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Micro-simulation travel demand and land use models require a synthetic population, which consists of a
set of agents characterized by demographic and socio-economic attributes. Two main families of popula-
tion synthesis techniques can be distinguished: (a) fitting methods (iterative proportional fitting, updating)
and (b) combinatorial optimization methods. During the last few years, a third outperforming family of
population synthesis procedures has emerged, i.e., Markov process-based methods such as Monte Carlo
Markov Chain (MCMC) simulations. In this paper, an extended Hidden Markov model (HMM)-based
approach is presented, which can serve as a better alternative than the existing methods. The approach
is characterized by a great flexibility and efficiency in terms of data preparation and model training. The
HMM is able to reproduce the structural configuration of a given population from an unlimited number of
micro-samples and a marginal distribution. Only one marginal distribution of the considered population
can be used as a boundary condition to “guide” the synthesis of the whole population. Model training and
testing are performed using the Survey on the Workforce of 2013 and the Belgian National Household
Travel Survey of 2010. Results indicate that the HMM method captures the complete heterogeneity of
the micro-data contrary to standard fitting approaches. The method provides accurate results as it is able
to reproduce the marginal distributions and their corresponding multivariate joint distributions with an
acceptable error rate (i.e., SRSME=0.54 for 6 synthesized attributes). Furthermore, the HMM outper-
forms IPF for small sample sizes, even though the amount of input data is less than that for IPF. Finally,
simulations show that the HMM can merge information provided by multiple data sources to allow good
population estimates.
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1. Introduction10

Following the improvements realized in terms of agent-based micro-simulation modeling, population11

synthesis, as a key input, has increasingly become a topic of great interest during the last decade. Agent-12

based micro-simulation models for transportation (Balmer et al., 2006; Bekhor et al., 2011; Rieser et al.,13

2007; Saadi et al., 2016) or land use (Tirumalachetty et al., 2013; Waddell, 2002) simulate the behavior14

of agents to determine the future states of a system when subjected to different constraints (e.g., space,15

time, congestion, agents’ characteristics, etc.) and external factors (e.g., earthquakes, floods, etc.). As16

outlined by Hermes and Poulsen (2012), micro-simulation models have been used in many fields to study17

policy issues, population dynamics and econometric models. For example, Barthelemy and Toint (2015)18

developed a full activity-based model for Belgium using an existing synthetic population (Barthelemy19

and Toint, 2013) to improve the understanding of the mobility patterns and housing location decisions.20

Activity-based models describe in great detail the activity-travel patterns of households throughout a21

period of time and for a specific study area. Within such models, a detailed description of the individuals22

and households in terms of socio-economic attributes is essential to guarantee the underlying behavioral23

aspects included within these models.24

In particular, population synthesis is the sub-model ensuring the development of an estimated pop-25

ulation. In this regard, it is necessary to capture the complex configuration of the population. When26

a complete census (i.e., survey of the entire population) is available to researchers and practitioners, a27

representative sampling could be extracted and used as input for agent-based micro-simulation models.28

However, for reasons of confidentiality and privacy, census is rarely available. In practice, only related29

micro-samples are provided by the government agencies. Despite potential biases in these micro-samples,30

we assume that the micro-samples used in this study are sufficiently representative of the true population.31

When micro-samples are not available, other alternatives such as travel surveys or workforce surveys32

can be considered. Besides micro-data, aggregate information derived from a census is also an essential33

input because of its overall reliability and stability. In this regard, the merger between multiple surveys,34

micro-samples (disaggregate information) and aggregate statistics is a way of capturing the complete35

heterogeneity of the true population as much as possible.36

Another way of synthesizing populations consists of characterizing their related joint distributions37

Π(Xi). Models fitting into such probabilistic frameworks have been proven to provide a good approxi-38

mation of the underlying structure of the true population, using imputation techniques (Caiola and Re-39

iter, 2010) and discrete choice or parametric models within a MCMC algorithm (Farooq et al., 2013) or40

Bayesian networks (Sun and Erath, 2015). The key challenge in such frameworks consists of identifying41

the correlations between the diversity of attributes among different subgroups of the population.42

The main systematically encountered problem is related to the lack of data. Indeed, census surveys43

and micro-samples (PUMS) of populations are not published every year because of cost and other related44

privacy or confidentiality issues. In this context, different techniques have been developed to synthesize45

a disaggregated representation of the population related to a study area, taking into account a variety of46

available data sources.47

Two main families of population synthesis techniques can be distinguished: (a) fitting methods and (b)48

re-weighting methods. During the last few years, a third family of techniques has emerged, i.e., Markov49

process-based methods. In this paper, a Hidden Markov Model (HMM)-based approach is presented,50

which can serve as an efficient alternative to the existing methods. A HMM is a Markov process, where51
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the underlying internal states are supposed to be hidden from the observer. Hypotheses related to the52

number of states of the system and the state-transition probabilities are assumed to be known. Therefore,53

every state of the Markov Chain is characterized by two parameters: the symbol emission describing54

the emission probabilities of each state and the transition probabilities corresponding to the probability55

to change to another state (Ibe, 2013). First, the results presented in this paper show that for small56

sample sizes (<25%), the HMM-based approach improves the accuracy of the synthetic population in57

comparison with the standard IPF. In addition, we show that integrating information provided by an58

unlimited number of micro-samples facilitates solving problems related to data quality, data availability59

and variables through different data sets. The new HMM approach is tested in the context of Belgium,60

but is easily transferable to other regions.61

The remainder of this paper is organized as follows. In Section 2, an overview of the main existing62

population synthesis methods with their respective characteristics is presented. Then, in Section 3, the63

Hidden Markov model (HMM) is described from both theoretical and practical perspectives. Conse-64

quently, the main data issues are commented on in Section 4.1 to enable a better understanding of the65

data quality and preparation. In Section 4, numerical simulations are realized to generate a synthetic pop-66

ulation. The performance of the model are assessed using two statistical indicators. Finally, the results67

are discussed in Section 5 to address the main advantages and limitations of HMM-based patterns as well68

as some further improvements that could be made.69

2. Literature review70

Population synthesis techniques can be classified according to two main categories: fitting methods,71

including data matching, data fusion, IPF, and reweighting methods, such as deterministic reweighing72

(e.g., adapted IPF) and combinatorial optimization (CO) (Voas and Williamson, 2000; Williamson et al.,73

1998). Some techniques consist of a combination of the previous two different approaches (Hermes and74

Poulsen, 2012).75

The basic idea behind reweighing procedures lies in systematically using survey micro-data, including76

a detailed set of individuals characterized by specific attributes and constraint data (benchmarks), for77

providing more general information (e.g., socio-demographics from a census). Then, individuals or78

households from the micro-sample are simply reweighted such that the constraints are matched (Hermes79

and Poulsen, 2012).80

Among the precursors of such concepts, Beckman et al. (1996) applied the Iterative Proportional81

Fitting (IPF) method to create baseline synthetic populations by coupling a census survey with a public-82

use micro-data sample (PUMS). The proportions of households were generated according to PUMS at83

the census tracts and on a block group basis. First, a multivariate demographic table of proportions is84

estimated using IPF. Then, as a second step, a synthetic population of households is drawn from the85

PUMS in such a way that it matches the proportions of the above estimated table.86
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IPF was largely used during the last decade to synthesize household data sets (Duguay et al., 1976;87

Pritchard and Miller, 2012; Rich and Mulalic, 2012). As a first step, contingency tables initialized with88

micro-samples (e.g., PUMS) are estimated using an iterative procedure such that the deviation between89

the estimated and observed marginal distributions is minimized. The inter-connections in between at-90

tributes are supposed to be saved through the iterations. IPF can only be used with discrete variables91

containing a limited number of categories otherwise there may be a significantly greater effect to the92

zero-cell problem (Farooq et al., 2013). Fitting a high number of attributes makes the computational93

process relatively costly. A lot of efforts were made to design more efficient algorithms (Badsberg and94

Malvestuto, 2001; Denteneer and Verbeek, 1985; Endo and Takemura, 2009; Jirous̆ek and Pr̆euc̆il, 1995).95

A recurrent problem regarding the matching between household and individual attributes appears in most96

of the population synthesis approaches. In most cases, the focus is directed towards synthesizing indi-97

vidual or household attributes, although some techniques have been developed to match both individual98

and household attributes (Pritchard and Miller, 2012; Ye et al., 2009). Note that this paper does not dis-99

cuss the latter point but rather presents a new and more efficient methodology for synthesizing agents’100

attributes.101

Standard techniques, including IPF as a sub-module for fitting cross-tabulations, are not capable of102

generating individual attributes with corresponding household attributes and their related joint distribu-103

tions. To fill this gap, Ye et al. (2009) proposed a heuristic approach where both synthesized households104

and individual attributes match the real population. The algorithm adjusts and reweights iteratively the105

different kinds of households. Convergence is reached once both individual and household attributes are106

matched. This technique has been applied for small geographical units in the case of Maricopa County107

of Arizona, USA (Ye et al., 2009).108

The other popular paradigm employs Combinatorial Optimization (CO) techniques to perform micro-109

data reconstruction (Voas and Williamson, 2000). The CO approach consists of selecting a combination110

of households extracted from samples of anonymized records (extracts of census) to reproduce, as closely111

as possible, the characteristics of a geographical unit (e.g., district). The iterative process starts from112

a random initial set of households (originally from SAR). Then, after replacing a selected household113

by a fresh one from the SAR, effects of this change are observed to assess the goodness of fit. If an114

improvement occurs, a swap is made; otherwise, the same households remain. The process is repeated115

many times until the best fit is found between the data and the corresponding sample extracted from SAR116

households. As outlined by Voas and Williamson (2000), this methodology requires a robust statistical117

technique to assess the goodness of fit every time a replacement is performed.118

Another CO technique is simulated annealing, which includes a probabilistic reweighing approach119

because of its random sampling (Williamson et al., 1998). It has been mentioned that selecting a sample120

randomly from survey micro-data as input provides a more optimal selection of households (Voas and121

Williamson, 2000; Williamson et al., 1998). To some extent, it is admitted that CO-related methods are122

more successful in generating synthetic populations while maintaining an acceptable level of goodness123

of fit (Hermes and Poulsen, 2012). In this regard, when Williamson (2013) compared synthetic recon-124

struction and combinatorial optimization methodologies, he concluded that the latter perform better in125

terms of NFC, NFT and PFC over 100 runs.126

To overcome the limitations of standard fitting techniques, Barthelemy and Toint (2013) presented a127

synthetic reconstruction method following three steps: (i) the generation of individuals, (ii) the estima-128
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tion of household joint distributions, and (iii) the generation of households by grouping the individuals.129

Moreover, the proposed methodology does not require a disaggregate sample, which typically serves as130

the seed for IPF. By opting for a sample-free approach, costs related to the data collection of disaggregate131

data, as well as privacy and consistency concerns related to such data, are avoided.132

In a comparative study between a sample-free (Gargiulo et al., 2010) and a sample-based approach (Ye133

et al., 2009), Lenormand and Deffuant (2012) concluded that results from the sample-free approach were134

better than those from the sample-based approach. However, they acknowledged that further research135

is needed to validate this conclusion. Moreover, other sample-based approaches emerged (Caiola and136

Reiter, 2010; Farooq et al., 2013; Sun and Erath, 2015) and showed important improvements with respect137

to the fit between simulated and observed populations. In particular, Farooq et al. (2013) proposed a138

Markov Chain Monte Carlo (MCMC) simulation-based approach enabling the emergence of Markov139

Process-based methods (MPBM). This technique overcomes the shortcomings related to the previous140

presented methodologies (e.g.. multiple solutions for matching contingency tables, loss of heterogeneity141

inherent in the micro-data, and low scalability regarding the number of synthesized attributes). It is stated142

that different data sources that are synonyms of the partial views of the joint distribution can be used to143

draw the marginal distributions related to the true population. In a case study, the Swiss census was used144

to assess the performance of the presented technique (Farooq et al., 2013). The MCMC method provided145

better results in terms of matching the true population, when compared to IPF. Indeed, by using MCMC,146

a SRMSE=0.35 was obtained in the worst case, while IPF provided a SRMSE=0.65 in the best case147

(Farooq et al., 2013). Some studies (Geard et al., 2013; Namazi-Rad et al., 2014) also included dynamic148

effects to propagate the effects of population growth over time.149
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3. Methodology150

3.1. Problem formulation and notations151

For a given spatial area and a period of time, a true population δ(X) exists that includes a certain152

number of agents. Every agent is associated with a set of specific attributes X = {X1, X2, ..., Xi, ..., XN},153

whereN is the number of attributes to be synthesized (e.g., age, income, etc.). In this paper, the challenge154

consists of building the joint distribution δ(X) by generating a set of sequences of observations from a155

HMM describing the structure of the true population through available micro-samples and an initial156

aggregate marginal distribution. The synthetic population generation process is regarded as a variant of157

the standard decoding problem. In the standard decoding problem, the state sequences are supposed to158

be unknown. In this regard, the Maximum Likelihood (ML) estimators related to the transition states159

are determined through the Viterbi algorithm (Ibe, 2013). However, in the synthetic population problem,160

both the state sequences and emission symbols are known. Thus, the model estimation run time is smaller161

and more efficient. The following notations indicate how the HMM structure can be used in the context162

of the synthetic population problem.163

Let h = {hn, n = 1, ..., Nh} be a Markovian chain process and m = {µm,m = 1, ..., Nm} be a164

function of h such that m = f(h). Then, it is possible to observe the sequence of Markovian hidden state165

processes h throughout m. A HMM is generally defined by five different parameters (h,m,T,Z,Π),166

where we have the following: h = {hn, n = 1, ..., Nh} is a set of Nh states that represent the total167

number of levels within all the attributes of the synthetic population; m = {µm,m = 1, . . . , Nm} is a set168

of Nm different possible symbols that indicate which level is represented by the considered state (e.g.,169

age could have 100 states to emit 1, 2, . . . , 100; gender has two states to emit 1 or 2, etc.); T = {tij} is170

a set of state-transition probabilities, where tij represents the probability to move from state hi to state171

hj; Z = {ξhi(µk)} represents the observation probabilities, where ξhi(µk) is the probability of emission172

of µk at state hi with k ∈ Ωhi , a set of possible symbols within hi; and Π = {πi} is the initial set of173

probabilities before generating sequences of attributes. Based on this distribution, the starting state can174

be selected.175

1h 2h ih Nh

1m 2m im Nm

2 1( | )t h h 2( | )it h h ( | )N it h h

1 1( )h km 
2 2( )h km  ( )

ih i km  ( )
Nh N km 

Figure 1: Probabilistic representation of the first-order hidden Markov Chain

Thus, based on Figure 1, the probability of observing the random sequence m = {m1,m2, ...,mN}
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where N is the length of the hidden Markov chain is given by

P (h,m) = P (h1)P (m1 | h1)×
N∏
i=2

P (mi | hi)P (hi | hi−1) (1)

where P (h1) ≡ πi, P (mi | hi) ≡ ξhi(µk) and P (hi | hi−1) ≡ tij are, respectively ,the initial, emission176

and transition probabilities.177

The parameters of the HMM can be written in a compact form: θ = (T,Z,Π). Following this178

mathematical formalism, the objective is to determine the parameters θ = (T,Z,Π) of the HMM from179

the observed data sets such that the probability P [h,m|θ] of generating the sequence of hidden states h180

and the corresponding observation sequence m for the given parameters θ is maximized. With respect to181

the synthetic population framework, the ML problem can be translated into the following mathematical182

formulation:183

h∗ = arg max
h

P [m,h | θ] (2)

3.2. Extension for a higher-order HMM184

Fig. 2 presents N hypothetic variables or attributes hi,1 = X1, ...,hi,N = XN organized in the form185

of columns where i is the ith level within the attribute. One can also observe that the columns may differ186

in length. The model can be applied to any given number of attributes. Each attribute may have several187

categories/levels. For categorical variables, the number of levels is equal to the number of states.188
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P (hi1, hi2, ..., hij, ..., hiN ;mi1,mi2, ...,mij, ...,miN) = P (h1i)P (m1i | h1i)

×
N∏
k=2

P (mik | hik)P (hik | h1,k−1, h2,k−1, ..., hi,k−1..., hm,k−1)
(3)

P (h; m) = P (h1i)P (m1i | h1i)×
N∏
k=2

P (mik | hik)P (hik | hk−1) (4)

However, for a continuous variable, the number of states is fixed by the user. Let us assume that189

one of the attributes is continuous. Including continuous variables in standard synthesizing processes190

(fitting and reweighing methods) is an important computational issue. As a result, continuous variables191

are often aggregated, resulting in an important loss of information (Farooq et al., 2013). The strength192

of a HMM lies in its ability to handle both continuous and discrete variables. Given the fact that a193

Markov process is characterized by discrete states, continuous variables need to be discretized to be194

included in the modeling process. As an example, age could vary from 1 to 100. In the most detailed195

representation, all 100 different states can be considered (Fig. 3c). However, if required, the marginal196

distribution could be aggregated using a fixed number of bins (Fig. 3a-b). In this case, within each bin,197

the emission probability matrix ME could be used to indicate the sub-distribution, instead of randomly198

selecting values in between these intervals for synthesizing the considered attribute.199

Figure 3: Discretization of a continuous variable

Links in between attributes represent the transitions occurring in the micro-sample. For the sake of200

clarity, Fig. 2 partially indicates the transition probabilities as well as the emission probabilities. Each201

state of attribute i is connected to all the states of the following attribute i+ 1. In practice, the number of202

transition probabilities ε that should be defined is determined as follows:203

ε =
n−1∑
i=1

φ(Xi).φ(Xi+1) (5)

where n is the number of attributes, Xi is the attribute i, and ε is the number of transition probabilities204

to be determined. φ is an operator that provides the number of categories of an attribute. The key point205
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of the modeling process is the design of the transition probability MT and the emission probability ME206

matrices.207

MT =



t11 . . . t1ε
. . . . .

.

... tij
...

. .
. . . .

tε1 . . . tεε


(6)

Elements of the transition probability matrix MT are defined using the following formula:208

tij =
pij∑N
k=1 pik

,∀i, j = 1, ..., ε (7)

where tij is the transition probability between the category i of the left-side attribute and the category j209

of the right-side attribute, eij is the emission probability1 of symbol j within state i, ε is the number of210

states, γ is the number of levels of the attribute containing the highest number of levels, pij is the number211

of transitions occurring between state i of an attribute and state j of the directly following attribute, and212

N is the total number of transitions starting from state i.213

As a second input, a matrix for emission probabilities is required by the HMM to indicate the prob-214

ability of emission of symbols at a given state. Note that in this case, we consider that each state emits215

only one symbol such that the probability emission is equal to 1. Additionally, the columns of ME are216

subjected to the following constraint:217

γ∑
j=1

eij = 1,∀i = 1, 2, ..., ε (8)

As a result, the emission probability matrix is the identity matrix.218

ME =



e11 . . . e1γ
. . . . .

.

... eij
...

. .
. . . .

eε1 . . . eεγ


(9)

where ε is the total number of states and γ is the highest possible number of symbols emitted by one of219

the ε states. The sum of the rows of ME is equal to one. In other terms, each row of ME corresponds to a220

state of the HMM or a level of an attribute. Furthermore, within each row, it is possible to determine the221

1Because we are mainly dealing with transitions in the current framework, the emission probability matrix is considered
to be an identity matrix. In practice, this means that each state will systematically emit its related category. In the case
of continuous variables, emission probabilities can be defined within each interval chosen for discretization. However, this
practice is not advised, as part of the transition information is lost. Test results indicate that the more a continuous variable is
aggregated, the less accurate the joint distribution is from a disaggregate perspective.
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Micro-data – For structural 

configuration training

Initial aggregate marginal 

distribution – As a 

constraint or a controller 

П(attribute 1)

Hidden Markov Model

Marginal and multi-variate joint 

distributions of the synthetic 

population

Figure 4: Proposed framework to include a controller

horizontal distribution of the symbols. Based on these two matrices, the HMM will be able to generate222

any individual sequence of attributes as generated from the synthesized joint distribution δ(X).223

Note that we proposed to set ME as an identity matrix to obtain the most disaggregated synthetic224

population. The goal was to show how to handle, as accurately as possible, the continuous variables so225

that all the information is preserved. However, if we consider the example of the variable age, depending226

on the nature of the problem, synthesizing it according to a few intervals (e.g., 4, 5 etc.) is largely227

sufficient. Here, the existence of ME becomes very useful. Indeed, when the synthetic population is228

included in an agent-based micro-simulation model, one should specify the age of each agent. In this229

context, ME can be used to set the "sub-distributions" within each interval such that the outputs are230

already defined. In addition, such a choice is judicious because it can reduce the computational time231

especially in the context of several continuous variables.232

3.3. Initial distribution233

If X1 or h1i is supposed to be the first attribute, generating attribute chains requires the definition234

of an initial distribution Π. If the micro-sample is sufficiently reasonable in terms of sample size and235

contains limited missing information such that it is a good representation of the population, it is possi-236

ble to consider the initial distribution as a controller or a constraint from an aggregate data source (e.g.,237

census). For example, every year, Statistics Belgium publishes the marginal distributions of the whole238

population according to different variables, such as age, gender, and spatial location at the municipality239

level. The additional use of these data is more suitable because the structural configuration of the popu-240

lation is captured by the HMM (micro-data) and initiated by the initial marginal distribution as presented241

in Fig. 4.242

Then, the synthesized marginal distributions can be, in the best case, compared with the common243

available marginal distributions (age, gender and geographical locations) for validation. However, this244

option is relatively limited when the user plans to synthesize other kinds of attributes, especially in the245

context of data privacy. In this regard, we propose to use the marginal distribution directly from the246

training data set to illustrate the proposed methodology.247
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3.4. Framework248

Fig. 5 presents the steps for performing a HMM-based population synthesis approach. The data pre-249

processing step or data preparation should be performed carefully. The training and test data sets cannot250

contain some missing values; otherwise, the HMM would not be able to determine the transition and251

emission probabilities. In this regard, some techniques related to machine learning (Yang et al., 2012)252

might be used to solve the problem of missing values in a data set. However, as the purpose of this paper253

is to present a new methodology and its application, we prefer to avoid adding data imputation issues.254

As shown in Fig. 5, the data set is split into two parts. The first, called the training data set, is used to255

set the parameters of the HMM. Generally, depending on the sample size and the nature of the problem,256

we chose to set p equal to a value between 70-80%. The second part is used to validate the synthesized257

population. One can refer to Section 4 to know more about the validation issues. One should ensure that258

the variable classification is performed according to the descending order of the number of categories. In259

this regard, highly disaggregate continuous variables are generally placed at the beginning of the chain.260

By referring to the notations in Figure 2, the constraint that should be respected to maintain the best261

approximation of the synthetic population is the following:262

m ≥ n ≥ ... ≥ o ≥ ... ≥ q (10)

The following step consists of determining the values of MT and ME following the guidelines pro-263

vided previously. Using Equ. 7, a routine can be implemented to determine the transition probabilities of264

MT . ME should be an identity matrix in order to obtain the most representative and accurate population,265

as outlined in Section 3.266

Once the HMM is calibrated, a sequence of agent attributes can be generated from the model depend-267

ing on the size n of the population.268

3.5. Model estimation269

In the previous sections, guidelines have been proposed to generate MT and ME matrices. Here, we270

propose some directives to generate the agents. In practice, various packages are available depending271

on the programming language used. For the R statistical language, Visser and Speekenbrink (2010)272

implemented a framework to define and estimate standard Markov models as well as latent and hidden273

Markov models. Additionally, the MATLAB Toolbox also contains a package with a set of functions274

able to generate sequences from an estimated HMM. The latter toolbox has been used for the analysis275

presented in this paper.276

One should pay attention to how the HMM is estimated. For example, the HHM models within277

the Statistical and Machine learning toolbox of MATLAB start, by default, from state 1. This option can278

cause problems for population synthesis because all the initial probabilities will be systematically located279

within the first level of the first attribute. Thus, only a small portion of the population will be synthesized.280

In this regard, a dummy state should be added before the first attribute, whose transition probabilities will281

be specified by the initial aggregate marginal distribution. When MT and ME are determined, a further282

step is necessary to ensure the generation of the full synthetic population. Indeed, from the MT (ε × ε283

matrix) and Π> (1×N vector), where N is the number of states of the first attribute, an extended matrix284
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Micro-sample cleaning to remove observations with missing 

attributes
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validation datasets (=partition)
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Initial marginal aggregate 
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Marginal and multi-variate joint 

distributions of the synthesized 
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Figure 5: Methodology to synthesize and validate populations
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M̂T ([ε+ 1]× [ε+ 1] matrix) is built such that285

M̂T =

(
0 Π> | 0
0 MT

)
. (11)

where 0 is a 1× (ε−N) vector of null values. In parallel, the matrix ME is extended into the following
form (ε+ 1)× γ, where the emission probability of the new dummy state is specified:

M̂E =

(
0

ME

)
. (12)

Subsequently, the function hmmgenerate(arg) can be used to generate the full synthetic popu-286

lation. The inputs are defined as follows: arg←(s, M̂T , M̂E). Note that s indicates the length of the287

full sequence. Let us suppose that we synthesize N attributes and a population size of M agents. In this288

context, s will be equal to (1+N)×M , as the dummy state should also be taken into account. Of course,289

when the list of agents is defined, the first column (vector of ones) can be removed as it is of no more290

interest.291

4. Numerical analysis (case study)292

4.1. Data293

In contrast with fitting and reweighting methods, the proposed methodology can incorporate one or294

multiple micro-samplings, including the variables of interest as input and an initial marginal distribution295

(information related to the full population). In this paper, we used the 2013 Survey on the Workforce296

of 2013 (EFT) and the Belgian National Household Travel Survey (BELDAM) to ensure a sufficiently297

large sample size and data quality and to investigate the scalability of the proposed methodology. The298

main objective of the first survey is the classification of the active population according to three distinct299

categories: professional active, unemployed and inactive people. The survey provides annual information300

related to the activity status of 95,940 Belgian inhabitants 15 years of age and older. The variables used301

from this data set are municipality location (spatial information), travelled distances, age, education level,302

profession and gender. Table 1 briefly describes the main statistical indicators of these variables as well303

as the data accuracy and sampling size.304

In this paper, we illustrate the HMM-based approach using various simulations. The first simulation305

tests the combined effects of scalability and dimensionality. The second simulation compares the HMM-306

based approach with the most common technique for population synthesis, i.e., IPF. Finally, a third307

simulation is carried out to demonstrate the advantage of the HMM approach over IPF using multiple308

samples.309

In the first numerical simulation, six attributes were extracted from the EFT data set in order to310

assess the scalability effects of the HMM. In this regard, incomplete observations can be removed from311

the training and validation data set. We propose synthesizing three (SP3), four (SP4), five (SP5) and312

six (SP6) attributes. Table 1 presents the characteristics related to each prepared data set. Note that313

the relative sample size with respect to the original data set decreases when the number of synthesized314

attributes increases. Indeed, when a new attribute is introduced, the observations related to the missing315

or incorrect values (0 or NaN) are removed. Therefore, the proportions of the categorical variables as316

14



well as the means and standard deviations of the continuous variables are relatively changing from one317

sample to the other. We also discuss the dimensionality and its contribution within the overall error rate.318

Furthermore, the HMM approach is compared to IPF to show how the error rate can be improved,319

especially in the context of small sample sizes. To test the stability of these approaches, the BELDAM320

data are used. The goal of this second simulation is to demonstrate that for various sampling rates, the321

HMM is capable of outperforming IPF, even when less data are used. In addition, IFP-based synthesis322

may be affected by an eventual bias that is caused by the zero-cell problem in the case of a larger number323

of attributes. In this regard, a set of 4 attributes are synthesized to ensure a fair comparison between both324

methods.325

Finally, the third simulation investigates the contribution of a population synthesis using different data326

sources. In contrast to IPF, the HMM approach is able to merge information provided by an unlimited327

number of micro-samples with varying sample sizes. In this paper, data from the EFT data set are used328

to illustrate how data fusion is performed through the transition probability matrix MT .329
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4.2. HMM-based synthesis330

In order to test the population synthesis algorithm, we first select the variables of interest from the331

reference data set. In this regard, a training data set representing around 70% of the initial micro-sample is332

extracted. The rest of the data set (30%) is used for validation. Using Equ. 5 and taking into account that333

age varies from 15 to 101 in the reference data set, education contains 16 categories and gender is binary,334

it can be derived that the total number of states ε considered by the HMM is 105 (=101-15+1+16+2).335

Based on the training data set, the MT matrix was built step by step (as an image of the structure of the336

population) using Eqs. 6 and 7. As soon as MT and ME are defined, the calibrated HMM can generate337

any number of attribute sequences.338

In this simulation, we propose to generate a set of 100,000 agents from SP3, SP4, SP5 and SP6 using339

the HMM. In this way, comparisons between the same attributes from different synthetic populations will340

be possible. Similar to IPF or MCMC, HMM-based population synthesis can reproduce the marginal341

distributions related to the synthesized attributes (Fig. 6). Moreover, Fig. 7 indicates a quasi-perfect fit342

between the synthesized and the true population in terms of the slopes and R².343
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Figure 6: Comparison of marginal distributions between the attributes using an HMM (SP3)

In addition to a univariate marginal distribution, we also compare the HMM approach and the valida-344

tion data set in terms of the use of multivariate joint distributions (Age × Status, Status × Gender, Age345

× Gender, Age × Status × Gender). It can be concluded that the fits between the real population and346

the synthesized population are highly acceptable especially in the context of a small micro-sample size347

(1%). Note that the synthesized population is compared with the validation data set. In other terms, we348

are performing a comparison with a sample size representing approximately 0.2% of the population.349
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Figure 7: Fit between the real population and HMM-based approach synthesis (SP3)

The spread of the synthetic population is supposed to be more visible when a higher number of at-350

tributes is considered. To allow for a comparison with the SP3 results, HMMs with a higher number of351

attributes are constructed. Corresponding to the SP3 results, the marginal distributions for four (Fig. 8),352

five (Fig. A.13) and six (Fig. A.15) attributes are presented. Similarly, the joint distributions are respec-353

tively presented in Fig. 9 (SP4), Fig. A.14 (SP5) and Fig. A.16 (SP6).354

Regarding the analysis of the scalability, the joint distributions indicate a very good fit between the355

synthesized and the true population. However, more substantial deviations appear between the joint356

distributions for a higher number of attributes. The observed R² values are generally a bit lower than357

those for the case where only three attributes are synthesized because of the coupled phenomenon of358

distances in between attributes and the number of levels within each attribute. Agents were synthesized359

according to the following scheme: Location (at municipality level) → Age → Education → Gender360

(based on SP4). Related joint distributions with attributes that are directly associated in the scheme such361

as Location × Age, Age × Education, Education × Gender have a near-perfect fit. However, if we362

consider the worst performance, i.e., Location × Gender, the slope is the lowest (=0.82).363
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Figure 8: Comparison of the marginal distributions for different attributes (SP4)
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Note that when the number of synthesized attributes increases, the slope of the joint distribution364

formed by the most distant attributes (Municipalities × Status and Municipalities × Gender) decreases365

(Fig. A.14).366
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4.3. Influence of the scalability on SRSME367

Introduced by Knudsen and Fotheringham (1986), the standardized root mean square error (SRMSE)368

is an interesting indicator for assessing the goodness of fit between two joint distributions (e.g., in a369

M -by-N matrix form). This indicator has also been used to assess the performance of other synthetic370

population methods (Farooq et al., 2013; Müller and Axhausen, 2010; Pritchard and Miller, 2012). This371

is a distance-based metric that yields 0 when the fit is perfect, similar to other related standard statistical372

indicators. Note that the absolute value has no significance by itself but is only a relative comparison of373

the source of information. The formula for comparing two joint distributions J̃ijk..., Jijk... for any number374

of attributes is the following:375

SRMSE =

√
1
N

∑∑∑
...(J̃ijk... − Jijk...)2

1
N

∑∑∑
...J2

ijk..

(13)

where J̃ijk... and Jijk... represent the number of agents characterized by the combination of attributes376

i,j,k,... of the synthesized and observed population, respectively, and N is the total number of cells377

within the matrix. In other terms, it is the total product of the dimensions of Jijk....378

To our knowledge, none of the existing studies has statistically investigated the effects of scalability379

in the context of population synthesis. In this regard, we propose to investigate scalability by successively380

increasing the number of synthesized attributes (from 3 to 6) for a constant number of generated agents.381

First, experiments show as expected that every time a new variable is introduced in the population syn-382

thesis, a relative deviation appear in the SRMSE. We can observe from Table 2 that a significant relative383

change compared to SP3 ( (0.1261−0.0145)
0.0145

× 100 = +769.66%) occurs because of the spatial variable "Mu-384

nicipalities". Indeed, this variable contains 547 sectors, which means that the same number of levels is,385

in fact, included in the HMM. As presented in Table 2, keeping such a level of disaggregation introduces386

a relative increase in the error in the modeling process of +769.66%. This clearly illustrates that the error387

contribution of a variable is highly related to its number of levels.388

Synthetic population SRMSE Relative change
3 attributes (SP3) Age x Education x Gender 0.0145 -
4 attributes (SP4) Municipalities x Age x Education x Gender 0.1261 +769.66%
5 attributes (SP5) Municipalities x Age x Education x Profession x Gender 0.4856 +285.09 %
6 attributes (SP6) Municipalities x Travelled distances x Age x Education x Profession x Gender 0.5364 +10.46%

Table 2: Scalability effects on the SRMSE

The increase in the number of synthesized attributes also significantly affects the dimensionality:389

the number of cells is affected both by the number of attributes as well as the number of levels within390

each attribute. In this regard, the combined effect of scalability and dimensionality warrants particular391

attention in the context of continuous variables, as the number of bins used to discretize the continuous392

variables directly impacts the dimensionality. In practice, most variables used in activity-based models393

are categorical and do not exceed 6 categories (Yasmin et al., 2015). In the example of our paper, we394

considered a complex case to illustrate that the HMM is capable of maintaining an acceptable error rate,395

i.e., SMRSE = 0.5364 for 6 attributes.396

22



4.4. Comparison with IPF397

To assess the performance of the HMM-based approach, a comparison with the standard IPF proce-398

dure is made. The IPF approach is still widely used by both researchers and practitioners for synthesizing399

populations (Vovsha et al., 2015). Socio-demographic information from the BELDAM data set, which400

included information on 15,822 individuals grouped into 8,533 households, is used for the comparison.401

The ’mipfp’ package (Barthelemy et al., 2015), written in the statistical language R, is used to synthesize402

the populations using multilevel IPF.403

In practice, a comparison of methods on the same basis is quite difficult. IPF requires the definition404

of specific parameter settings, such as the convergence criterion, which influences both the run time and405

the quality of the solution. In addition, the same input data should be used. To ensure a fair comparison,406

we made the assumption that the travel survey represented the full population. In this context, all the407

aggregate marginal distributions can be exactly determined. In addition, various micro-samples with408

different sampling rates ψ={1%, 2%, 3%, 4%, 5%, 10%, 15%, 20% and 25%} have been extracted from409

the supposed full population. Only sampling rates ranging between 1 and 25% have been considered, as410

they are the most relevant for large-scale population synthesis. The first major advantage of the HMM411

approach should be highlighted at this stage: the amount of data used by both methods. Whereas the412

HMM needs a micro-sample (PUMS) and an aggregate marginal distribution related to the first attribute413

in the modeling procedure, IPF needs the PUMS, but with the full set of marginal distributions.414

For the comparison, four attributes were synthesized, namely, housing location (20 categories/zones),415

age (14 categories), socio-professional status (14 categories) and gender. The housing location attribute416

has been extensively aggregated to reduce the effects of the zero-cell problem inherent to the IPF pro-417

cedure. This problem negatively affects the accuracy of the results of IPF and may generate problems418

in terms of convergence. In contrast, modeling the selected attributes using the original number of cate-419

gories does not generate any particular problems with the HMM-based approach, highlighting once again420

the robustness and flexibility of the approach in terms of the type of variables that are considered.421

From comparing the multivariate joint distributions of the HMM approach (Fig. 10a) and the IPF422

approach (Fig. 10b), it appears that IPF is less capable of reproducing the complete heterogeneity present423

in the true population. This is especially the case for small proportions. Moreover, R2 is slightly better424

for the HMM approach. A further analysis based on the SRSME, displayed in Table 3, indicates that the425

HMM is able to improve the quality of the synthetic population for small sampling rates when compared426

to IPF. This underlines the need to shift towards probabilistic approaches instead of the standard IPF427

when the sampling rates are (relatively) small.428

4.5. HMM population synthesis using multiple data sources429

Very often, not all variables of interest are included in a single data set. Depending on the nature of430

the problem, variables that need to be synthesized could be extracted from multiple and independent data431

sets. In such situations, IPF fails in synthesizing these attributes, unless more elaborate approaches con-432

sisting of multiple sub-models that incorporate IPF are considered. In this section, we illustrate that the433

HMM approach is particularly useful for synthesizing variables stemming from different micro-samples.434

Suppose that the EFT data set represents the full population; 2 sub-samples are drawn from this full435

population, for which the variables are indicated in Table 4. In total, 6 attributes are included in the two436

sub-samples, each sub-sample containing 2 variables that are not available in the others. Moreover, the437

sub-samples are drawn from the full population with different sampling rates (i.e., 15% and 10%). Note438
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Sampling rate(%) IPF HMM Deviation with respect to IPF
1 0.558 0.303 0.255 (-45.70%)
2 0.370 0.266 0.104 (-28.11%)
3 0.329 0.226 0.103 (-31.31%)
4 0.263 0.183 0.080 (-30.42%)
5 0.199 0.125 0.074 (-37.19%)

10 0.137 0.098 0.039 (-28.47%)
15 0.104 0.082 0.022 (-21.15%)
20 0.091 0.077 0.014 (-15.38%)
25 0.076 0.073 0.003 (-3.95%)

Table 3: Difference between IPF and HMM in terms of SRSME
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Figure 10: Multivariate joint distributions (ψ=20%)

that there is no limitation in the number of data sources. In this case, it is possible that the transition439

probabilities between two variables can be derived from multiple micro-samples. The transition proba-440

bilities can then be determined based on the most reliable micro-sample or by averaging the transition441

probabilities over the different micro-samples. The results of the synthetic population are compared to442

the marginal and joint distributions of the full population stemming from the reference data set.443

Figure 11 presents the marginal distributions of the variables of interest. The HMM is capable of444

reproducing a correct estimation of the true population, although the information stems from three dif-445

ferent sources: the aggregate initial distribution related to the municipalities and the two micro-samples446

(PUMS).447

Figure 12 presents the interconnections between the variables. One can observe that the HMM man-448

ages to capture the transition probabilities between all the variables with respect to the full population.449

R-squared values are close to 1 for most of the joint distributions, except for the combination Municipal-450
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Variable Sample 1 Sample 2
Municipalities ×

Travelled distances × ×
Age ×

Profession × ×
Gender ×

Education ×
Sample size 15% 10%

Table 4: Variables distribution within both samples
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ities × Education with R2 = 0.83. This is due to the combined effects of the propagation of the error451

within the transition probabilities and the significant number of categories within three variables of the452

data sets. From Equ. 4, the full joint probability is given by the product of the initial probability and the453

successive transition probabilities: P(Municipalities)× P(Travelled_distances |Municipalities)× P(Age454

| Travelled_distances) × P(Education | Age) × P(Profession | Education) × P(Gender | Profession). In455

this regard, the lowest R2 is a result of the cumulation of the slight deviations appearing in both of the456
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previous transition probabilities P(Age | Travelled_distances) and P(Education | Age). Furthermore, the457

high level of disaggregation related to the variables Municipalities (547 levels), Travelled distances (187458

levels) and Age (62 levels) also increases their contribution in the overall error.459
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5. Discussion and future directions460

In this paper, we proposed an efficient alternative methodology to the standard approaches (fitting and461

reweighting methods) belonging to the Markov Process-based Methods (MPBM) to synthesize popula-462

tions for micro-simulations of urban and transportation systems. This technique is able to replicate the463

configuration of a given population using at least one micro-sample and an initial marginal distribution.464

The HMM model can be controlled by an initial distribution extracted from either the micro-sample, in465

the worst case, or a census, if the data are available. To be more meaningful, the data sources should have466

been collected around the same time period. Any synthetic population size can be generated by the model467

because it has no influence on the computational complexity as the HMM belongs to the generation-based468

family. The positioning of the variables of interest should be arranged in the descending order of their469

number of categories to maintain a good approximation of the true population. Apart from the data470

cleaning procedure, data preparation requires specific attention because of the dependency of both the471

transition and (eventually) the emission probabilities.472

As demonstrated, the HMM-based approach, as well as the standard approaches, are able to reproduce473

the marginal distributions of the proposed set of attributes, depending on the case study. The choices of474

transitioning from one variable to another are realized based on the transition probabilities. Thus, slight475

differences might appear because of the randomness included in the model when transitions are selected.476

A comparison of the joint distributions indicates small differences between the synthesized and observed477

populations. However, the analysis shows us a critical limitation of the model stemming from one of the478

following main assumptions of the Markov chain process:479

P (ht+1 = i|ht = j,ht−1 = k, ...,h0 = l) = P (ht+1 = i|ht = j) (14)

where ht is the vector of states at time t and P is the conditional probability. According to Equ. 14, it480

can be concluded that an attribute depends exclusively on the related previous attribute. In this regard,481

synthesizing a significant number of attributes could reduce the SRMSE as well as the R² . However,482

this limitation could be considered as an advantage insofar as agent attribute synthesis depends only483

on the previous attribute in such a way that the attribute chain is built for this agent. Note that no484

additional marginal distributions were necessary within the intermediary attributes, mitigating, in this485

manner, dependence on the data.486

Regarding the scalability, there is theoretically no limitation in terms of the number of attributes to487

be synthesized. However, in practice, as demonstrated through the numerical examples, the more distant488

the attributes are in the chain, the larger the deviation between these attributes. In this context, specific489

attention should be paid to this phenomenon. In our paper, the number of attributes synthesized is 6. Even490

with a high level of disaggregation, a SRMSE of 0.54 was obtained. If a good trade-off is found between491

the study requirements and the number of levels per attribute, it is possible to extend the synthesis to a492

higher number of attributes while limiting the overall error rate.493

As one of its major advantages, a HMM confers the ability to integrate an unlimited number of data494

sources. In multidisciplinary studies (e.g., transport and health), it often happens that the variables of495

interest are not recorded in a single data set. Thus, the HMM approach provides an ideal framework496

to obtain good estimates of populations for which the entire series of variables is available. Moreover,497

differences in sample sizes of the individual data sources do not affect the results.498

A comparison of the HMM with the most common population synthesis technique, i.e., IPF, illustrates499
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the advantages of HMM over IPF. The comparison reveals that for realistic sampling rates (< 25%), the500

HMM provides better results in terms of SRMSE. Moreover, the amount of data required by the HMM501

(1 micro-sample and 1 marginal distribution) is less than that for IPF (1 micro-sample and all marginal502

distributions).503

Finally, matching between households and individuals is not investigated because it is not within504

the scope of this paper. Extending the HMM-based approach for grouping individuals into households505

according to the standard procedure can be realized. Existing matching methods could be applied to506

create a synthetic population consisting of both households and individuals simultaneously. Most of507

the association techniques operate according to the above described procedure (Anderson et al., 2014;508

Barthelemy and Toint, 2013; Pritchard and Miller, 2012; Ye et al., 2009). Given the importance of509

household characteristics on daily travel patterns Barthelemy and Toint (2013), further research is needed510

to include both individual and household information in the HMM-based population synthesis.511
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AppendixA. Marginal and joint distributions related to SP5 and SP6515
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Figure A.13: Comparison of the marginal distributions for different attributes (SP5)
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Figure A.15: Comparison of the marginal distributions for different attributes (SP6)
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