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1 Introduction

Continuous casting is the link between steelmaking
and hot rolling processes. This modern technique is
more and more important on the steel producers
market because of its advantages compared to the
older technique of ingots casting: energy and
manpower savings, a better yield and improvement
of steel quality.

Even if productivity leads producers to speed up the
casting process, an appropriate casting speed
remains an important factor of quality. If the speed
is too high, the strand stays less time in the mould
and the solidified shell is too thin, so that surface
and subsurface cracks can appear or the strand can
even break out. On the other hand, if the speed is too
low, the solidified shell grows too much and that
may lead to problems in the bending zone. The
mould taper takes also a prominent part in this
process. Many other parameters are also important
for the quality of the product [1-3]. Among these
parameters, one can mention steel chemistry and
cleanliness, mould level, mould powder, mould
oscillation, liquid steel temperature and the overall
secondary cooling conditions.

The purpose of this study is to make a finite element
model that describes the thermal-mechanical
behaviour of the strand in the mould. This analysis is
based on an finite element approach, using the
Lagrangian LAGAMINE code that has been
developed since early eighties in the MSM
Department of University of Li¢ge. More precisely
we wanted to determinate for a given situation the
temperature field, the stress and strain fields and the
contact/friction between the strand and the mould.

2 Model description

2.1 Approach of the problem

A complete three-dimensional model seemed to be
impossible (because of both numerical stability and
convergence reasons, but also computing time), so a
“two and a half” dimensional analysis was carried
out. One can summarize this approach as follows:
we model in a 2D mesh a set of material points
representing a slice of the strand, perpendicularly to
the strand axis. Initially the strand is at the meniscus
level and its temperature is assumed to be uniform
and equal to the casting temperature (1560 °C).
Since this slide is moving down through the mould,

we study heat transfer, stress and strain development
and solidification growth.

From a mechanical point of view, the slice is in
generalized plane strain state. That means that the
thickness t of the slice is governed by the following
equation where 3 degrees of freedom o, o and o,
appear:

1) tX,y) =0g+ 0 X+ 0y

The coefficient 0, represents the thickness at the
origin of the axes, while o and o, are the slopes of
the thickness value respectively along the axes x and
y.

In our model, we considered that the coefficients o;
and 0, are constant during the simulation and equal
to zero. That means that the thickness is only
determined by the value of o, so that we can say
that the thickness is uniform in the slice but variable
in time. This assumption is a consequence of the
double symmetry of the studied slice (see hereafter).

2.2 Geometry of the problem

In a first time, we worked with a simple geometry.
We modeled the casting of a 125 mm wide squared
billet. In order to avoid stress concentration, we
rounded the corners of the section, using a 5 mm
curvature radius.
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Figure 1: Cross section of the strand

The active height of the mould is 600 mm and the
taper is 1.05 % per meter, so that the section is
approximately 124.2 mm at the exit of the mould.
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Figure 2: Mould geometry

The initial geometry of the strand is the same than
the geometry of the mould (because of the liquid
steel) and then it depends on the shrinkage.

Because of the double symmetry, we only studied




one quarter of the slice, applying the right boundary
conditions along these symmetry axes.

The casting speed is relatively high speed and it is
equal to 3.6 meter per minute or 60 mm per second.

2.3 Thermal properties of the material

Liquid steel is poured in the mould at 1560 °C
(casting temperature). The copper mould is cooled
by an internal water flow near the surface. We
assumed that the temperature of the mould is
constant, uniform and equal to 160 °C.
The heat flux in the material (the strand) is predicted
by a classical Fourier-type law:
@ p-c-T=div(A-VT)+q
where T is the temperature field, function of
coordinates (x,y), p is the volumic mass, ¢ the
specific enthalpy and A the thermal conductivity of
the material.
The parameter q is a heat source term that is equal to
zero in our model, except in the mushy zone where it
is equal to the latent heat. In this case, on can
express q by the equation:
3) ot .
a=p-L-—0-T
where L is the latent heat of solidification and f; is
the solidified fraction.
In the case of an alloy, i.e. steel, the solidification
does not occur at a single determined temperature,
but only on a phase change interval from the upper
temperature (liquidus) to the lower temperature of
the domain (solidus). In our model, these
temperatures are.1520 °C for liquidus and 1470 °C
for solidus.
Even if the phase change interval is relatively large
according to temperature variation during time steps,
we use the so-called enthalpy method. We define an
enthalpy function H(T), which takes into account all
the thermal energy involved in the material to heat it
from the absolute zero (0 K) to the considered
temperature T (in K):
@) T of,
H(T) (j)(p c-p-L, aT) de
The main advantage of this formulation is that the
size of time step does not influence the result
because the conservation of heat is always verified.
The Fourier law can be written as follows:

®) H(T)=div(A-VT)
One can notice that all the parameters (p, ¢, A, q) are
temperature dependant in the model.

2.4 Heat exchange between the strand and the
mould

The thermal exchange between the strand and the
mould depends very much on the contact conditions.
Due to the thermal shrinkage, contact may be lost in
some places, more particularly in the corners, as
Figure 3 shows. When contact is lost, the thermal
exchange decreases and the core of the strand tends
to reheat the solidified shell so that the strand bulges

and returns to contact with the mould.

Figure 3: Gap appearance in the corners

Where the contact between the sirand and the mould
is established, the heat transfer q is based on the
following expression:

(6) q= R- (Tstrand - Tmould)

where R is the contact thermal resistance.

Where the contact is lost, a gap appears and the heat
transfer is given by:
4

M q=h- (Tstrand - Tmould)+ € '0p '(Tstrand ‘Tl?lould)
where h is the heat transfer coefficient of convection
mode, €, the relative emissivity of the strand and op
the Boltzmann radiation constant.

2.5 Mechanical properties of the material

The main mechanical effect of solidification is
shrinkage the value of which is directly proportional
to the temperature decreasing. The proportionality
coefficient is the thermal expansion coefficient o
and it is also thermally affected.

The mechanical behaviour of the material is
described by a elastic-viscous-plastic law for both
liquid, mushy and solid states.

The elastic domain is characterized by an elastic
Young’s modulus E and a lateral contraction
coefficient v (Poisson’s coefficient) that are
temperature dependant.

The viscous-plastic domain is described thanks to a
Norton-Hoff type law the expression of which is in
terms of equivalent values:

®) 5=Ky-e P p, V3 -(/3-Ef" e

where Kg, p1, P2, P3» P4 are temperature dependant
parameters. Each parameter has its own influence on
the curve shape:
¢ K, and p, influence the level of the curve;
® p; is mostly influent when € is higher, in other
words influence on softening;
¢ py works on hardening;
¢ p; traduces the effect of strain rate, i.e. viscosity.
The variation of these parameters as functions of
temperature allows to model the variation of
mechanical behaviour of the material, including
viscosity. Each parameter has been fitted at several
temperatures corresponding to tensile tests that had
been performed on a Gleeble device at several high
temperatures (800 °C to 1475 °C) and strain rates
(10* to 5 107 s™). The yield limit is defined as the
intersection between the elastic straight line and the
viscous-plastic curve.
The ferrostatic pressure pg is also taken into account.
In the liquid phase, it is given by the product of
volumic weight ¥ and the distance D below the
meniscus. In the solid phase, the pressure is




obviously equal to zero. In the mushy zone, we
assume a linear variation. So we can summarize it:
9 ps =y-D-(1-f)

where f{ is the solidified fraction.

When two adjacent elements are in liquid state, the
pressures are balanced so that there is no resuiting
force. But when the pressures are different, a
resulting force takes place. In this way, the solidified
shell is under ferrostatic pressure because of the
liquid steel pool in the core of the strand.

2.6 Mechanical contact

From the mechanical point of view, the contact
between the strand and the mould induces both
pressure and friction efforts. The chosen contact
element is based on a penalty technique and
expresses the Signorini’s condition at its integration
points. The constitutive equation for the contact is a
Coulomb-type law.

2.7 Discretization

The strand, more precisely the studied quarter of
slice, is modeled with quadratic quadrangular
elements (8 nodes) and 4 integration points with
Gauss scheme for each element. The elements are of
course larger in the center of de slice and smallest
near the corner where most of the stresses and
strains will grow. The mesh is composed of 560
nodes and 168 volume elements. Each node owns
three degrees of freedom (coordinates x and y and
temperature T).

Figure 4: mesh for the studied quarter of slice

The contact (or loss of contact) between the mould
and the strand is modeled using 3 nodes contact
elements. The mould is represented by a rigid body
so that its thermal distortion is not take into account.
The geometry of the mould at each time step is
defined by the taper that we impose. It can be a
single, multiple or parabolic taper.

3 Results

3.1 Temperature at the exit of the mould

Figure 5 represents some isotherms in the slice at the
exit of the mould. Temperature decreases to circa
1200 °C in the corner, while it is still greater than
1500 °C in most of the central zone (casting
temperature is 1560 °C).

The thickness of the solidified shell is circa 3 mm
and the one of the mushy zone is circa 5.5 mm.
These values are close to reality (about 5 mm for
each zone), but still too low for the solidified shell.
This difference may be due to the thermal exchange

coefficients that are relatively rough in a first time.
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Figure 5: Temperature at the exit of the mould

3.2 Stress, strain and strain rate fields

The following figures represent the stress, strain and
strain rate fiels in the slice at the exit of the mould.
We do not analyse here these results in terms of
absolute values because there is no interest to do that
with this exemple. We just verify that the behaviour
seems to be correct and that what we attempt to do is
achieved.

Von Mises
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Figure 6: Von Mises equivalent stress field at the
exit of the mould

Figure 6 shows the Von Mises equivalent stress
field. Similarly to the temperature field, it is obvious
that the maximum equivalent stresses are in the
corner, in other words in the solidified zone. The
reason is that the material is able to withdraw to
larger loads in this region. Conversely, the liquid
poll cannot withdraw and the stress in this area tends
to zero.

Equivalent
strain

Figure 7: Equivalent strain field at the exit of the
mould

Most of the strain is a thermal effect so the larger
values are where the temperature decrease the most
(in the solidified shell), as Figure 7 shows. In other
respects, a corner effect appears: the equivalent is
smaller in the corner than elsewhere on the surface.
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Figure 8: Equivalent strain rate field at the exit of
the mould

Finally, the equivalent strain rate is given by Figure
8. The strain rate represent the variation of strain
during the time step. What we can see is that the
maximum value is not in the corner or the solidified
zone (conversely to the previous figures), but in the
mushy zone. As the principal strain is thermal strain,
we can give different reasons to this field:

= first, most of the central region is still liquid and
the thermal effect is not very large, so that strain
rate is very low;

* in the solidified shell, temperature decreasing is
more important, but the material “resistance” is
greater than anywhere else and the strain
remains low;

= last but not least, in the mushy phase, the
temperature decreasing is quite important, but
the thermal expansion coefficient is 20 times
greater than the one of the solidified material
and 28 times greater than the one of the liquid
steel; that means that for a same temperature
rate, the strain rate will be 20 or 28 times the
one in the other phases.

3.3 Strand-mould contact

An important goal of the study is to manage to
model the loss of / return to contact. Figure 9
represent the evolution of the distance between the
strand and the mould during the simulation.
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Figure 9: Evolution of the distance between the
strand and the mould form the corner to the midface

The value of the distance is positive when there is
loss of contact and negative when there is contact. A
value can be negative because of the penalty
technique in the contact computation.

We can see that in the first time the contact is lost
everywhere along the outline of the cross section.
Then, the contact returns over a large region (in the
central part of the face), and it will not be lost
anymore. At the opposite, the contact remains lost in
the corner until the exit of the mould (600 mm under
the meniscus). Lastly, in a region near to the corner,
lost and returns to contact follows each other, that
we can see with the orange and green marks.

4 Conclusion

The aim of the study was to build up a model of the
thermal-mechanical behaviour of a steel strand in the
mould of a continuous casting plant. The results we
wanted to check were the temperature field and the
solidified shell growth, the stress, strain and strain
rate fields and finally the ability of the model to
manage the loss of contact and returns to contact.
The presented results have been achieved for
relatively simple section and the values are not to be
put in parallel with experimental tests. But the
overall behaviour of the simulated strand accords
with what we can expect it should be.

The next step in the study is now to model another
shape of strand, like a beam blank for instance, and
to compare results with reality. This validation work
is going on. Then we will be able to modify different
parameters, such as mould taper, casting speed,
mould and/or casting temperature, etc.
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