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ABSTRACT 
 
The basic principle of an inverse modeling procedure as it is used for parameter identification, is the generation of 
a complex and heterogeneous deformation field that contains as much information as possible about the 
parameters to be identified. One way of obtaining such a non-homogeneous deformation is by making the 
geometry of the specimen less regular. Another possibility is to make the loading conditions more complex. In this 
paper both options are actually combined by using a biaxial tensile test on a cruciform specimen in order to 
identify the parameters of a Swift isotropic hardening law. The yield criterion is modeled by the isotropic Von 
Mises criterion. The optimization technique used is a constrained gradient based Newton-type routine, which 
means that in every iteration step, a sensitivity calculation has to be performed in order to indicate the direction in 
which the parameters are to be optimized. The functional to be minimized is a least-squares expression of the 
discrepancy between the measured and the simulated strain fields at a certain load. The numerical routines as 
well as the identification results, based on simulated strain fields, are discussed. 
 
INTRODUCTION 
 
The accuracy of a Finite Element Simulation for plastic deformation strongly depends on the chosen constitutive 
laws and the value of the material parameters within these laws. The identification of those mechanical 
parameters can be done based on homogeneous stress and strain fields such as those obtained in uni-axial 
tensile tests and simple shear tests performed in different plane material directions. Another way to identify plastic 
material parameters is by inverse modeling of an experiment exhibiting a heterogeneous stress and strain field. 
Material parameter identification methods, which integrate optimization techniques and numerical methods such 
as the finite element method (FEM), indeed offer an alternative tool. The most common approach is to determine 
the optimal estimates of the model parameters by minimizing a selected measure-of-fit between the responses of 
the system and the model [1-3]. In the present study a method is proposed for the identification of the yield stress 
and the two parameters of a Swift isotropic hardening law, based on surface measurements of a cruciform 
specimen subjected to biaxial tensile loading. Experimental forces and strains are in this case compared to the 
simulated values and it is tried to reduce the discrepancy in a least-squares sense by optimizing the model 
parameters. A finite element model of the perforated specimen serves as numerical counterpart for the 
experimental set-up. The difference between the experimental and numerical strains (εx, εy and εxy) is minimized 
in a least squares sense by updating the values of the three parameters. The sensitivities used to obtain the 
parameter updates are determined by finite differences, using small parameter perturbations. The optimization 
routine used, is based on a constrained Newton-type algorithm.  



Paragraph two gives a description of the experimental equipment that will be used for the actual tensile testing of 
the cruciform specimens. Paragraph three briefly documents on the Digital Image Correlation technique, which 
will be used as the optical full-field measurement technique for the determination of the experimental strain field. 
In paragraph four, some information is given about the choice of the numerical model. Paragraph five concerns 
the numerical aspects of the optimization routine and the sensitivity analysis. And finally, paragraph six shows 
some results obtained based on simulated strain fields. 
 
BIAXIAL TESTING 
 
Different experimental techniques and specimens have been used to produce biaxial stress states. These 
techniques may be mainly classified into two categories [4]: (i) tests using a single loading system and (ii) tests 
using two or more independent loading systems. In the first category the biaxial stress ratio depends on the 
specimen geometry —their main disadvantage—, whereas in the second category it is specified by the applied 
load magnitude. Examples of the first category are bending tests on cantilever beams, anticlastic bending of 
rhomboidal shaped plates and bulge tests. Examples of the second category are thin-walled tubes subjected to a 
combination of tension/compression with torsion or internal/external pressure [5-6], and cruciform specimens 
under biaxial loading [7]. The most realistic technique to create biaxial stress states consists of applying in-plane 
loads along two perpendicular arms of cruciform specimens. The use of hydraulic actuators represents a very 
versatile technique for the application of the loads. The main difference between the existing techniques is the 
use of one or two actuators per loading direction. One actuator per loading direction [8] will cause movements of 
the centre of the specimen causing a side bending of the specimen. This results in undesirable non-symmetric 
strains. Systems with four actuators [9-11] with a close-loop servo control using the measured loads as feedback 
system, allow the centre of the specimen standing still.  
 

 
 

Figure 1: Plane biaxial test device for cruciform specimens. 
 
The plane biaxial test device using cruciform specimens developed at the Free University of Brussels has four 
independent servo-hydraulic actuators with an appropriate control unit to keep the centre of the specimen 
explicitly still. The device (Figure 1) has a capacity of 100 kN in both perpendicular directions, but only in tension. 
As no cylinders with hydrostatic bearing were used, failure or slip in one arm of the specimen will result in sudden 
radial forces which could seriously damage the servo-hydraulic cylinders and the load cells. To prevent this, 
hinges were used to connect the specimen to the load cells and the servo-hydraulic cylinders to the test frame. 
Using four hinges for each loading direction results in an unstable situation in compression and consequently only 
tension loads can be performed.  
In an ideal situation no displacement of the centre point of the specimen is observed. Even when using four 
actuators, a small displacement might occur in a real situation and an imbalance arises in the forces. However, as 
four load cells are used, it is possible to quantify this small load difference and to use this as a control signal.  
 
DIGITAL IMAGE CORRELATION 
 
The full field method that will be used for the displacement and strain determination on the cruciform specimens, 
is the digital image correlation method. This technique allows studying qualitatively as well as quantitatively the 



mechanical behaviour of materials under certain loading conditions. It has been used in various technological 
domains and many of its applications have been reported [12-14]. Each picture taken with a CCD camera 
corresponds to a different load step. The cameras of the current set-up use a small rectangular piece of silicon, 
which has been segmented into a number of individual light-sensitive or pixels. Each pixel stores a certain grey 
value ranging from 0 to 255 in accordance with the intensity of the light reflected by the surface of the tested 
specimen. Two images of the specimen at different states of deformation are compared by using a set of pixels in 
the undeformed image and searching for it in the deformed image, in order to maximize a given similarity function. 
In most cases this function is based on a least squares formulation. Such a set of pixels is called a subset or 
correlation window. The displacement result, expressed in the centre point of the subset, is an average of the 
displacements of the pixels inside the subset. 
Figure 2 depicts the sequence of taking a picture of an object before and after loading, storing the images onto a 
PC trough a frame grabber, performing the correlation of both images – i.e. locating the different undeformed 
subsets in the deformed image – and finally calculating the corresponding displacement of the centers of the 
subsets, which finally yields the desired displacement field. The strain field is then calculated by numerical 
differentiation of the smoothened displacement field. 
 

 
Figure 2: Working principle of the DIC-system 

 
This technique has already been used successfully to identify the elastic parameters of composite materials [15] 
and it will be used in the future to obtain the displacement and strain fields corresponding to plastic deformation of 
biaxially loaded metal specimens. As the technique is well suited to measure large deformations it is indeed an 
adequate tool for the measurement of large plastic deformations occurring in metals. 
 
NUMERICAL MODEL 
 
The first assumption made, concerning the material used, is that it exhibits rate independent elastoplastic 
behaviour. The elastic part is assumed to be linear and isotropic. The elastoplastic law used in the FE-formulation 
is based on the decomposition of the total strain into a reversible elastic part  and an irreversible plastic part 

. In rate form this condition becomes: 
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The stress rate is always related to the elastic strain rate by means of the elastic moduli E: 
 

elε&& Ε=σ  (2) 
 
For the determination of the plastic strain rate, an associative flow rule is used: 
 



σ∂
Φ∂

λ=ε && pl  (3) 

in which is the plastic multiplier and Φ is the yield function. λ&

The yield function Φ which governs the onset and continuance of plastic deformation is chosen to be represented 
by the Von Mises yield criterion: 
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in whichσ  represents the initial yield stress. y0

A hardening model is needed to represent the evolution of the yield surface during the process of plastic 
deformation. The type of hardening considered in the present study is a Swift type of isotropic hardening which 
describes the evolution of the yield surface size: 
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in which σ  represents the actual flow stress and  the equivalent plastic strain. σ , K and n are the three 
unknown parameters to be identified. 

y
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The specimen geometry that is chosen to perform the experimental tests in the near future is shown in figure 3 
(left). It has a thickness of 0.8mm. The FE-simulation on the other hand is performed on a quarter of the piece, 
assuming symmetrical loading conditions. Figure 3 (right) shows an image of the FE-mesh. 
 

                        
Figure 3: Geometry (left) and FE-mesh (right) of the cruciform specimen 

The simulations are performed assuming plane stress conditions. This is an acceptable hypothesis given the 
thickness of the specimen. The FE-mesh is made up out of isoparametric quadrilateral Lagrange elements of the 
second order. 
The reason for the hole in the specimen is the following: the aim is to localise the plastic deformation in the central 
part of the specimen where a biaxial stress and strain state exists. For the identification of the parameters of the 
hardening law, this may not be really necessary. However, for the identification of more complex anisotropic yield 
criteria – which is the ultimate goal – it is mandatory to obtain non-uniaxial plastic deformation. 
 
 
 



INVERSE MODELLING AND SENSITIVITY CALCULATION  
 
A direct problem is the classical problem where a given experiment is simulated in order to obtain the final 
geometry of the specimen, the stresses and the strains. Inverse problems on the other hand are concerned with 
the determination of the unknown state of a mechanical system considered as a black box, using information 
gathered from the response to stimuli on the system [16]. The inverse problem is a problem where certain input 
data of the direct problem is deduced from the comparison between the experimental results and the numerical 
FE-simulation of that same problem. Not only the boundary information is used, but relevant information coming 
from local or full-field surface measurements is also integrated in theevaluation of the behavior of a given 
material. 
The values of the material parameters cannot be derived immediately from the experiment. A numerical analysis 
is necessary to simulate the actual experiment. However, this requires that the material parameters are known. 
The identification problem can then be formulated as an optimization problem where the function to be minimized 
is some error function that expresses the difference between numerical simulation results and experimental data. 
In the present case the strains are used as output data. Figure 4 represents the flow-chart of the present inverse 
modeling problem.  
 

 
Figure 4- Inverse Modeling Flow-chart 

 
Expression (6) shows the form of the least-squares cost function )(pC  that is minimized, with p  the vector of 
material parameters to be identified. The residuals in the function are formed by the differences between the 
experimental and the numerical strains at every considered load step. The index “t” in expression (6) stands for 
the total number of elements and the index “s” stands for the total number of considered load steps. 
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The necessary condition for a cost function to attain its minimum is expressed by (7). The partial derivative of the 
function with respect to the different material parameters has to be zero: 
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By developing a Taylor expansion of the numerical (FEM) strains around a given parameter set, an expression is 
obtained in which the difference between the current parameters and their new estimates is given (8), m is the 
total number of parameters: 
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When substituting this last expression into expression (7) and after rearranging some terms, the expression 
yielding the parameter updates is obtained (9): 
 

( ) ( )( )knumexpt1t pεεSSSp∆ −=
−

 (9) 
  
in which the following elements are: 
 

p∆ : column vector of the parameter updates of , K and n y0σ
expε : column vector of the experimental strains 

)( knum pε : column vector of the finite element strains as a function  
 of the different parameters at iteration step k 

kp : the three parameters at iteration step k 

S : Sensitivity matrix 
 
The sensitivity matrix groups the sensitivity coefficients of the strain components in every element of the FE mesh 
and for every considered load step with respect to the different material parameters.   
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in which
n

s
xyt

∂

ε∂
is the partial derivative of the shear strain component of element number “t” at load step “s” with 

respect to parameter “n”. 
 
IDENTIFICATION USING SIMULATED STRAIN FIELDS 
 
In order to test the proposed routine, a virtual experiment is set up. The reference values of the three parameters 
used for the simulation of the direct problem and the starting values for the optimization routine are shown in 
table1. 

 



Table 1: Reference values and starting values for the numerical validation 
 y0σ  (MPa) K n 

Reference values 100 1000 0.8 
Starting values 90 800 0.95 
 
 

   
Figure 5: Results of the identification of   (left), K (middle) and n (right) y0σ

 
The results of the identification procedure are shown in figure 5. It has been found that the value of the starting 
parameters does not affect the final and optimal parameter values. 
 
CONCLUSION 
 
A method has been proposed to determine the parameters ( y0σ , K and n) of a Swift type of isotropic hardening 
law. The method is based on the inverse modeling of a perforated cruciform specimen under biaxial tension. A 
least-squares formulation of the difference between the experimental and the numerical strains is used along with 
a constrained Newton-type algorithm in the optimization process. A virtual experiment, in which the material 
parameters are known, is used to check the routine and to analyze the influence of the starting values on the 
obtained parameter estimates. The ultimate goal of using the cruciform geometry under biaxial tensile conditions 
is to be able to identify not only the parameters of a hardening law but those corresponding to a more complex 
yield criterion as well (e.g. Hill48).  
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