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Abstract

In this article we propose an efficient approach
to flexible and robust one-dimensional curve fit-
ting under stringent high noise conditions. This
is an important subproblem arising in many au-
tomatic learning tasks. The proposed algorithm
combines the noise filtering feature of an ex-
isting scatterplot smoothing algorithm (the Su-
persmoother) with the flexibility and computa-
tional efficiency of piecewise linear hinges mod-
els. The former is used in order to provide a first
approximation of the noise in the data, in a pre-
processing step. Then, the latter are used in
order to provide a closed form approximation of
the underlying curve and further to reduce bias
of the Supersmoother thanks to an efficient re-
fitting algorithm, using updating formulas. The
proposed technique is assessed on a synthetic
test problem and one closer to real world data.

1 Introduction

In this paper we focus on one-dimensional regression, i.e.
curve fitting from scatterplot data. Given a set of N points1

�xi� yi � f�xi� � �i�i�1�N �1�

the objective here is to find a simple enough function f̂ ���
such that the following equation holds

yi � f̂ �xi� � �̂i� �2�

with small enough error estimates �̂i, as measured empiri-
cally by the overall mean square error (MSE) :

MSE � N�1
X

i�1�N

�̂2
i � �3�

This problem, although simple with respect to multidimen-
sional regression problems, is highly relevant in practice. In
particular, in many automatic learning algorithms it appears

1The xi are supposed to be independent and identically dis-
tributed samples from an unknown probability density func-
tion, and the true errors are supposed to have zero mean :
f�x� � Efyjxg. In the sequel we suppose, without loss of
generality, that scatterplots are sorted along the x values

as a subproblem solved repeatedly in the attempt of building
multidimensional models from combinations of elementary
one-dimensional bricks.

For example, in projection pursuit regression the aim is to
build a linear combination of such one-dimensional mod-
els along selected projections of the multidimensional data
[1, 2, 3]. Similarly, classification or regression trees and
also fuzzy trees approximate multidimensional functions
as sums of products of one-dimensional ones [4, 5, 6, 7].
Other examples of algorithms which could take advantage
of such a feature are multilayer perceptrons and radial basis
functions networks [8].

In such multidimensional learning problems, it is not un-
usual that several thousand to several hundred thousand
candidate one-dimensional curve fitting subproblems need
to be solved when building up a multidimensional model.
Furthermore, typical sample sizes may range from sev-
eral hundred to several hundred thousand. Thus, the most
paramount feature of an algorithm is computational effi-
ciency in terms of both model learning and model use.

In addition, given the fact that in automatic learning it is
generally desirable to interpret the obtained result, we seek
functions in closed form approximations of maximal sim-
plicity. Also, in solving the curve fitting problem we try to
avoid as much as possible strong (e.g. parametric) assump-
tions about the underlying function. For the same reason
we make only minimal assumptions on the statistical nature
of the process (see foonote 1).

Since the above curve fitting problem is obviously not well
defined, its solution requires some ad hoc assumptions, e.g.
concerning regularity, complexity or a priori probability,
which may be either specified explicitly or incorporated im-
plicitly in an algorithm solving the problem. Thus, loosely
speaking we will consider that a function which realizes a
good compromise between these ad hoc assumptions and
data fit will be a good solution to our problem.

In order to reach the above objectives, we propose to solve
the curve fitting problem in three successive steps :

1. scatterplot smoothing, i.e. computation of the random
noise estimates �̂i;

2. representation, i.e. approximating the smoothed scat-
terplot si � yi��̂i by a simple function ofxi in closed
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Figure 1: Parametric vs. non-parametric curve fitting.

form, with an appropriate number of parameters;

3. refitting, i.e. tuning the parameters of the closed form
approximation to further minimize the overall MSE.

Figure 1 shows schematically the proposed approach com-
bining scatterplot smoothing and the Hinges model, sug-
gesting also in the upper part how parametric approaches,
e.g. based on Hermite polynomial functions, would try to
solve the overall problem in a single step [9, 10].

For the scatterplot smoothing we use the so-called Super-
smoother proposed by Friedman in the context of projection
pursuit regression. This technique has indeed shown to be
effective in extracting the structure from very diverse types
of scatterplot data. Then, for representation, we consider
both piecewise linear and piecewise cubic Hinges (see [11]
for cubic ones). They are indeed at the same time sim-
ple and flexible enough to represent a very large variety of
functions, smooth or not. Step 2 allows us to select the ap-
propriate number of pieces in the Hinges model (i.e. control
the variance of the model), while refitting allows reducing
bias with respect to the Supersmoother. We provide algo-
rithms in order to solve these tasks in a computationally
very efficient way. In particular, step 2 uses a greedy di-
vide and conquer strategy together with a computationally
efficient pruning approach, while step 3 exploits updating
formulas. Additionally, the proposed technique allows the
fast and accurate computation of the derivatives, useful in
many multidimensional automatic learning algorithms.

The rest of the paper is organized as follows. Section 2
introduces the linear hinges model and Section 3 describes
the various steps required to obtain this model. Section 4
provides simulation results, both in terms of accuracy and
computational efficiency, using two test problems. Section
5 draws some conclusions and provides some directions for
further work. Mathematical details concerning the updating
schemes are collected in the Appendix.

2 The linear hinges model

In the context of one-dimensional regression or curve fit-
ting, continuous piecewise polynomial functions are not
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Figure 2: Hinges model definition.

new. The success of these methods is based on the idea of
partitioning the interval �x1� xN � appropriately into small in-
tervals, on each of which the true underlying function f���
(2) is then approximated by a suitable polynomial. These
piecewise functions are completely defined by continuity
conditions and a set of parameters : typically, the order of
the polynomials used (a user defined integer parameter) and
several other real-valued parameters (the number depends
on the order used) associated with the points defining the
pieces, the so-called knots.

While the choice of the order of the polynomials is (usu-
ally) not very important, the choice of the knots (number
and location) tends to be crucial because they control the
flexibility of the model.

Figure 2 shows the proposed model. There are K hinges,
one for each internal knot. The two ’external’ knots specify
the boundary conditions for unique solution. They must be
out of the interval of validity �x1� xN � of the Hinges model.

This piecewise linear model is thus defined by the two
external knots (Fig. 2) and by 2K parameters, the �x� y�
coordinates of the internal knots2 :

�k0� h0�� �kj� hj�j�1�K� �kK�1� hK�1� �4�

The complete Hinges model is formed by a set of hinges,

2In this paper we use the term ‘knot’ to denote both x and y
coordinates of the points defining the hinges.



expressed by

H�x� � fHj�x� : kj�1 � x � kj�1g1�j�K � �5�

One hinge is defined (Fig. 2) by the current �kj � hj� knot
plus two straight-line segments Hl�j and Hr�j (connected
to the knot j)3. Note that the hinge is also determined
completely by three knots: previous, current and following
knot. The previous and the following knot define the inter-
val �kj�1� kj�1� of validity of the current hinge (sketched
by the rectangle of Fig. 2). Then, the model of one hinge
can be expressed mathematically as :

Hj�x� � 1�kj�1� kj�Hl�j�x� � 1�kj� kj�1�Hr�j�x� �6�

where

Hl�j�x� � hj�1 � �∆hl�j�∆kl�j��x � kj�1�
Hr�j�x� � hj�1 � �∆hr�j�∆kr�j��x � kj�1�

�7�

∆hl�j � hj�1 � hj; ∆kl�j � kj�1 � kj
∆hr�j � hj � hj�1; ∆kr�j � kj � kj�1

�8�

and 1�kj�1� kj� and 1�kj� kj�1� are the indicator functions
of the left and right intervals defining the hinge.

Note that the continuity of this Hinges model is clearly
expressed by the relation :

Hj�1�kj� � Hj�kj� � Hj�1�kj�� �9�

3 How the linear hinges model is obtained

Our strategy is simple (Fig. 1) : first use the Supersmoother
for smoothing the scatterplot; then exploit its result to build
an Initial Hinges Model (IHM); finally refit this latter model
by minimizing the MSE, which yields the Linear Hinges
Model (LHM) of reduced bias. Observe that this strat-
egy combines the advantages of nonparametric models (the
Supersmoother) with the qualities of the parametric ones.

Note that other strategies have been proposed in the litera-
ture to solve this problem like TURBO [12] and its successor
MARS [13, 14] or the hinges and ramps of [15].

Next sections elaborate further on smoothing the scatterplot,
deriving the IHM from the smoothed data and refitting the
latter to yield the LHM.

3.1 Supersmoother

The supersmooother [2, 16] is based on local averaging of
the scatterplot (1). It consists in computing the values si
defined by :

si � avefyj : i� b � j � i� bg �10�

where ave denotes some way of averaging like the mean or
the median operators. The parameter b is the bandwidth or
span of the smoother; it controls the tradeoff between con-
tinuity and flexibility. The Supersmoother uses a variable-
span, determined by local linear fits and cross-validation as
a function of the abscissa value.

3The subscripts l and r denote the left- and right-hand side of
the hinge.

Among the many local averaging smoothers, we select this
nonparametric method because it combines computational
efficiency with a good capacity of getting the main structure
of the scatterplot. In other words, this ’automatic’ method
provides good adaptation to varying curvature in the scat-
terplot and to varying noise levels. It is computationally
efficient but suffers from slight under fitting, in many cir-
cumstances.

Note that the drawbacks associated with the Supersmoother
have been reported in [9, 12]: (a) poor performance in
very high-noise environments, (b) deficient estimation of
its derivatives (using first-order differences of the estimates)
and, (c) the ’untreatable’ nature of the tabulated result (spe-
cific values associated with each observation). Problems
(b) and (c) may be solved by using (parametric) Hermite
polynomial functions [9]. In [17] authors propose also a
parametric model (B-splines of order three, with equally
spaced knots, their number being user defined). To avoid
problem (c), in [18] authors propose approximating the tab-
ulated result by a cubic spline, but the parameters of the
spline are determined by a least squares fit to the Super-
smoother results. Notice that the first two approaches de-
part from the non-parametric feature of the Supersmoother,
while the latter is merely a representation technique.

3.2 The initial hinges model (IHM)

3.2.1 Overall strategy

The overall strategy we use to obtain the IHM consists in
two complementary steps : (i) top-down growing proce-
dure using a greedy recursive partitioning algorithm; (ii)
pruning together with cross-validation to select the appro-
priate number of hinges. This strategy is commonly used in
contexts such as decision trees [4, 19]. The available data
set is partitioned into two subsets : the growing set used
in the growing stage and the pruning set used after that for
pruning.

3.2.2 Growing procedure

The objective of growing is to replace the smoothed scatter-
plot by a piecewise linear model, without loss of accuracy.
In the context of describing in a natural manner lines and
shapes of pictures, authors in [20] describe the so-called ’it-
erative end-point fits’. Because we know that our problem
is well suited (i.e. fit something that looks like a ’smooth
function’), we can use this efficient technique here. Note
that because this strategy is intended for the very generic
problem of representing a function by using a piecewise
linear model, the approximation of the function can be as
accurate as desired.

After filtering the noise with the smoother, we have a new
set of smoothed data si (10), sorted along the x values. The
growing procedure is initialized with a straight line defined
by the two end points (see Fig. 3). Thus the first and last
smoothed data become multiple knots [21], corresponding
both to the first and last internal knots of the model, as
well as to the external knots �k0 � k1 � x1;h0 � h1 �
s1�, �kK�1 � kK � xN ;hK�1 � hK � sN �. Then,
this model is progressively refined using a one-dimensional
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recursive partitioning procedure. It starts considering the
complete range of values of xi and looks for the ’best’
position of the (first) new knot �knew� hnew� to split the
interval �k1� kN � in two new (non overlapping) sub-intervals
�k1� knew� and �knew� kK�. This splittingprocess is repeated
recursively for each of the two new intervals thus created,
until all points of the smoothed scatterplot are sufficiently
well approximated by the resulting hinges model, which we
denote by IHMmax.

The IHMmax obtained by using this top-down growing
procedure can be represented by a binary tree (see example
in x4). As in all recursive partitioningalgorithms, (e.g. [22,
23]), three important issues need to be stated: (i) definition
of candidate splits ; (ii) the selection of the ’best’ split ; (iii)
the termination criteria used.

Because we know that a Hinges model with one hinge at
each point can correctly represent them, a natural strategy to
obtain a good split is to use as candidate knots the smoothed
data points falling in the active interval �kprev� knext�. Thus,
for a given active interval the heuristic selects as best
split k�new the abscissa value x� � �kprev� knext� such that
�x�� s�� ’differs more’ of the current model (a flat hinge) in
the active interval (see Fig. 3). We use the absolute resid-
ual as distance because it produces the same results than the
Euclidean distance, but requires less computations. Thus,
we need only to scan the smoothed data in �kprev� knext�
and select the one which is at the far end of the straight line.

The stopping criterion is as follows : if the MSE of the flat
hinge in the current active interval (Fig. 3) is lower than
a threshold then the interval is not split further. Note that
this implies obviously that the distance of all the points of
the smoothed scatterplot in this interval are well enough
approximated by the flat hinge. In the worst case, the
number of knots will be equal to the number of samples in
the growing set, but in general it will be much smaller.

3.2.3 Pruning : selection of the IHM complexity

Our objective is to obtain the best possible representation (in
terms of fidelity to the data) with the smallest number of pa-
rameters (in terms of complexity). The growing procedure
yields fidelity but generally at the cost of high complexity,
i.e. a high number of knots. The pruning procedure aims at

selecting a subset of these latter so as to reduce complexity
while preserving accuracy with respect to the original data.

Conceptually, pruning consists in two steps.

1. Generation of a sequence of hinges models of decreas-
ing complexity (the pruning sequence):

IHMmax� IHMmax�1� � � � IHM0 �11�

removing knots one by one.

2. Selection of the best IHM from this sequence (11).
This means that each pruned model is evaluated on
an independent sample (the pruning set) and the one
which realizes the best compromise between fidelity
and data fit is selected.

Like in regression tree pruning, even for a moderate number
of hinges in IHMmax, there is an extremely large number
of distinct ways of pruning up to the simplest Hinges model.
A selection of a reasonable number of different models, each
of them with a different number of hinges, is necessary.
Basically, the idea is to select, for a fixed number of hinges,
the ‘best’ IHM .

However, unlike in regression trees, our heuristic growing
procedure does not guarantee that for each new split the
MSE of the model decreases. Moreover, it is possible that
the first selected splits (associated to nodes in the top of
the tree) are the clear candidates to be removed during the
pruning phase. This implies that bottom-up pruning (used
in decision trees) would not be a good idea in the hinges
model. This, together with the underlying idea of getting
an effective implementation, makes us opt for a different
approach.

It would be preferable to select a knot to prune in such
a way that the hinges model changes as less as possible.
Further simplifying this consists of pruning the knot which
is closest to the straight line connecting the preceding and
the following knots. Thus, for a given IHM the pruning
distance is defined as4 :

dj � jhj � �hj�1 � �hj�1 � hj�1�
�kj � kj�1�

�kj�1 � kj�1�
j� �12�

To generate the pruning sequence, we first compute the
pruning distances (12) for all the internal knots. After that,
we remove the knot of minimum distance and update (using
(12)) the distances for the previous and following knots to
the removed one, the others being unchanged. This process
is repeated until we reach the minimum number of knots
(i.e. no internal knots). Note that this method implies very
simple computations, of computational complexity linear
in the number of initial knots, i.e. at worst linear in the
number of samples in the learning set.

After generating the sequence of pruned IHMs, we select
one of them as the optimum-sized model. To select the
best pruned IHM we estimate the MSE of each model of
the pruning sequence using a different, independent set of
samples (the pruning set, PS). Notice that these samples
are not smoothed by the Supersmoother.

4Note that this distance is equivalent to the residual and it is
not invariant to rotations, opposite to the Euclidean distance.
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Then, the best pruned model will be the one minimizing the
number of hinges (its complexity) and the estimated MSE.
We use the so-called ‘1 standard error Rule’ [4] to deal with
errors that can appear in the estimation of the MSE using a
finitePS. Basically, this rule allows choosing the simplest
model whose accuracy is comparable to the minimal MSE,
taken into account the uncertainties of our estimate.

3.3 Refitting the initial hinges model

3.3.1 Motivation

In the Introduction we already mentioned the fact that the
Supersmoother, while compromising between fidelity to
the data (to avoid overfitting) and noise reduction (to avoid
oversmoothing), often suffers from high bias. Thus, given
the fact that we derived the IHM in order to fit the smoothed
scatterplot, this latter will also suffer from bias. However,
since the IHM is a parametric model flexible enough to
represent the main structure in the data, it should be possible
to improve it in terms of accuracy by refitting it to the
original scatterplot. Notice that this refitting is possible only
for parametric models, whose parameters may be tuned in
order to remove the possible errors due to oversmoothing.

However, if the model is too flexible then we would expect
refitting to increase variance more strongly than it would
reduce bias, with an end result of possible degradation. But
the IHM, thanks to the combination of scatterplot smooth-
ing and pruning, catches the correct flexibility of the Hinges
model for the problem (scatterplot) at hand. Thus its re-
fitting should not lead to high variance. Furthermore, its
parameters being derived from the Supersmoother should
provide a good starting point for refitting.

3.3.2 Overall cyclic procedure

The proposed strategy consists in several passes over the
Hinges model until all free parameters of (4) are stabilized.
Each of these passes (Fig. 4) considers the hinges one by
one, moving the central knot to minimize the MSE of the
scatterplot data in its range (see Fig. 5).

During the stage described here we (re)fit this (partially
frozen) initial model using the complete initial scatterplot
to obtain the final result. We call the model obtained using
this strategy the Linear Hinges Model.

x

y

k j k j+1k j−1

Hj (x)

range of validity of the hinge

Figure 5: Tuning one hinge.

3.3.3 Tuning one hinge

Thus, the core of the proposed (cyclic) strategy is the adjust-
ment of one particular hingeHj�x� by using the scatterplot
that enters into its range of validity �kj�1� kj�1�. In this
tune we have only two parameters, the coordinates �kj� hj�
of the central knot. The criterion to carry out this fit is
the minimization of the MSE of the hinge in its range of
validity, estimated by using the scatterplot points :

MSE�kj � hj� � n�1�SEl � SEr�

SEl �
P

kj�1�xi�kj
�yi �Hj�xi��

2

SEr �
P

kj�xi�kj�1
�yi �Hj�xi��2

�13�

where n is the total number of scatterplot points in the
interval.

Now the problem consists in obtaining the values �k�j � h
�
j �

minimizing (13). Equations (7) show that (13) is quadratic
in hj. This means that for a given value of kj, setting the
derivative with respect to hj of the MSE of eqn (13) to zero
yields an analytical expression for h�j

h�j � h�j �kj�� �14�

which can be substituted in (13) (see appendix).

Hence, knot optimization reduces to a one-dimensional
search, which could be solved using a bracketing/bisection
strategy. Instead of using this approach, we use an enumer-
ative approach evaluating (14) at each distinct observation
abscissa value xi in the support set of the current hinge.
We start by evaluating (14) at the first candidate position
in the support set and for the following evaluations take
advantage of the computations carried out before by using
the updating formulas both for the computation of h�j �kj�
and MSE�kj � h�j �kj�� given in the appendix.

3.3.4 Bounding the search space

The IHM has the property of being smooth because we have
used a set of smoothed data for building it. When we refit
this model using the scatterplot this property is not longer
insured. It is possible to take care of this effect by restricting
the space of search to a region close to the initial position of
the hinge. This has the additional advantage of accelerating
the refitting process.

Here we use a very simple approach : the user decides the
size of the search space ��kj � �∆kl�j�� �kj � �∆kr�j�� by
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using the parameter �.5 The parameter � can take values
in �0� 1�. The first value consists in freezing the abscissa of
the hinge whereas the second one corresponds to searching
the full range of validity of the hinge.

4 Simulation experiments

This section provides some simulation results using two
test problems : a synthetic one and one closer to real world
data. See [11] for further comparisions with the parametric
Hermite polynomials.

4.1 An illustrative example

To show the proposed approach we use the test problem
given in [12]. The scatterplot data consists of N pairs,
obtained from yi � sin�2��1 � xi�2� � xi�i, where �i is
i.i.d. N �0� 1�. The values of xi are drawn randomly from
the uniform distribution in the interval �0� 1�.

Figure 6 shows the scatterplot for N � 300 and the under-
lying true function. We use the Supersmoother to (partially)
remove the noise. Figure 7 shows these smoothed data (10).
The Supersmoother has been used in its simplest form, i.e.
without any bass enhancement (see [16]). Note the over-
smoothed result around the two “peaks” of the true function

5The increments are given by (8) and kj is the position of the
hinge before refitting it.
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Figure 11: Sequence of LHM models during refitting.

(x � 0�12 andx � 0�5). Figure 8 shows successive steps of
the IHMmax growing method (x3.2). Figure 9 shows the
pruning sequence for arriving to the final IHM. The LHM
after each refitting pass is shown in Fig. 11, with � � 0�99.
The way this refitting process stabilizes is summarized in
Fig. 10. Note that after the third pass the model is stable,
and the resulting approximation is significantly better than
the Supersmoother results.

If more scatterplots are available, a better result can be
obtained. Table 1 shows the MSE of the Supersmoother,
the IHM and the LHM when N � 300 and N � 1000.
This error has been evaluated using three different test data:
The Learning Set (LS) used for building the model, the
Scatterplot Test Set (STS), an independent set of 1000 data
and, the True Test Set (TTS) consisting of the values of
the true underlying function, evaluated at the 1000 abscissa
values of the STS. This latter set allows us to measure
whether the model has indeed separated the noise from the
underlying function. The STS is used for showing the
generalization capability. Note that the Supersmoother is
better (in terms of MSE) than the IHM, but the LHM is
even better. Note also that the errors are very close to the
existing ones in the data sets (first and second columns).

4.2 Semi-real application: the OMIB problem

In this section we use a semi-real data set related to the
OMIB (one-machine-infinite-bus) power system transient
stability test problem used in [19]. The input variable is
a linear combination of six attributes representing relevant
parameters of the power system. The output is a non-linear
transformation of the degree of stability determined by nu-
merical simulations. The “noise” is due to approximation
errors stemming from non-linear interactions among the
variables defining the linear combination. These data can



Table 1: MSE of Supersmoother, IHM and LHM
True function Supersmoother IHM LHM

N � 300 N � 1000 N � 300 N � 1000 N � 300 N � 1000 N � 300 N � 1000
�K � 4� �K � 4� � � 0�01 � � 0�99 � � 0�01 � � 0�99

LS 0.36680 0.34202 0.35906 0.34123 0.38481 0.37727 0.36199 0.36117 0.34229 0.34207
STS 0.36863 0.37458 0.37641 0.40295 0.41538 0.37590 0.37322 0.37682 0.37639
TTS 0 0.01077 0.00768 0.03876 0.04801 0.01117 0.00805 0.00598 0.00558
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Figure 12: Learning set used in the OMIB example.
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Figure 13: Supersmoother and obtained LHM.

be viewed as result of projecting values of a hypersurface
along the direction defined by the linear combination. There
are 20,000 sample points, we use 4,000 points for training
(2,000 of them as pruning set), (see Fig 12), and the rest
16,000 for testing.

Figure 13 shows the LHM obtained using the pruning ap-
proach and � � 0�01. Note that in this example the noise
is small and we have enough learning points to reach good
results with the existing methods. Table 2 shows the error
for these models, estimated using the learning data (LS)
and the test data (TS). Rough CPU-times to build the mod-
els are also shown, measured on a SUN UltraSparc 1 (167
MHz). The CPU time for the LHM is the total one, i.e.,
the time to obtain the Supersmoother plus the time to get
the best IHM plus the time to refit the model. To obtain the
LHM ten refitting passes have been made. IHMmax corre-
sponds to K � 54 : during the pruning phase 54 candidate
models have been considered and the optimally pruned one
IHM best contains onlyK � 11 hinges. Note that the over-
all CPU time required for growing and pruning the IHM is
negligible (16ms) with respect to the time required for the

Table 2: MSE and CPU times : OMIB example
Supersm. IHMbest LHM refitting

K � 11 � � 0�01 � � 0�99
LS 0.005376 0.005524 0.005364 0.005369
TS 0.005660 0.005802 0.005655 0.005673

CPU times 100 ms 16ms (total) 181 ms 386 ms

scatterplot smoothing and refitting. Note also that the final
LHM has a small number of parameters (K � 11) and it is
slightly better than the Supersmoother in terms of MSE.

5 Conclusions and future work

We have presented an efficient approach to flexible and
robust one-dimensional curve fitting under stringent high
noise conditions. It allows combining the properties of
nonparametric models (the Supersmoother) with the qual-
ities of the parametric ones (piecewise polynomials). Its
effectiveness is corroborated by two examples.

The proposed model can be useful not only for approximat-
ing a one-dimensional function, but in complex algorithms
where it can be viewed as a small piece that is called repeat-
edly. For example, it can be used in the context of projection
pursuit methods, for discretizing continuous attributes in the
context of machine learning, or for summarising a temporal
curve, since it is possible to obtain simple descriptors based
on the presented models. In the context of fuzzy learning
techniques, thismethod could be used to define membership
functions to discretise continuous attributes.

Concerning further work, we should study the possibility
of extending the ideas of refitting the model by using a
different measure, such as the average sum of residuals,
to obtain a (possibly) more robust method. The proposed
refitting technique is based on several passes, where each
pass always goes from the first hinge to the last one. Other
strategies could be tested.

Finally, further investigations should be carried out in order
to exploit the linear hinges model in the context of multidi-
mensional regression techniques such as projection pursuit
for example.
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A Refitting using updating scheme

A.1 Analytical formula for h�j

Setting the derivative �MSE
�hj

of equation (13) to zero we
obtain

h�j �kj� �
A�B
C

A �
hj�1

∆k2
l�j

�S2�l � ∆kl�jS1�l��
SY1�l

∆kl�j

B � hj�1

∆k2
r�j

�S2�r � ∆kr�jS1�r� �
SY1�r

∆kr�j

C � S2�l

∆k2
l�j

� S2�r

∆k2
r�j

SY1�l �
P

kj�1�xi�kj
yi�xi � kj�1�

SY1�r �
P

kj�xi�kj�1
yi�xi � kj�1�

Su�l �
P

kj�1�xi�kj
�xi � kj�1�u

Su�r �
P

kj�xi�kj�1
�xi � kj�1�u

u � 1� 2
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A.2 Updating scheme

A.2.1 Updating scheme of eqn. (15)

We start by evaluating first eqn. (15) settingkj � x1, where
x1 denotes the first data point in the current interval. For
the subsequent candidate positions we use the following
updating scheme :

SY new
1�l � SY prev

1�l � ynew�xnew � kj�1�
SY new

1�r � SY prev
1�r � ynew�xnew � kj�1�

Snewu�l � Sprevu�l � �xnew � kj�1�u

Snewu�r � Sprevu�r � �xnew � kj�1�u

u � 1� 2
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where �xnew� ynew� are the coordinates of the scatterplot
point which goes from right to left.

A.2.2 Updating the value of MSE

Having computed the optimal value of h�new we can in prin-
ciple recompute the MSE (13) for the present knot position
�xnew� h�new�. The updating scheme is obtained as follows :

SEl � SY Y0�l � 2hj�1SY0�l � 2 ∆hl�j
∆kl�j SY1�l

�2hj�1
∆hl�j
∆kl�j S1�l �

∆h2
l�j

∆k2
l�j

S2�l � nlh
2
j�1

SEr � SY Y0�r � 2hj�1SY0�r � 2 ∆hr�j
∆kr�j SY1�r

�2hj�1
∆hr�j
∆kr�j S1�r �

∆h2
r�j

∆k2
r�j

S2�r � nrh
2
j�1

SY Y0�l �
P

kj�1�xi�kj
y2
i

SY0�l �
P

kj�1�xi�kj
yi

SY Y0�r �
P

kj�xi�kj�1
y2
i

SY0�r �
P

kj�xi�kj�1
yi
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where nl and nr denote the number of scatterplot points in
the left and right subintervals.

These formulas lend themselves to the following updating
scheme :

SY Y new
0�l � SY Y prev

0�l � y2
new

SY new
0�l � SY prev

0�l � ynew
SY Y new

0�r � SY Y prev
0�r � y2

new

SY new
0�r � SY prev

0�r � ynew
nnewl � nprevl � 1
nnewr � nprevr � 1
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