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ABSTRACT. This paper presents a methodology of damage analysis at elevated temperature 

using the finite element method. Both the model and the methodology to identify parameters 

are summarized. The mechanical properties are established using compression tests at 

elevated temperature. An elasto-visco-plastic model depending on temperature is identified. A 

metallographic analysis is used to determine the original size and morphology of the 

austenitic grains. The experimental damage analyses consist in acoustic tests in order to 

determine the apparition of the first crack during compression. Finite element simulations of 

these experiments allow the determination of the damage parameters using a reverse method. 
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1. Introduction 

Transverse cracking is recognized as a major problem in continuous casting of 

micro-alloyed and low carbon steels. Experimental studies have demonstrated that 

such steel grades present a gap of ductility and that they become more brittle at 

temperatures between 1000 and 600°C (Brimacombe et al., 1977; Suzuki et al., 

1984). Transverse cracks generally appear in the unbending zone of the continuous 

casting mill. These cracks can be related to the steel grade but also to the mechanical 

and thermal fields occurring during the process and to other factors such as the 

oscillations marks caused by the vertical oscillations of the mould during the 

process. To improve the quality of cast products, a better understanding of the 

behaviour of the strand during the continuous casting process is necessary. 

The main objectives of the research are to model the continuous casting process 

and the evolution of the damage at the grain scale, referred to as the mesoscopic 

scale. Due to the huge amount of computational resources that would be required, it 

is not realistic to model the whole steel slab at the mesoscopic scale. As the critical 

areas for crack initiation are well known specific zones can be defined for the finite 

element meshes and the mesoscopic simulations.  

In the investigated temperature range, the cracks have been shown to be 

intergranular and the principal damage mechanisms are grain boundary sliding and 

creep controlled by diffusion (Mintz et al., 1991). To model these effects, a 

mesoscopic cell, which represents the microstructure of the material, is defined. The 

mesoscopic model requires information from the macroscopic scale, which are 

available through a macroscopic finite element analysis of the continuous process 

previously realised (Pascon et al., 2003). 

A detailed description of the mesoscopic model can be found in section 2 where 

the constitutive equations are summarized together with a description of the 

parameters. The rest of the paper focuses on the identification of the parameters of 

the elastic-viscous-plastic law used in the grains and the damage law used at the 

boundaries (section 3). The finite element simulations associated with the 

identification process are also presented (section 4). 

2. Numerical model 

The finite element model is developed at the mesoscopic scale and comprises 

interface and solid elements used in combination with a damage constitutive law.  

2.1. Mesoscopic cell 

In order to represent intergranular creep fracture, the present model contains 

two-dimensional (2D) finite elements for the grains and one-dimensional (1D) 
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interface elements for their boundaries
 
(Onck et al., 1999). Inside the grains, a 

elastic-viscous-plastic law is used, and at its boundaries a law with damage is 

defined.  

The grains are modelled by thermomechanical 4-nodes quadrilateral elements of 

mixed type with one integration point (Zhu et al., 1995). This element contains anti-

hourglass stresses that prevent zero-energy hourglass deformation modes to appear. 

A law of Norton-Hoff type (Habraken et al., 1998a) is used to quantify the viscous-

plastic behaviour inside the grain for the studied steel. Its expression in terms of 

equivalent stress e , equivalent strain e  and strain rate e  is given by equation [1]: 

    
3

4

p
p

e e 1 e 2 e.exp p .p . 3. 3.       [1] 

where the parameters p1 to p4 are temperature dependent. p1 represents the effect of 

softening, p2 is linked to the maximum value of the curve, p3 models the viscosity 

and p4 the hardening. 

The 2D elements modelling the grains are connected by interface elements to 

account for cavitation and sliding at the grain boundary. As the thickness of the 

grain boundary is small in comparison with the grain size, the grain boundary can be 

represented by 1D interface elements. These elements have two nodes and two 

integration points and are associated with a constitutive law which includes 

parameters linked to the presence of precipitates, voids, etc. The damage variable 

explicitly appears in this law.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Interface element: contact element, associated foundation, linked solid 

elements. Dots symbolize nodes and crosses represent integration points. 

 

The interface element is composed of a modified contact element and a 

foundation element (see figure 1). At each iteration, the program determines the 


n


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foundation element associated to each integration point of each contact element by 

searching the intersection between the normal of the contact element at this 

integration point and the foundation elements surrounding the area. The state 

variables for each  integration point of each interface element are computed at each 

iteration using information from the two solids elements in contact (elements i and j 

in figure 1), i.e. the solid elements attached to the contact element and foundation 

element determined for this particular integration point at this iteration. The state 

variables in the interface element are the corresponding mean values at the 

integration points of elements i and j. As the two surfaces of the interface can slide 

against each other, the foudation element facing a contact element may change 

during the simulation. Likewise, two integration points of a contact element may be 

linked to two differents foundation elements, i.e. to two different solid elements. 

The original contact element was described by Habraken et al. (1998b) and is 

usually combined with a Coulomb’s friction law. This element has been modified in 

order to introduce a new interface law and a cohesion criterion. The stress 

components of the contact element are represented in figure 1, their evolution is 

described by the following viscous-elastic-type relationships: 

    ands s n n ck u u k            [2] 

In this penalty method the penalty coefficients ks and kn are large to keep the 

deviations  su u   and  c    small. u  and   are respectively the relative 

sliding velocity of adjacent grains due to shear stress  and the average separation 

rate, normal to the interface, due to damage growth. These variables are directly 

computed from nodal displacements. su  and c
  are the similar variables to u  and 

  but related to the damage law. Their evolutions are described in the section 2.2 

(equations [3] and [19]). Equation [2] enforces u  and   to be equal to su  and c
 . 

2.2. Interface law: evolution of the damage 

The major damage mechanisms at the mesoscale are viscous grain boundary 

sliding, nucleation, growth and coalescence of cavities leading to microcracks. The 

linking-up process subsequently leads to the formation of a macroscopic crack. 

2.2.1. Grain boundary sliding 

Grain boundary sliding is governed by: 

 s

B

u w



  [3] 
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where 
su  is the relative velocity between two adjacent grains, w is the thickness of 

the grain boundary and 
B  is the grain boundary viscosity. However 

Bw   can be 

expressed in term of the strain-rate parameter 
B  defined as follows: 
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0

0
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
 

 

 
  

 

 


 [4] 

d is a length parameter related to the grain size and n is the creep exponent (Onck et 

al., 1999). 0 , 0  are reference stress and strain-rate that depend on the steel grade. 

The intergranular sliding can be characterized by the ratio e B
   , which measures 

the relative resistance between the grain and the grain boundary. In case of free 

sliding ( B  = 0), e B
   = 0. When there is no sliding ( B  ), e B

    .  

The classic creep law is defined as: 

  
n

ne
e 0 e

0

B
 

  
 


  


    [5] 

Using equations [4] and [5] the ratio Bw   becomes: 

    
n 1 1

n n
B

B

w
d B



 


   [6] 

where B  is the creep coefficient.  

Four parameters are then necessary to define the boundary sliding: the creep 

exponent n, the creep parameter B, the grain size d and the parameter characterizing 

the viscosity e B
   . The three first parameters are determined in section 3 using the 

experimental results,  e B
    is chosen equal to an intermediate value of 10 (Onck 

et al., 1999). 

2.2.2. Voids evolution 

In the context of damage at high temperature, the mechanism of voids 

nucleation, growth and coalescence is established.  

The model uses an idealized formulation of the grain boundary geometry where 

the cavities are supposed to be uniformly distributed on each grain boundary 

segment (i.e. at each integration point) with an average spacing of 2b and a diameter 

of 2a. Figure 2 illustrates this idealized representation: on the left each individual 

void is represented and on the right the voids are replaced by a continuous variable 

c . Its evolution rate c
  is computed at the integration points of the interface 
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elements to account for the interface thickness updating due to the presence of voids 

at the grain boundaries (see equation [2]). Detailed equations for the variables used 

for the computation of c
  are presented in the next sections. A fracture criterion is 

also proposed. 
 

 

  

Figure 2. Discrete and continuous representations of the grain boundary (Onck et 

al., 1999) and  definition of   angle. 

 

2.2.2.1. Voids nucleation – computation of the cavity spacing growth rate b  

In most engineering alloys, cavities have been observed to continuously 

nucleate. The following experimental relation has been suggested: 

 

2

2

0

 with 0n
n e n e nN F

 
   

 

  


     [7] 

N is the average number of cavities per unit length of grain boundary. e
  is the 

equivalent creep strain rate from equation [1]. n  is the normal stress, introduced to 

allow a faster nucleation on those grain boundaries which are perpendicular to the 

loading direction.  is a material constant (van der Giessen et al., 1994) which is  

related to 0 and to Fn. 0 is a normalization constant representative of the average 

stress level in the material surrounding the crack. Fn is the microstructural parameter 

which influences the nucleation rate at the grain boundary. Zones where nucleation 

is more important can be introduced through this parameter. It can represent, among 

others, the precipitation state or the influence of the thin ferrite film that can form 

close to the grain boundary leading to strain concentration (Mintz et al., 1991). 

According to equation [7], the nucleation will begin with the plastification. 

However, experiment shows that nucleation appears later, that is why a threshold is 

used to indicate the beginning of the nucleation. For this purpose, the parameter S 

which combines the stress and the cumulated strain is defined: 

  
2

0n eS     [8] 

The parameter S characterizes the state of the material before nucleation. It will 

grow with the strain until the threshold value Sthr is reached. Sthr is assumed to be 

related to the minimum cavity density NI from which nucleation can be observed and 

to the factor Fn that indicates the importance of the nucleation activity of the 

material: 

 

2
2a 2b

 c
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thr I nS N F  [9] 

Once nucleation begins the parameter S is not used any more in the model. 

Finally, experience shows that the cavity density tends to saturate for large creep 

strains, then the nucleation of new cavities stops when N reaches the value Nmax. If 

2b is the cavity spacing (see figure 2), N is related to it by: 

  
21N b

 [10]  

The evolution of the cavity spacing is found by derivation of equation [10]: 

 
1

2

N
b b

N
 


  [11] 

By substituting equations [7] and [10] in equation [11], we have: 

 
3 2

2
n eb b  


   [12] 

The nucleation rate N  is related to the internal state of the material N as well as 

to the stress n  and strain rate e
  states on the grain boundary. With a one-

dimensional element, this nucleation rate N  can be interpreted as a measure of the 

rate of evolution of the cavity spacing b . In practice, the finite element model uses 

equations [7] and [11] to compute the decrease rate of b due to continuous 

nucleation of cavities. 

2.2.2.2. Voids growth – computation of the cavity size growth rate a  

A detailed formulation of the cavity growth under diffusion and creep 

deformations was proposed by Tvergaard (1984). Assuming that a cavity is defined 

by two parameters :   the cavity tip angle and 2a its size, the cavity growth rate is: 

      2 2

1 2/ 4 / 4a V a h V V a h           
    [13] 

where  
 

1
1 cos 0.5cos

h
sin

 





 

  (shape function of the cavity) and V  is the 

total cavity volume growth rate, which is divided into diffusion growth 1V  (equation 

[14]) and creep deformation 2V  (equation [15]): 

 
    

1 4
ln 1 3 1 2

nV D
f f f




  
  [14] 
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where     21 0.4319C n n n      and  32 C

eA a h   . D is a constant related 

to the material diffusion, n the creep exponent, n , e and m  are respectively the 

normal, equivalent, and mean stresses applied on the grain boundary. The variable f, 

used in equation [14] is defined as follows: 

     22
f max a b , a a 1.5L     [16] 

where  
1 3

C

e eL D   . 

The coupling between diffusive and creep contribution to void growth is 

introduced trough the length scale L. For small values of a/L, cavity growth is 

dominated by diffusion while for larger values, creep growth becomes more and 

more important.  

The diffusion parameter can be expressed as a function of the temperature by:  

 b0 b bD Q
D exp

kT RT

   
   

 
 [17] 

with b0 bD   the grain boundary diffusion coefficient, Ω  the atomic volume, bQ  the 

activation energy, T the temperature in Kelvin, k = 1.3807 10
-23 

J K
-1

, the 

Boltzmann’s constant and R = 8.3145 J mol
-1

 K
-1

, the universal gas constant. The 

particular values for austenitic steel are the following: 0b bD  = 7.5 10
-14

 m
5
 s

-1
,  = 

1.21 10
-29

 m
3
 and Qb = 159 kJ mol

-1
 (Needleman et al., 1980). 

Finally the discrete cavity distribution is replaced by a continuous distribution on 

each facet of the grain boundary so that the average separation between two grains 

c , which is equivalent to a grain boundary thickness, evolves in a continuous way 

on the facet (see figure 2). c  is determined using the volume of grain boundary 

cavities V and their average spacing b: 

 
2c

V

b



  [18] 
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Then, the separation rate c
  used in equation [2] is given by: 

 
2 2

2
c

V V b

bb b


 
 


  [19] 

To resolve the equations of this section, the following additional independent 

parameters have to be defined: the initial voids size a0 and spacing b0, the nucleation 

parameter Fn, the normalization constant 0, the cavity tip angle , the initial cavity 

density for nucleation NI and the maximum cavity density Nmax where nucleation 

stops. They are determined in section 3.3 using the damage experiments except for 

, which is assumed to remain constant during voids growth and taken equal to 75° 

(Onck et al., 1999). 

2.2.2.3. Voids coalescence and fracture criterion 

Coalescence takes place when cavities are sufficiently close to each other to 

collapse. The parameter used to define the coalescence activation is the ratio a/b. It 

is called a damage variable in the current model. When this ratio reaches a critical 

threshold value dlim, coalescence is triggered and a crack appears.  At this moment 

the contact is lost between the foundation and the contact element of the interface 

element where the criterion has been reached and a crack physically appears in the 

finite element model.  

Preliminary simulations have been performed on simple representative cells to 

study and validate the model.  The penalty coefficients ks and kn (equation [2]) have 

been defined so that the softer zone introduced in the finite element mesh due to the 

presence of interface elements does not influence the results before damage occurs. 

It has been shown that this condition is respected for ks = kn = 100000 Mpa/mm 

(Castagne et al., 2003). It has also been demonstrated through simulations with a 

mesh representing real grains that it is possible to follow the initiation and 

propagation of cracks with this approach (Castagne et al., 2004). 

2.3. Meso-macro link 

As the damage evolution is analysed at the grain scale, specific zones of study 

called the representative mesoscopic cells have to be defined for the finite element 

simulations. The macroscopic continuous casting model available at the University 

of Liège
 

provides various results such as temperature field, thickness of the 

solidified shell, stress, strain and strain rate fields in the strand which will be used to 

define the thermomechanical history applied on the mesoscopic cell (Pascon et al., 

2003). The macroscopic model also computes several crack risk indicators that are 

in agreement with observations made on industrial sites showing that transverse 

cracks always appear near the edge of the slab. This indicates that the mesoscopic 

cell has to be chosen in this zone.  
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To allow the transfer of data from the macroscopic model to the mesoscopic 

model, the mesoscopic cell has to be surrounded by a transition zone as shown in 

section 4.2. The history of forces and displacements are established by running a 

macroscopic simulation. These forces and displacements are imposed on each node 

of the boundary of the transition zone.  

At each time step, the temperature of each node of the mesoscopic cell is fixed 

according to the results of the macroscopic simulation and no thermal exchange is 

computed at this scale as the thermal problem has already been solved by the 

macroscopic model. 

3. Experimental analyses 

The material was provided in the form of specimens cut from a rejected slab. A 

metallographic analysis has been preformed to establish the crystalline structure of 

the material. Mechanical tests have been performed to determine the material 

properties of the steel and damage tests have also been performed to identify the 

parameters that have to be introduced in the damage model. 

3.1. Metallographic analysis 

Metallographic analysis combining optical microscopy and picric acid etching on 

steel samples have been performed at room temperature to determine the original 

austenitic grain size and morphology.  

 

 
 

Figure 3. Austenitic microstructure of the studied steel at mid-height of the slab 

close to the lateral face on a facet parallel to this lateral face. 

 

Figure 3 shows an example of the austenitic microstructure. The grain size was 

measured using the planimetric method described in the ASTM E112-96 (2004) 

standard. This method consists in counting the number of grains contained in a 5000 

mm
2
 circle on an enlarged picture. Knowing the scale of the picture it is then 
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possible to transform this number of grains into an equivalent grain diameter. It was 

found that on a facet parallel to the lateral face of the slab, close to this lateral face, 

the grain size evolves from 1 mm at the corner of the slab to 1.5 mm in the middle, 

which is a huge grain size compared to the values usually found in the literature. As 

the cracks usually appear close to the corner of the slab, an average austenitic grain 

size d of 1 mm has been used in equation [4]. 

The austenitic microstructure (Figure 3) has also been used to define an accurate 

finite element mesh of the grains microstructure in the mesoscopic cell.  

3.2. Mechanical analysis 

Compression tests on cylindrical samples have been performed and the 

corresponding stress-strain curves recorded. Various strain rates (0.01, 0.001 and 

0.0001 s
-1

) and temperatures (700, 800, 900, 1000 and 1100°C) have been used in 

the experimental program in order to identify the parameters p1 to p4 in equation [1]. 

A thermal treatment that was aimed at reproducing the thermal cycle of continuous 

casting had been applied on each test sample before compression. 

 

 

Table 1. Parameters of the Norton-Hoff law for an equivalent stress e  in Mpa. 

 

T [°C] p1 p2 p3 p4 R 

700 0.2476 156.107 0.115 0.067 9.737 

800 0.7749 303.085 0.231 0.203 19.762 

900 0.0465 125.001 0.155 0.210 15.119 

1000 0.0014 53.692 0.099 0.193 5.612 

1100 0.8429 65.402 0.148 0.193 3.585 

 

 

This identification has been done using a least squares method for each 

temperature to determine the parameters p1 to p4 of the Norton-Hoff law [1]. R
2
 is 

the variable that is minimized in the problem. It is a measure of the difference 

between the experimental data and the simulated curves. The results of the 

identification can be found in table 1. R is also given in table 1, it is a unique value 

for each temperature which gives an idea of the quality of the identification. R 

becomes zero when the difference between the data points and the fitted curve is 

zero. 

The softening parameter p1 does not influence the results of the macroscopic 

continuous casting model as it has principally an effect in the large strains that will 

not appear in this process. Nevertheless, it is important to have an accurate model at 

larger strains for the acoustic tests simulations used to identify the damage 
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parameters and in case of localised higher strains due to the grain configuration in 

the mesoscopic cell. The evolution of p2, which is correlated to the maximum value 

of the stress, is consistent with the presence of the ductility gap leading to higher 

stresses at 800°C. The viscosity parameter p3 and the hardening parameter p4 lie 

almost in the interval 0.1 – 0.2, which fits with usual values found for steel. p3 does 

not increase monotonously as could have been expected for the majority of steel 

grades.  This type of behaviour has also been found in the literature for several low 

carbon steel grades
 
(Altan et al., 1983), which is the type of steel used in this study. 

Figure 4 shows the results of the calibration at T=1100°C for 3 strain rates. The 

oscillating lines correspond to the experimental results and the smooth lines to the 

Norton-Hoff curves (equation [1]) using the parameters of table 1. 
 

 

Figure 4. Experiments and Norton-Hoff curves at T=1100ºC. 

 

 

The results of the mechanical experiments have also been used to determine the 

creep parameters of the interface model. Even if the curve shape could suggest that 

some recrystallization occurs, this phenomena is neglected in the model The creep 

parameters B and n can be determined using the Norton-Hoff law. The Norton-Hoff 

law [1] is different from the classic creep law [5] but the two formulations can be 

linked together if some assumptions are made. The Norton-Hoff links the equivalent 

stress to the equivalent strain and strain rate whereas the classic creep law only links 

the equivalent stress with the equivalent strain rate. For a given value of the strain 

e , equation [1] can be rewritten: 

   3

1

p
e e   [20] 
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and n can be identified by comparison of equations [5] and [20]: 

  
3

1
n

p
  [21] 

Although B is a function of the equivalent strain e , a unique value of B has 

been determined corresponding to a representative strain for this problem. e = 0.07 

has been chosen as it corresponds to the value for which the stress reaches a plateau 

and B becomes quasi-independent of e . It is also of the order of magnitude of the 

strains found in continuous casting. Knowing p1 to p4 and e , B can be found by 

identification of equations [1] and [5]. The normalization constant 0 is computed 

using the same method. 0 has to be representative of the stress level in the material 

and is therefore computed using the Norton-Hoff law with a strain e = 0.07 and an 

intermediate strain rate e
 = 10

-3
 s

-1
. The values of n, B and  0 are given in table 2. 

As in table 1, the units in table 2 are consistent with an equivalent stress in Mpa. 

 

 

Table 2. Parameters n, B and Σ0. 

 

T [°C] n B Σ0 [Mpa] 

700 8.696 2.263E-21 106.955 

800 4.329 1.270E-11 66.683 

900 6.452 1.821E-14 46.202 

1000 10.081 1.461E-18 29.625 

1100 6.757 3.642E-13 24.941 

 

3.3. Damage analysis 

The damage analysis consists in acoustic tests realised in order to determine the 

apparition of the first crack during the compression of steel samples. At the origin, 

these tests were developed at IBF (RWTH-Aachen) to predict the formality of steel 

at low temperature and were then adapted to the conditions prevalent during hot 

forming (Kopp et al., 1999). 

If the internal stresses in a crystal are exceeding locally a critical threshold 

during forming, a sudden change appears (the initiation of a micro-crack), which 

allows the material to go back to an equilibrium state with a lower potential energy. 

The potential energy emitted is dissipated in the form of elastic waves that can be 

detected in the surrounding area as sound pulses. Piezoelectric sensors are used to 

record the sound signals. These signals, that have a very low intensity, are pre-
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amplified, filtered to separate the sound associated with the damage process from 

the interferences and amplified again before being introduced in the data acquisition 

system.  

In order to reproduce the continuous casting conditions and the microstructure of 

the steel during this process, the samples were first heated up to 1375°C in an 

external radiation furnace and maintained at this temperature for ten minutes before 

cooling down to test temperature. To protect the sample material against surface 

oxidation, the furnace was rinsed with argon inert gas. Afterwards the samples were 

manually placed in the compression machine. The surrounding furnace was heated 

up to test temperature within the argon atmosphere. Finally the samples were 

compressed up to crack initiation with a constant strain rate while upcoming 

acoustic emission events causes by material failure were recorded. 

Several sets of acoustic tests have been done with different sample geometry 

(two cylindrical: flat and slim and two non-cylindrical: flange and concave shapes) 

to generate different stress-strain histories at the critical point of the samples (see 

figure 5). The critical point is the point where the crack is supposed to appear due to 

the mechanical loading, i.e. where the maximum principal stress will reach its 

maximum value (on the outer edge at mid-height for the flat, slim and concave 

samples and at the intersection of the outer edge of the cylindrical part with the ring 

for the flange sample). The location of the critical point has been determined 

experimentally for various samples at the time of the development of the technique 

at IBF. 

Three temperatures (800°C,  900°C, 1000°C) and two strain rates (1·10
-3

 s
-1

, 

5·10
-4

 s
-1

) have been tested with at least three samples for each combination and for 

each geometry to ensure statistically relevant results. 

4. Finite element analysis 

The parameters are identified using a reverse method that requires two major 

steps. First the loadings to be applied to the mesoscopic cell have to be determined 

by macroscopic simulations of the acoustic tests and then these data have to be 

transferred to the mesoscopic cell to solve the reverse problem. 

4.1. Macroscopic modelling of the acoustic tests 

The finite element simulations of the acoustic tests give the formability curves 

and also the stress, strain and temperature fields in the whole sample and in 

particular in the region where the crack is expected to appear. The material law used 

for these simulations is the elastic-viscous-plastic law that is also used to model the 

grains behaviour of the mesoscopic model (see equation [1]). The temperature is 

fixed at the corresponding test temperature for each simulation. The compression 
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load is modelled using a tool whose displacement produces a vertical logarithmic 

strain in the sample corresponding to the required constant strain rate. A contact law 

with friction is used between the sample and the tool.  

A sensitivity analysis has shown that the results where strongly dependent on the 

friction coefficient between the tool and the sample. Therefore, further experiments 

performed at IBF using the same procedure as for the acoustic tests have been 

necessary to determine the actual friction coefficient. The chosen tests were ring 

tests at 800 °C and with a constant displacement rate of the tool of 8·10
-3

 mm s
-1

. 

The friction coefficient found is 0.2. 

Figure 5 shows the evolution of the specific maximal principal stress versus the 

equivalent strain at the critical point for a temperature of 900°C and a strain rate  = 

5·10
-4

 s
-1

, these results have been obtained by finite element simulations of the 

compression tests for each sample geometry. The crosses on the curves in figure 5 

indicate the moment of the first crack initiation for each test (three samples tested 

for each combination of temperature and strain rate).  
 
 

Figure 5. Macroscopic simulations (T = 900°C,  = 5·10
-4

 s
-1

). 

 

 

Different element sizes have been tested in the critical zone and the stress and 

strain fields compared in order to analyse the mesh dependence of the results. For 

the slim, flat and concave samples, a threshold (0.2 mm x 0.2 mm) has been 

determined for the minimum size of the elements under which it is not necessary to 

go as the results of the simulations in term of stresses and strains distributions 

remain similar. For the flange sample, the stress concentration is so high in the 

critical zone that it was not possible to find a mesh with a reasonable number of 

elements for which the results converged with a sufficiently high accuracy. 

Therefore, it has been decided to keep only the three first samples, which give 

reliable results, for the identification stage. 
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4.2. Mesoscopic simulation of the acoustic tests 

4.2.1. Transfer of data 

A surrounding transition zone is used to transfer the data from the macroscopic 

model to the mesoscopic model (figure 6). From a mechanical point of view, the 

mesoscopic cell is a slice in generalised plane strain state. This formulation allows 

applying non null stresses and strains simultaneously in the out-of-plane direction 

(Pascon et al., 2003). The history of forces and displacements are determined by 

running macroscopic simulations and are used as boundary conditions imposed on 

each node of the periphery of the transition zone. As an elastic-viscous-plastic 

constitutive law is used in the grains and the damage variables at the interfaces grow 

during the loading, it is important to follow the whole forming process.  

 

 

 

Figure 6. Left: mesoscopic cell surrounded by a transition zone (50 mm x 50 mm). 

Right: zoom on the grains (5 mm x 5 mm). 

 

 

For the acoustic tests simulations, the temperature is fixed and is constant in the 

specimen. Nevertheless, the method could be used for simulations with variable 

temperatures, the temperature of each node of the mesoscopic cell should be fixed at 

each time step according to the results of the parent macroscopic simulation. No 

thermal exchange is computed at the mesoscopic scale as the thermal problem has 

already been solved by the macroscopic model.  

During the data transfer, the objective is to reproduce in the mesoscopic cell the 

stress and strain tensors histories recorded at the critical point of the parent 

macroscopic simulation. These mechanical fields are assumed to be uniform on the 

cell with small variations in the grains zone due the grains pattern and to the damage 

initiating at the grain boundaries. The loading can be applied using forces or 

displacements or a combination of the two. The stress-strain fields are three-

dimensional in the macroscopic simulations, with compression in the axial direction 

and tension in both radial and circumferential directions. In the critical element, the 

radial stress vanishes as the edge of the sample is reached but the strain field 

remains three-dimensional. The compression stress is reproduced on the mesoscopic 

cell in the direction normal to the plane (z direction) using the properties of the 

x 

y 
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generalised plane strain state. The tensile stress, which is responsible for the 

apparition of the crack, is applied in the y direction of the mesoscopic cell. The 

stress in the x direction and the shear stresses have to be equal to zero.  

For the first trial, displacements were imposed in the three directions as the 

simulations usually have a better convergence when the loadings are imposed 

through displacements only. Although the correct equivalent stress was computed in 

the mesoscopic cell, it appeared that the stress components distribution was not 

correct. This is due to the formulation of the elastic-viscous-plastic law, which is 

given in terms of equivalent stress and strain. Indeed, different stresses distributions 

can correspond to the same equivalent stress.  

It has been found that the correct stress and strain tensors can be reproduced if a 

displacement is imposed in the x direction and forces in the y and z directions. This 

has been verified by plotting these fields for the critical point of the macroscopic 

simulations and for the elements of the transition zone of the mesoscopic cell. For 

this analysis, damage parameters from the literature have been used. Looking 

globally at the mesoscopic cell, it has been shown that the results of the data transfer 

were not dependent on the damage parameters as the influence of damage on the 

macroscopic stresses is negligible. 

4.2.2. Sensitivity analysis 

Figure 7 represents a typical damage evolution. Three phases can be defined. 

First the damage increases very slowly due the diffusion of voids and to the growth 

of the voids that are already present (A-B). Then the nucleation threshold is reached, 

new voids are created and the damage increases more rapidly (B-C). Finally, the 

saturation state is reached, no more cavities can be created and the growth of the 

damage slows down until final rupture (C-D). 
 
 

Figure 7. Typical damage evolution. 
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The damage parameter is the ratio between the voids diameter 2a and the 

average spacing between voids 2b. The initial damage value depends on the initial 

values a0 and b0. The initial density of cavities for nucleation by unit length NI and 

the nucleation activity parameter Fn determine the position of point B. The slope of 

the curve between B and C partially depends on the value of Fn. The maximum 

density of cavities Nmax influences strongly the position of point C. These five 

parameters (a0, b0, NI, Fn and Nmax) and the damage threshold for crack appearance 

dlim have not been fixed yet and can be used for the calibration of the model. The 

diffusion and creep parameters that also influence the damage curve have already 

been fixed (see section 2.2). 

4.2.3. Results of the identification 

First, the mesoscopic cell has been loaded using the results of the acoustic 

simulations at T = 900°C,   = 5·10
-4

 s
-1

 for the three samples shapes (slim, flat and 

concave) and a range of damage parameters have been tested to reproduce the 

experimental results, i.e. so that the first crack appear at the expected time for each 

geometry. Then, the set of parameters that best fitted the experiments has been 

tested for the other combinations of temperature and strain rate and the parameters 

have been further optimized. 

The final parameters determined by the acoustic analysis are the following: a0 = 

2.75·10
-3

 mm, b0 = 2.75·10
-2

 mm, NI = 380 mm
-1

, Fn = 1.5·10
5
 mm

-1
, Nmax= 40 NI and 

dlim= 0.7. Even if the numerical model allows a temperature dependence of these 

parameters, a unique set of parameters could be established. The temperature 

dependence is already modelled through the diffusion and creep parameters. 

 

 

Figure 8. Time of crack appearance: comparison model and experiments for  = 

5·10
-4

 s
-1

(left) and  = 1·10
-3

 s
-1

(right). The small symbols represent the experiments 

while the corresponding large symbols represent the model. 
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Figure 8 compares the results of the experiments (small symbols) with the results 

of the identified model (large symbols). With this set of parameters, the model 

predictions match the experiments quite well. The largest differences are for the 

concave and slim samples at T = 900°C and   = 5·10
-4

 s
-1

 for which the model 

predicts the crack too early. For the other combinations of parameters, the 

simulations results correspond to the data points except for the flat sample at   = 

5·10
-4

 s
-1

 for which the model predicts the crack a little bit later than what has been 

experimentally observed. In global, the set of parameters is considered to be 

representative of the experiments. 

5. Conclusions 

A model for crack initiation and propagation in steel at high temperature has 

been developed. Experimental results and a reverse method have been used to 

identify the mechanical and damage parameters at elevated temperature. The 

identified finite element model has shown that it gives good results. This validated 

model will now be used to investigate the apparition of cracks in continuous casting 

and in particular the link between the intergranular crack appearance at the 

mesoscopic level and different macroscopic factors such as the shape of oscillations 

marks and the thermo-mechanical history during the process. 
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