.0556912 1.001 10−6

s2 0.0037718 0.0037718 0.0037817 2.631 10−1

R2 −0.0556936 −0.0556936 −0.0556936 3.871 10−7

4 s1 −0.0173260 −0.0173260 −0.0173143 6.742 10−2

R1 −0.0695147 −0.0695147 −0.0695147 2.857 10−7

s2 0.0179530 0.0179530 0.0179610 4.459 10−2

R2 −0.0723136 −0.0723136 −0.0723136 5.356 10−7

present work has carefully investigated and validated the sensitivity analysis of the shape internal
boundaries between materials.

Without loss of generality, the work assumes that the level sets representing the material interfaces
are described by geometrical features whose parameters are considered as the design variables in
the optimization process. The developed analytical approach starts from the discretized equations
of the linear elasticity problem, Ku = f , and derives it with respect to the design parameters. The
sensitivity of the discretized finite element structural responses requires the derivative of the stiffness
matrix K.

For classical shape optimization with FEM, the derivative of the stiffness matrix introduces
a sensitivity of the physical node positions. In the XFEM framework, the sensitivity analysis is
performed on a fixed physical mesh. However, the derivatives introduce a sensitivity of the material
subdomains within the XFEM elements and so, a sensitivity of the background mesh used to carry
out the integration procedure. Therefore, the mesh flow at the level of physical mesh is avoided, but
a velocity field at the level of the XFEM elements has to be considered.

The work explains and details the different terms involved in the stiffness matrix derivative. Then,
an original approach to determine the velocity field of material points within the XFEM is proposed.
The selected approach takes advantage of the level set representation to determine the prescribed
motion of the boundaries. Then, it defines an inner velocity field within the XFEM elements using
the background integration mesh and some finite element shape functions to yield a sufficiently
smooth velocity field. A simplified procedure is proposed so that no additional problem has to be
solved. The latter method proved to be extremely cost efficient while sufficiently smooth to provide
accurate results.

The proposed analytical approach was studied and compared with other commonly used ones
such as finite differencing or the semi-analytical approach. It was shown that all obtained results are
in excellent agreement with each other, but the analytical approach is very efficient and particularly
well suited to the chosen XFEM-level set framework. Finally, the analytical approach also proved
to be able to cope with difficult situations where the level set is very close to a mesh node. In fact, it
still holds while other approaches based on finite perturbation of the level set and finite differences
fall into troubles. Even if it looks more complex than finite differencing and the semi-analytical
methods, the analytical approach allows performing the sensitivity analysis of structures presenting
material interfaces in a systematic way.

Finally the developed analytical sensitivity was illustrated on academic shape optimization
problems, where the optimal shape of a material inclusion in an infinite plate is sought. Future
work will consider more advanced applications of shape optimization of multiphase structures or
microstructures.
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Liège, Liège, 2012.
30. L. Van Miegroet and P. Duysinx. Stress concentration minimization of 2d filets using x-fem and level set

description. Structural and Multidisciplinary Optimization, 33(4–5):425–438, 2007.
31. N. Vermaak, G. Michailidis, G. Parry, R. Estevez, G. Allaire, and Y. Brechet. Material interface effects on

the topology optimization of multi-phase structures using a level set method. Structural and Multidisciplinary
Optimization, 50(4):623–644, 2014.

32. H. Waisman. An analytical stiffness derivative extended finite element technique for extraction of crack tip strain
energy release rates. Engineering Fracture Mechanics, 77(16):3204 – 3215, 2010.

33. M. Y. Wang and X. Wang. Color level sets: a multi-phase method for structural topology optimization with multiple
materials. Computer Methods in Applied Mechanics and Engineering, 193(6–8):469 – 496, 2004.

34. M. Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization. Computer Methods
in Applied Mechanics and Engineering, 192(1-2):227–246, 2003.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme
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