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1. Introduction � Recall can be improved by incorporating search results from all
or a high fraction of relevant Web pages (maintaining an index of

A R T I C L E I N F O

Article history:

Received 1 December 2014

Received in revised form 5 October 2015

Accepted 13 October 2015

Available online 26 October 2015

Keywords:

Search engines

Text classification

Annotation study

Active learning

A B S T R A C T

Domain-specific search engines exist in various fields, providing additional value by exploiting

knowledge of their respective domains. One common mechanism used are filters which allow narrowing

down the search results based on pre-defined filter categories. In this article we exploit the usage of a

text classification system for the creation of these filters. The approach is tailored to work in large-scale

settings with reduced amounts of manually annotated training data and hence enables a cost-efficient

roll-out of new filters. An initial annotation study resulted in a corpus which was used for an off-line

evaluation of the approach giving insights into the effect of the system’s parameters. Finally, a large

online evaluation was executed together with a provider of a domain-specific search engine. This article

presents important aspects that need to be taken into consideration when implementing text

classification-based filters in the industrial setting of a domain-specific search engine.
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The amount of digital information is growing at an enormous
pace. In August 2014, around 179 million [1] active Web sites were
reachable where the majority does not consist of single pages but
hundreds or thousands of sub-pages. While multimedia content such
as video and audio is gaining increasing importance as a relevant type
of content, text still seems to be the prevalent media type.

After the rise of the Internet, search engines have evolved in
order to provide an efficient access to available information. While
the market is dominated by generic search engines, in particular
Google.2 An increasing number of domain-specific search engines
have come up. Common domains for these domain-specific search
engines are products, restaurants, hotels, job offers or scientific
publications. In comparison to generic search engines, domain-
specific search engines bear advantages by exploiting knowledge
of their respective domains in order to improve the search
experience for the user. Both recall3 and precision4 of the search
can be improved compared to generic search engines:
* Corresponding author at: Multimedia Communications Lab, Rundeturmstraße
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E-mail address: sschmidt@kom.tu-darmstadt.de (S. Schmidt).
1 Equally contributing first authors.
2 http://www.google.com.
3 Recall describes in the context of search engines the percentage of relevant Web

pages that were found by a search query out of the total number of relevant pages.
4 Precision describes in the context of search engines the percentage of relevant

Web pages out of the total number of Web pages found.
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relevant Web sites in the background).
� Precision can be improved by giving the user the possibility to

search not only based on string values over complete documents
but to filter the search results according to their needs in the
particular domain.

In this article we focus on the latter. Filters are a pre-defined
number of attributes that can be combined with each other in
order to narrow down the result set of a search. These filters can be
generic or domain-specific. Examples for generic filters are file-
format, top-level-domain or language. In contrast to these generic
filters there are domain-specific filters such as the price for a
product, the geographical region a job offer is relevant to, the color
of a car or the number of rooms a hotel has. These filters need to be
explicitly integrated into the search interface and the underlying
filtering logic cannot easily be ported to another domain.

Some of the filters can best be implemented by rule-based
approaches, e.g. prices can be found by searching for a number
followed by a currency symbol. This holds for all information with
a small or restricted number of distinct expressions which are
independent of the context (e.g. if there are several prices on one
site, the price of interest can only be identified based on the textual
context). In contrast to this, some information cannot be explicitly
found in the Web pages themselves or the language allows for a
huge variety of expressions.

In this article, we focus on filters that require more advanced
techniques for realization since the textual part of the document
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5 One of the aims of the Semantic Web vision by Tim Berners-Lee [16] is the

machine-readability of the web. This requires a consistent annotation of Web pages

with semantic labels on word-level yielding a closer interlinking of stored

information.
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through which the filter value can be determined is of rather
complex nature. The present work exploits text classification using
machine learning techniques as a means to build these filters. The
deployment of the used approach takes place in the industrial
setting of a job search engine. The goal is to use the textual content
of the job offers (a.k.a. documents) as input for text classification
and use the available class labels as filter criteria for the search
engine. Therefore, the approach has to decide for any job offer if a
particular filter (a.k.a. class label) should be evaluated positive or
negative. A filter matches for a job offer if and only if the text
classifier decides to assign the filter class to the job offer.

As time to market of newly identified filter is critical, it is
required that the filter can be deployed fast. In addition to this,
domain-specific search engines often start as start-ups or small-
sized companies and do not have the manpower and/or financial
resources to manually annotate large amounts of text documents
as required by classical supervised machine learning classification
approaches. At the same time, a certain classification quality
needs to be met [2] for achieving user satisfaction. Based on this
observation, we examine an approach that relies on active
learning, which allows for a fast and cost-efficient deployment
through reduced manual effort i.e. the time spent on annotations.
This approach has been presented before [3] but is now, for the
first time, evaluated during runtime in an industrial setting
instead of using historical data in a lab environment for
evaluation. To enable a meaningful deployment of the approach,
we introduce a new parameter for the integration in the industrial
setting.

The actual deployment of the approach in an industrial setting
enables a detailed description of the processes involved and gives
insights on problems that occur in such a real-world scenario.
Through the online evaluation, the active-learning setting is not
only tested for its theoretical performance but for actual
applicability for different problems within the daily routine of
an industrial partner. The presented experience, gained during the
experiments, allows a repeatable application of this text-classifi-
cation approach for document filtering.

The remainder of this article is structured as follows: after this
introduction, an overview on related work is given. Afterwards, in
Section 3 the application scenario on which this article focuses is
presented; this presentation is required in order to understand the
specific needs in this scenario. The following section presents the
approach to and the results of an annotation study executed within
the application scenario. Section 5 describes the concept of the
adapted approach while Section 6 describes the implementation
within the application scenario. The results of the evaluation using
the data from the annotation study are presented in Section
7. Finally, the work is concluded in Section 8.

2. Related work

The present work combines the application area of domain-
specific search engines with the technique of active learning. To
the best of our knowledge, there is no existing work which has
examined this combination so far. In this section some aspects of
these two fields are highlighted. Furthermore, we highlight the
aspect of balancing of training data, since this is relevant for our
work as well.

2.1. Domain-specific search engines

This section presents some approaches to the implementation
of domain-specific search engines. Hanbury et al. [4] define a
domain-specific search engine as ‘‘a search engine that specifies
one or more of the following five dimensions: (1) subject areas, (2)
modality, (3) users, (4) tasks, (5) tools, techniques and algorithms
required to complete the tasks’’. Within the scope of this work, we
concentrate on the specification of the subject area since the web
sites to be retrieved all origin from one subject are.

A consistent usage of Semantic Web5 technologies from content
providers resulting in machine-readable data would simplify the
creation of domain-specific search engines [5]. Since the Semantic
Web has not prevailed until today, search engine providers cannot
rely on semantic annotations of Web documents but need to
understand the content automatically by other means in order to
make it retrievable in real-time.

Some approaches to domain-specific search engines have been
presented where the user’s query is enriched with domain-specific
keywords, forwarded to a generic search engine and the returned
result is presented to the user [6,7]. This enrichment with
keywords in order to receive only relevant results can be seen
as a coarse-grained filtering, but in general the approach is hardly
feasible since it entirely relies on the quality of the generic search
engine and, in addition to this, most generic search engines would
nowadays block these queries coming from a single source at high
volume. Further, many domains and filters are too complex to be
modeled by keywords only. A domain-specific search engine that
does not rely on a generic search engine and builds generic rules
based on given keywords was presented by Kruger et al.
[8]. Another way toward an optimal user experience is the ranking
of the result list, which can be enhanced by adding domain-specific
features [9].

2.2. Active learning

Active learning has been a popular research topic for about
20 years now. Motivated by the fact that obtaining labels is
expensive, the general idea is to provide only labeled instances
with a high information value as training instances to a supervised
classifier, resulting in fewer instances to be labeled manually. The
instances to be labeled are selected by the classifier in its current
state, assuming that the knowledge about these labels improves
the future accuracy of the classifier. A variety of approaches for the
selection of these instances has been proposed; an overview on
these was given by Fu et al. [10].

In general, active learning can be and has been combined with
various classification techniques, e.g. Bayesian models [11] and
Support Vector Machines [12], which have been identified as being
most suitable for text classification tasks [13].

Also, different combinations of active learning and ensemble
learning, which exploits a set (ensemble) of classifiers, have been
proposed. Examples are the combination of various classifiers from
two different classification approaches where the ratio between
the classifier types in the ensemble is adapted during run time [14],
the combination of different classifiers of the same type but trained
with different feature selections [15] and the combination of
different classifiers of the same type but trained with different
subsets of the data [3].

2.3. Balancing

It has been shown that the quality of a classifier trained on
unbalanced data sets can be improved by balancing the training
corpora [25]. A more balanced data set yields a more robust
classifier when used for training. Common methods are random
oversampling and random undersampling where the former
involves a duplication of the minority class while the latter
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involves discarding of instances of the majority class. Running
evaluations with data sets with different severities of imbalance it
has been shown that these two approaches yield best results
among various different balancing approaches for Support Vector
Machines [18]. The approach presented in this article is based on
Support Vector Machines which indicates the high potential of
these two techniques.

3. Application scenario

In order to gain insights into the feasibility of the proposed
approach as a filtering means we have implemented it at a domain-
specific search engine. Below, we explain the characteristics of this
scenario.

Kimeta,6 founded in 2005, is one of the market leaders in the
German online job search market. The Web site has about
20 million page views through about 2.5 million visits per month.
Every day, 80,000 to 100,000 new job offer documents enter the
system via a Web crawling process and need to be processed so
that users can retrieve them as results of their search. This
processing does not need to happen in real-time but the time span
from first publication of the document until delivery to the end
user is a key performance feature. The main sources for the
documents are (i) company Web sites, (ii) job offer markets and
(iii) newspaper Web pages. The documents from these three
sources display different characteristics. Each company presents
the documents in their own (corporate design) layout with varying
structure reaching from pure flowing text to well-structured
tables. In contrast to this, job offer market pages provide a
standardized layout. Finally, newspaper pages can be character-
ized by rather short job offers since the offers are often published
parallel in print and the price for a print publication depends
strongly on its length. This variety shows that the scenario imposes
high requirements on the document processors in order to index
all different kinds of documents reliably. The text classification
system used must be highly robust in order to allow for
classification of various kinds of documents.

Kimeta provides several different filter groups on its Web site,
ranging from hours of work (full time, part time) or mode of
employment (regularly employed, internship, temporary job, etc.)
to the functional area of work (Consulting, Controlling, IT, Medicine,
R&D, etc.). Analyses of data on another job search platform have
shown that such a filtering possibility is of high relevance for job
searchers [19]. In this work we focus on binary filters which either
match or do not match a document. Depending on the concrete filter,
the fraction of job offers which is supposed to be matched versus the
fraction of job offers which should not be matched differs clearly.
Classification approaches cope best with a balanced distribution and
are challenged by such an unbalanced setting.

In order to provide these filters for the domain-specific search
in the domain of job offers, Kimeta relies on several different
approaches to identify the characteristics of the job offers, such as
keyword-based filtering and text classification. The creation of
such filters is expensive due to the need of domain experts which
analyze the filter scenario and create either the keyword-based
filters or initiate the creation of a text classification based filter. To
build robust text classification-based filters, a sufficient amount of
documents has to be annotated. Because annotations of a single
annotator can be biased, it has become a de-facto standard in
research to carry out the annotation not only by a single annotator
but by at least two annotators [24]. The result of combining these
single annotations is considered to be more representative for the
common understanding of a class label. Furthermore, this allows
for an early identification of ambiguities in the definition of classes
6 http://www.kimeta.de/.
and yields finally a ‘‘clean’’ gold standard dataset by incorporating
only instances with an agreement on their annotations. Kimeta’s
pre-studies have shown that non-trained annotators have
difficulty deciding on the correct filter decision. Therefore, one
big challenge in the application scenario is how to perform a
process which enables a profound and repeatable annotation by
mainly non-experts to keep the financial burden low. The design
considerations, settings and the results of an annotation study are
presented in the following section.

4. Annotation study

This section describes the annotation study, which was
performed in order to provide evaluation data for our approach,
to understand the complexity of the classification problem and to
develop a process to cope with that complexity during the
annotation phase.

4.1. Setup

In the beginning, three different binary filters were selected for
this study. This decision was made based on the company’s
previous experience with these three filters where it has been
discovered that a keyword-based implementation does not yield
satisfying precision and recall. Furthermore, the filters were
selected to describe highly varying types of concepts. The first filter
describes a job offer’s field of activity while the second filters for a
characteristic which is independent from the field of activity and
the third filter describes a mode of employment. The filters
selected are the following ones:

1. Service/Customer Support (S)
2. Research & Development (R&D)
3. Full time job (FT)

Throughout the annotation, a group of three people was
involved in the process, a domain expert and two non-experts.
After the selection of these filters, the domain expert wrote a short
informal definition for each of the filters. This definition was
afterwards discussed within the group which led to some
refinement of the definitions. In order to check for completeness,
each of the group members annotated a set of 50 documents for
each of the three filters based on the previously determined
definition. For each of the documents and each of the filters, the
annotators had to choose between three different labels: ‘‘Posi-
tive’’, ‘‘Negative’’, ‘‘I do not know’’. During the annotation process,
the annotators searched for cases where they incorporate implicit
knowledge and opinions not given in the filter definition. For
example, after a first definition for the FT filter was mutually
agreed on, some further characteristics had to be agreed on e.g.
whether jobs as a freelancer, jobs done in home office or working-
on-site should be considered to be FT. The annotators were asked to
write down such cases of implicit knowledge in order to have it
included in the final annotation guidelines. All documents with
inconsistent annotations were discussed leading to a further
improvement of the filters’ descriptions and recorded in the
annotation guidelines. In previous work [20], such an iterative
improvement of annotation guidelines has been shown to be
beneficial. The resulting guidelines consist of the following
elements: (i) a short and informal definition of the filter, (ii) some
indicators and examples for positive instances, (iii) some
indicators and examples for negative instances, (iv) borderline
examples together with their correct annotation and (v) a hand-
written decision tree for the respective filter. The total amount of
man-hours for the setup of one filter including the iterative
creation of the definition, the selection of sample documents,

http://www.kimeta.de/


Table 1
Percent agreement for two annotators.

Filter Perfect agreement (%) Agreement (%) Disagreement (%)

R&D 92.67 96.33 3.67

FT 94.33 97.00 3.00

S 84.00 88.00 12.00

S. Schmidt et al. / Computers in Industry 78 (2016) 70–79 73
discussions and documentation was 5:30 h for the expert and
3:40 h for the non-experts.

For the remaining annotation, the annotators were told to
adhere strictly to the created definitions. For the creation of the
evaluation corpus, 300 random documents were selected. All of
these documents were annotated by two independent annotators
(the non-experts) for each of the three filters. For the documents
where the two annotators did not agree on the annotation (one
selecting ‘‘Positive’’ and the other ‘‘Negative’’) or both annotators
were uncertain (selecting ‘‘I do not know’’), the domain expert was
consulted as third annotator.

4.2. Results

The annotation of the 300 documents by a single annotator took
around 2 h. The complete creation of the annotated documents,
including selection of the documents to annotate by the expert,
annotation, resolving disagreements and file conversions took on
average 2:40 man-hours for the expert and 4 man-hours for the non-
experts.

The results of the annotation study are presented in
Table 1. The rows represent the different filters while the
columns represent the different levels of agreement. A perfect
agreement was achieved when the two initial annotators
agreed on the annotation. An agreement was achieved when
one of the initial annotators decided for ‘‘Positive’’ or ‘‘Nega-
tive’’ while the other one decided for ‘‘I do not know’’ or the
same. Also the cases where both initial annotators decided for ‘‘I
do not know’’ but the third annotator decided for ‘‘Positive’’ or
‘‘Negative’’ were counted as agreement. The most prominent
reason for selection of ‘‘I do not know’’ were titles of the
document which did not totally match with the content and the
annotators were not sure on whether they should rely on the
title or on the content. A disagreement was assumed if either
one voted for ‘‘Positive’’ and the other one for ‘‘Negative’’ or if
both of them voted for ‘‘I do not know’’. All these cases were
resolved by the third annotator.

Cohen’s Kappa [17] is a robust statistical measure for the inter-
annotator-agreement between two annotators since it subtracts
out the by-chance agreement. The inter-annotator-agreements of
the two initial annotators are as follows: kR&D = 0.745,
kFT = 0.659 and kS = 0.520. One can conclude from the data that
the decision for filter R&D was the easiest one for humans while
the annotation for S led to some confusion. The ‘‘substantial
agreement’’7 on the annotation, in particular for the classes R&D

and FT, gives an impression on how the thorough and concerted
filter definition with the domain expert helped the non-experts to
cope with the given problems.

As already mentioned in Section 3, the filters in the application
scenario are highly unbalanced. Out of 300 documents, 36 were
finally labeled as positive for the filter R&D (12%). For the filter FT

277 documents were labeled as positive (92.3%) and for the filter S

50 instances were labeled as positive (16.7%).
Besides the experiences with the presented iterative process

of annotation through a mix of experts and non-experts in a
7 A Kappa value between 0.61 and 0.80 is considered as ‘‘substantial agreement’’

according to Landis and Koch [26].
real-world active-learning scenario for text-classification based
filters, we introduce a new tuning parameter for the approach
which will be explained in the following section.

5. CENFA approach

Within this work we make use of CENFA [3]. Full details of this
approach are given in the respective article, but its big picture is
presented in Fig. 1 which shows the combination of an ensemble
classifier which is only trained initially (‘‘the base classifier’’) and a
single SVM which is iteratively re-trained, applying active learning
(‘‘the specialized classifier’’). As shown [3], the re-training of the
specialized classifier is significantly faster than a re-training of the
complete ensemble while at the same time, the system provides
better results compared to a system trained with a similar number
of documents that were sampled randomly instead of selecting
them by the use of active learning.

The classifier returns a confidence value for each classified
document which is given by either the base or the specialized
classifier and derived by the voting scheme of the ensemble or the
single confidence value respectively. In this binary class setup, the
confidence value for the more probable class per document is used
which results in a range of [0.5;1.0] for the confidences. The setup
presented by Schnitzer et al. [3] uses one single confidence

threshold to determine whether the classifier marks a document for
human annotation (steps 3/8), or provides a confident annotation
decision (steps 7.1–7.3).

In contrast to the previous work, these two confidence
thresholds are decoupled into the annotation confidence threshold

(act) and the decision confidence threshold (dct), respectively. This
adaptation was chosen to allow for the deployment in a large-scale
setting of the industrial application in contrast to the lab
environment of the previous work. The two parameters can now
be set independently of each other. This change is motivated by the
fact that the number of documents in the application scenario is
very high and the act needs to be adapted to the actual throughput
in a scenario while the dct needs to be adapted based on the
characteristics of the data.

The documents to be annotated for the active learning step are
detected based on the act. Its range of [0.5;1.0] is determined by
the range of possible confidences of a binary classifier. If the
overall classification confidence of the base classifier for a
document is smaller than act, the document is stored for
annotation by human in the first iteration. Such a document is
assumed to be ambiguous and will be referred to like this
throughout this article since the base classifier did not identify
any agreement on its class label. These annotated documents
serve as training data for the specialized classifier. That means
that a low act yields fewer documents to be annotated and hence
less training data for the specialized classifier and vice versa.
Implicitly, the percentage of documents that need to be annotated
can be tuned by the act.

To determine whether the decision of the complete system is
carried out by the base classifier or the specialized classifier, the dct

is used. In scenarios with high throughput this decoupling allows
to ‘‘produce’’ only a reasonable amount of documents to be
annotated while also sending documents with a lower confidence
to the specialized classifier. This advantage can only be exploited if
dct � act.

6. Realization in the application scenario

The approach described above holds several challenges for a
realization with the industrial partner. The process on how such a
system is initially deployed and maintained throughout the



Fig. 1. Classifier setup as described in [3].

Table 2
Cohen’s Kappa for the inter-annotator-agreement of the two annotators during the

two iterations.

Iteration kR&D kS kFT

1st 0.55 0.48 0.40

2nd 0.38 0.24 0.40
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iterations as well as the integration of the workflow in the
company is described in this section.

At first, the steps described in Section 4 are followed to create a
well-defined filter’s description. To gather the training documents
for the respective filter, a representative selection of job offers is
taken from the current stream of documents and stored in a
separate database. These documents are then annotated indepen-
dently by the two non-experts involved in the filter definition and
the results are stored back into the database. The results are then
analyzed toward the agreement of the annotators, so that the
domain expert can draw the disagreed-on documents from the
database to impose a final decision as described before. Now that
the basic training set of documents is given, the model for the
particular filter is created and can be deployed in the ensemble
classifier of the classification engine.

The following process is carried out for each iteration.
Throughout the day, the stream of newly discovered and therefore
yet to be classified documents runs through the classification
engine and the high confidence results per document are added as
a characteristic of the job offer which enables the filtering in a later
search. During this phase, the documents for which the classifica-
tion results stays below the defined threshold (act) are added to the
separate database and marked for post-annotation in the respec-
tive filter. Now non-expert annotators can draw sets of documents
for annotation from a certain filter, for the purpose of evaluation
we ask the annotators to draw the 100 most ambiguous documents
in each iteration. Due to the well-defined filter’s description,
annotators who were not involved in the initial creation of the
filters require a very short training period and can therefore draw
documents from various filters. The annotation of the 100 most
ambiguous documents takes between 0:30 h and 1:30 h depend-
ing on the filter and the experience of the annotator. The system
has to ensure that the two independent annotations required for a
document are carried out by different individuals. Afterwards, the
domain expert retrieves the small set of documents which require
a final decision and judges them. The model is re-trained with the
now completely annotated set of ambiguous documents, and
deployed in the specialized classifier of the classification engine
which takes less than ten minutes. With this step, one iteration is
finished and the next one can start afresh. Hence, the iteration
takes 24 h for collecting a sufficient amount of ambiguous
documents and around 2 h for annotation, data transformation
and deployment of the updated classifier. Since the system runs
continuously, the time frame for the collection of ambiguous
documents can in general be extended arbitrarily and annotation
and re-training can happen whenever it is favored.

The inter-annotator-agreement of the first two iterations is
presented in Table 2. One can observe the drop in terms of
agreement for each of the classes compared to the values during
the initial annotation phase and within the two iterations. This
shows, that documents with a high ambiguity for the classifier
(which are the ones passed to the annotators for post-annotation)
are also hard to classify for the annotators.

7. Evaluation

This section describes the process of the system’s evaluation.
After introducing relevant measures and explaining the overall
setup, the results of the tuning experiments in an offline setting
are presented. Afterwards the results of integrating the approach
into the live system are shown. It should be noted that within
this article, no comparison to related approaches is presented.
These comparisons to other active learning approaches
were presented before [3] and it was shown that CENFA is
addressing the trade-off between classification quality and
reduced manual annotation effort as well as a performant
classification and re-training. The focus of the evaluation in this
article is rather the experience in the industrial setting with the
particular approach.
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Fig. 2. AUC and standard deviation for the base classifier with varying numbers of training instances for different classes.
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7.1. Evaluation measures and setup

As introduced before, this work copes with an unbalanced
application scenario, where the number of positive and negative
instances is highly different. In such a setting, the usage of the
weighted F-measure, as often done, represents a certain trade-off
between precision and recall. However, the given industrial scenario
describes an information retrieval problem, where the scenario-
dependent metric of choice is the precision of the classifier, since
false-positives are a major issue in search engine results and should
be avoided. In other scenarios, depending on the concrete setting,
the major aim might be to tune toward other metrics like a high
specificity or a high sensitivity of the classification model. In order to
get information about the tuning of both and allow for an unbiased
evaluation in an unbalanced setting, the Receiver Operating Curve
(ROC) is commonly used. The Area-under-the-Curve (AUC) is the
respective singular numerical value representing the overall
discriminative performance of the model [21,22].

Therefore, we use as performance measurements the scenario-
and balance-independent macro-averaged AUC of the ROC, as well
as the scenario-dependent and industrially motivated macro-
averaged precision.

Another relevant key aspect of the classifier is the number of
ambiguous instances identified during the iterations since this
corresponds directly to the number of instances that need to be
manually annotated. Ideally, the system would identify only small
amounts of ambiguous documents which lead to a huge
improvement in the iteration step.

Throughout all evaluations the corpus consisting of
300 instances per class, gathered during the annotation study, is
used as gold standard.8 The feature set used consists of the 10,000
most used unigrams using the term frequency – inverse
documents frequency (tf-idf) weighting scheme. The number of
bagged SVMs was fixed to 10. This value is a trade-off between the
accuracy of the single SVMs which need enough instances to be
8 The complete corpus and the corpus created during the post-annotation (see

Section 6) can be found online: http://www.kom.tu-darmstadt.de/fileadmin/

Externer_Bereich/Downloads/software/Paper_TextClassificationBasedFilters_

EvalData.zip.
trained properly and a sufficient number of SVMs in order to gain a
robust ensemble [23].

7.2. Tuning experiments

Before the system is deployed in the industrial setting, two
different tuning experiments are executed in order to find the best
act and evaluate the influence of balancing for the examined
application scenario. For these tuning experiments, a stratified 4-
fold cross validation was applied for each of the three classes
resulting in a split with 225 training instances and 75 test
instances. Furthermore, for each of the given training set sizes,
10 random samples were drawn out of the 225 available training
instances. The given results for each of the sizes are obtained from
the resulting 40 evaluation runs.

7.2.1. Effect of balancing

As mentioned in Section 2.3, previous experiments have shown
that a balanced training set yields a more robust classifier.
Oversampling as well as undersampling has been identified as the
most appropriate techniques for balancing. This section presents
the results for a comparison of unbalanced versus balanced
training data. In order to have datasets with a comparable common
size across the different classes we combine for the balanced
training set oversampling with undersampling so that the total
amount of available training instances is at 225. The test
documents were left unmodified.

Fig. 2 presents the average AUC together with its standard
deviation for the base classifier (without any iteration) for the
different filter classes comparing balanced unbalanced data. It can
be observed that the overall trend is an increase in terms of AUC
with increasing number of training instances. Comparing the
balanced setting to the unbalanced setting, the balanced setting
provides slightly better results for small amounts of training data
than the unbalanced setting. In general it has to be noted, that the
standard deviation is relatively high.

7.2.2. Impact of annotation confidence threshold

A key factor for the deployment of the approach in a real-world
setting is the amount of documents found to be ambiguous since

http://www.kom.tu-darmstadt.de/fileadmin/Externer_Bereich/Downloads/software/Paper_TextClassificationBasedFilters_EvalData.zip
http://www.kom.tu-darmstadt.de/fileadmin/Externer_Bereich/Downloads/software/Paper_TextClassificationBasedFilters_EvalData.zip
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Fig. 3. Fraction of documents to be annotated against the act parameter for the different classes. The numbers in the upper left corner denote the number of training instances

for the base classifier.
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Fig. 4. Fraction of ambiguous documents in iteration 1.
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these need to be annotated which requires manual effort, i.e.
employees’ time. The variable act was introduced in order to allow
for a tuning of the fraction of documents to be annotated manually.
Fig. 3 shows the impact of the act on the fraction of documents
identified as ambiguous with a varying number of documents used
for training the base classifier using the balanced dataset. The steady
increase in all curves proves that the overall goal of the introduction
of act was achieved. From the varying fraction between the different
classes one can infer a different complexity of the classification into
these classes. Interestingly, the class which was most complex for
the ensemble to classify (class S) is also the class with the lowest
inter-annotator agreement (see Section 4.2). Further, it can be seen
that a larger number of initially annotated documents leads to an
increase in the flattening of the curves. This shows the value of the
initial effort for the training of the base classifier. In particular in
settings with a high throughput, it pays off to train the base classifier
properly so that it is more confident about the classification and
fewer documents need to be post-annotated.

7.3. Experiments within the industrial setting

The evaluation in the application scenario requires to run the
classifier for a certain time, collect documents that are ambiguous
to the particular classifier, annotate these documents manually by
two to three annotators and re-train the specialized classifier with
the annotated documents. In order to examine the behavior over
several iterations, these steps need to be repeated. Since the set of
ambiguous documents depends on the set of initial training
documents and the manual annotation of ambiguous documents is
the most expensive process step (in terms of human resources), it
is impracticable to run the same experiment with different folds of
the training data. We therefore had to select one fold for each of the
three classes (consisting of 225 annotated, balanced training
documents), built the classification models out of these and relied
on the results for these three initial training sets only instead of
averaging over the different folds. The remaining 75 annotated
documents are used as test data. A randomly chosen part of the
documents of the daily throughput were classified by the models
and depending on the act selected for annotation. These post-
annotated documents were then used to train the specialized
classifier. Afterwards, the classifier consisting of base and
specialized classifier was evaluated. This iterative cycle of
classification, post-annotation, re-training and evaluation was
repeated two times.
The results of the execution in the application scenario allow
examining four different aspects of the classification task. To gain
further insight about the impact of dct and act, we gathered
different data through the iterations. We also analyze the number
of documents which were selected for the annotation by the
system and discuss their class distribution. The performance of the
classifier is analyzed as well by describing the behavior of precision
and AUC throughout the iterations.

7.3.1. Impact of annotation confidence threshold

For the first iteration almost 30,000 documents were classified.
The fraction of documents which were selected for annotation in
the first iteration can be seen in Fig. 4. Similar to the tuning
experiments the higher the act is chosen, the more documents are
selected for annotation. Because of the large throughput in this
setting even the smallest possible act (0.5) led to more documents
than planned to be annotated.

For the second iteration a second set of documents was used,
because some of the documents of the first set were now included
in the training set for the model. Here the model did not select
enough documents for annotation, and therefore the number of
documents for classification was increased to slightly more than
80,000 documents. The same number of documents was used in a
3rd iteration which was stopped after having identified the
number of ambiguous documents. The results for the iterations can
be obtained from Table 3. The fraction of documents that are
selected for annotation decreases from the first to the second
iteration. The act was set to 0.8 for demonstration purposes only,
using a smaller value would not demonstrate the decrease during
iterations that clearly.



Table 3
Fraction of ambiguous documents across the iterations (act = 0.8).

Iteration R&D (%) S (%) FT (%)

1st 5.68 11.25 3.57

2nd 0.25 0.38 0.09

3rd 0.01 0.02 0.01

S. Schmidt et al. / Computers in Industry 78 (2016) 70–79 77
7.3.2. Impact of decision confidence threshold

The impact of the dct is shown in Fig. 5, where the act was fixed
to a value of 0.5 in order to keep the number of documents that
need a post-annotation relatively low. That means that only such
instances were chosen for annotation that appeared hardest to
classify for the ensemble. For the different classes the performance
changes differently. The figure shows the results for the different dct

for the two iterations that were executed completely (<class> it 1

and <class> it 2). Furthermore, the results for the base classifier only
are presented (<class> base). Since in this case no instances are
routed to the specialized classifier for decision, the evaluation
metrics stay constant. Finally, the results of the extended classifier, as
introduced before [3], are shown for the two iterations (<class> ext it

1 and <class> ext it 2). The extended classifier an ensemble of SVM
similar to the base classifier being trained with all available training
instances after iteration 1 or iteration 2 respectively. Hence the
training set for the extended classifier consists of the training
instances of the base classifier and the training instances for the
specialized classifier from iteration 1 or iteration 2 respectively.

Examining the results of CENFA for the S class, the AUC decreases
first but finds a peak at a dct of 0.8. In the FT class, the AUC increases
from a dct of 0.5 to 0.55 and stays on that level until it decreases
sharply for dct over 0.8. For the R&D class, the dct between 0.5 and
0.65 leads to no improvement of the AUC and makes it decline for
higher dct, though not as sharply as seen for the FT class. This shows
that a reasonable dct has to be identified separately for each scenario
as a general best value cannot be found.

Analyzing the single classes in more detail and with regard to
the precision of the model, the evaluation results show that the
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different magnitudes of change.
tradeoff differs between the different scenarios. One can see that
the precision for the S class can be increased, depending on the
value of the dct and that precision and AUC reach their peaks both
at a dct of 0.8. After the second iteration we achieve here an
increase in precision of 5.3% and an increase in AUC of 1.4% while
for other dct values only the precision can be increased.

The figures for the FT class look different. Here the AUC is
constantly increased by 0.012 and there is no impact on the
precision until a dct greater than 0.8 is chosen. After that threshold,
the AUC drops dramatically while the precision is improved a little.
Looking at the results for R&D, the results for precision and AUC
run more parallel than for the other classes. Here the iterations
have no effect for a dct between 0.5 and 0.65 while AUC drops for
higher dct and precision increases. Comparing the AUC of the base
classifier (0.74) with the average AUC for 180 training instances in
the tuning experiments (0.83) (cf. Fig. 2), one can observe a
decreased value. This is assumed to result from the particular fold
selected for the experiments in the industrial setting. The standard
deviations in the tuning experiments (cf. Fig. 2) show the variety
for the different folds.

It was shown before [3] that in some cases the extended classifier

outperforms the CENFA classifier in terms of classification quality
while in some cases the CENFA classifier outperforms the extended

classifier. This trend can be observed in this industrial setting as
well. As presented before [3], CENFA provides a good trade-off
between a good classification quality and a significantly better
behavior in terms of computation time compared to a pure
ensemble learner such as the extended classifier.

7.3.3. Distribution of ambiguous documents

As mentioned in Section 4.2, the class distribution of the
examined documents is highly unbalanced. Table 4 gives an
overview on the distribution during the different phases of the
approach’s usage. The first row shows again the unbalanced results
from the annotation study. The following rows show the results of
the two post-annotation rounds during the iterations. Interesting-
ly, the distribution becomes more balanced in these phases. One
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Table 4
Fraction of documents annotated as positive for the respective class during the

different phases.

Phase R&D (%) S (%) FT (%)

Evaluation data 12.0 16.7 92.3

1st iteration 41.2 42.3 54.9

2nd iteration 28.4 45.5 48.3
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reason for this might be that the act represents an uncertainty
window which spreads from the center of uncertainty equally into
both classes. With respect to the applied classification algorithm of
SVM, the model selects instances which are close to the separating
SVMs’ hyperplanes for the classes on either side and not randomly
from the complete geometric space.

8. Conclusion

This work describes and evaluates a procedure for the creation of
filters for domain-specific search engines in an industrial setting
including an offline annotation study to train non-experts and
applying an active-learning framework to use in an online evaluation.
The annotation study provides the description of a process to easily
transfer the knowledge of a domain expert to non-experts for the
annotation of complex filter scenarios. The high inter-annotator
agreement allows the conclusion that the collaborative, iteratively
improved definition of the filters helped to create a common
understanding of the problems. However, the differences in the
agreement for the different problems show that for humans some filter
problems remain more complex than others even after a thorough
common definition. Another result of the annotation study and the
online evaluation is the created corpus, which is openly accessible
and provides insights on the character of the identified ambiguous
documents and enables repeated and comparative studies on the
same data. Furthermore, the previously presented concept of CENFA
is adapted for the online setting and evaluated in a live-scenario with
real data streams as a means for filtering of documents for a domain-
specific search engine. The results give interesting insights into the
suitability of the approach. One main contribution is the study on the
impact of the different parameters on the classification results. The
article is completed by practical considerations such as time
requirements for creation of filter definitions and human annota-
tions that can help developers from industry to better calculate for
the implementation of any text classification based filter.

An aspect that would be of interest for future work is the
system’s behavior during long term usage. It might be interesting
to see at which point of time the classification results stabilize and
a re-training of the base classifier rather than the specialized
classifier would be beneficial. Furthermore, a qualitative analysis
of the ambiguous documents might help to identify suitable
instances for the initial training data annotation.
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