
Combining acceleration techniques for pricing in a VRP
with time windows
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Introduction

The problem

A variant of the capacitated VRP with time windows

Additional features:

Route cost depends on total route duration
Variable starting time for each route
Max allotted time for each route

Minimization of the overall waiting time is part of the objective

We choose to apply a branch-and-price methodology.

The pricing problem is an elementary shortest path problem with
resource constraints (ESPPRC)1

1Proven to be NP-Hard (Dror 1994)
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Introduction

Dynamic programming for the ESPPRC

For every subpath from the source s to a node i , we associate a label
Li = (Ci ,Ri ,Si ), where:

Ci is the cumulated cost
Ri is the array of resources consumed along the subpath

In the case of the classic VRPTW, Ri = (Qi ,Ti ), where Qi is the total
demand satisfied and Ti is the total duration of the subpath
We impose Qi ≤ Qmax and ai ≤ Ti ≤ bi

Si is a 0-1 n-sized array that keeps track of the visited nodes

To extend a subpath s − · · · − i to a node j , simply use Li to compute
the values of a new label Lj

If a resource in Rj is out of bounds or Sj
i = 1, the extension is

infeasible and Lj is rejected

After performing all possible extensions, the best label Lt at the sink
t is the solution
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Introduction

Dynamic programming: improvements

Label dominance: given Li = (Ci ,Ri ,Si ) and L′i = (C ′
i ,R

′
i ,S

′
i ), if

Ci ≤ C ′
i , Ri ≤ R′

i , Si ≤ S′
i and at least one inequality is strict, then Li

dominates L′i
Bounded bidirectional DP: perform forward extensions from the
source and backwards extensions from the sink. Use a resource in Ri

to bound the search (e.g. no label with Qi > Qmax/2 is extended)

If an extension of a Label Li to node j is infeasible, mark the
unreachable node as visited, i.e. put S j

i = 1, to increase the number
of dominated labels.
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Introduction

Adapting dynamic programming

For the VRPTW with variable start times, we need to deal with an
infinite number of Pareto-optimal states

We solve this by adapting the label structure and extension rules

We define Ri = (Qi ,Ti ,−Li ,Ei ), where

Ti is the cumulative travel time from s to i : Tj = Ti + tij
Li is the latest feasible start time from s: Lj = min{Li , bj − Tj}
Ei is the earliest feasible arrival time at i : Ej = max{aj , ai + tij}

Furthermore Ci = max{Ti ,Ei − Li} −
∑i

k=s ηk , where ηk is the dual
price associated with k

It is then still possible2 to check Ri ≤ R′
i to see if Li dominates L′i

2Arda, Crama, and Kucukaydin 2014.
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Relaxation techniques

Relaxation techniques

We focus on techniques that relax the elementarity constraints, i.e.
manipulate the array Si :

Decremental state space relaxation (DSSR)3

ng-route relaxation4

Possible hybrid strategies

3Righini and Salani 2008.
4Baldacci et al. 2010.
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Relaxation techniques

Decremental State Space Relaxation

In State Space Relaxation5, we project the state-space S used in
DP to a lower dimensional space T , so that the new states retain the
cost.

When applying this to the elementarity constraints, the number of
states to explore is reduced, at the cost of feasibility.

Decremental State Space Relaxation (DSSR) is a generalization of
both this method and DP with elementarity constraints.

We maintain a set Θ of critical nodes on which the elementarity
constraints are enforced at each iteration of DP.

If at the end of DP the optimal path is not feasible, we update Θ
with the nodes that are visited multiple times.

5Christofides, Mingozzi, and Toth 1981.
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Relaxation techniques

DSSR: Initialization strategies6

We can initialize the set Θ with nodes that are likely to be critical

“Cycling attractiveness” fij of a node i with respect to a vertex j :

fij = ηi/(t̄ij + t̄ji ).

Derived measures:
1 Highest cycling attractiveness (HCA): maxj∈V\{i} fij ;
2 Total cycling attractiveness (TCA):

∑
j∈V\{i} fij ;

3 Weighted HCA (WHCA): maxj∈V\{i} fij(bi − ai );
4 Weighted TCA (WTCA):

∑
j∈V\{i} fij(bi − ai ).

We can rank each node according to any of these measures and
initialize Θ with the best m nodes

In a “mixed” strategy, Θ = HCAm ∩ TCAm ∩WHCAm ∩WTCAm

6Righini and Salani 2009.
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Relaxation techniques

DSSR: Insertion strategies

Strategies when enforcing elementarity on the optimal path7

HMO (highest multiplicity on the optimal path): insert one node at a
time, selecting the node that is visited the most. In case of ex aequo,
choose at random;
HMO-All: insert all nodes visited the maximum number of times;
MO-All (multiplicity greater than one on the optimal path): insert all
nodes visited more than once in the optimal path.

7Boland, Dethridge, and Dumitrescu 2006.
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Relaxation techniques

DSSR: Insertion strategies

How to generalize and parametrize these strategies?

At every iteration of column generation we might want to insert up to
Ncol columns

If the optimal path is not elementary, check violations on:
1 Only the optimal path
2 The best NCOL paths
3 The best k paths, 1 ≤ k ≤ Ncol

For each path P to check, either:
1 Select the most visited node;
2 Select all MP nodes visited multiple times;
3 Select the dαMPe most visited nodes, 0 < α < 1.
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Relaxation techniques

ng-route relaxation

For each node i we define a neighbourhood Ni

An ng-route can contain any cycle of the form i − · · · − j − · · · − i
only if it contains a vertex j such that i /∈ Nj

For a subpath s − · · · − i , Si represents the “memory” of the visited
nodes

When extending from i to j we “forget” the nodes that are not in Nj

Example

P = 0→ 1→ 2→ 3 99K 4 S3 = {0, 1, 2, 3}
⇓ N4 = {2, 3, 4, 5}
P = 0→ 1→ 2→ 3→ 4 S4 = (S3 ∩ N4) ∪ {4} = {2, 3, 4}
P = 0→ 1→ 2→ 3→ 4→ 1 would be therefore valid
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Relaxation techniques

ng-route relaxation parameters

Measure according to which we build Ni :
1 Travel time:

D1(i , j) := tij , ∀j 6= i ;

2 Minimum travel duration:

D2(i , j) := max{D ′
ij ,D

′
ji}, where

D ′
ij :=

{
max{tij , aj − bi} if ai + t̄ij ≤ bj

+∞ otherwise;

3 Mixed measure:

D3(i , j) := βD1(i , j) + (1− β)D2(i , j), with 0 < β < 1

The size mng of the neighbourhoods, 1 ≤ mng ≤ n
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Relaxation techniques

Hybrid techniques

Can we combine DSSR and ng-route relaxation?

For a straightforward combination, ignore nodes with multiple visits if
they are in a valid ng-cycle

We apply DSSR locally, with respect to each neighbourhood:8

Maintain “applied” neighbourhoods N̂i ⊆ Ni ∀i , initialized as empty
Use them during label extension instead of Ni

For every invalid cycle C = i − · · · − i , add i to all N̂j such that j ∈ C

Example

P = 0→ 1→ 2→ 3→ 4→ 2 N3 = {2, 3, 4}, N4 = {2, 3, 4, 5}

N̂3 = N̂4 = ∅ ⇒ N̂3 = N̂4 = {2}

8Martinelli, Pecin, and Poggi 2014.
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Observations and future work

Further possible hybridizations

In the first hybrid strategy, nodes can be seen as critical in a global
sense

In the second, nodes are critical with respect to other nodes

ng-routes are not guaranteed to be elementary

Possible techniques:

Implement a local DSSR, using critical sets Θi ∀i
Corrected ng-route relaxation: if the desired routes are not elementary,
mark the nodes visited multiple times as critical

We end up with 3 possible ng-route techniques and 6 exact ones

Interesting to compare the best exact technique and the best ng-route
one when applied to branch-and-price, in terms of speed and lower
bound quality
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Observations and future work

Tuning and a matheuristic

Decisions are parametrized (numerically and not)

Use automatic tuning with a tool such as the irace9 package to
obtain the best configuration on a set of test instances

Branch-and-price can be used in a matheuristic10

In particular we can use a Restricted master heuristic

The 0-1 restricted master problem, when solved exactly can provide a
heuristic solution for the original VRP

Additionally, any metaheuristic can be applied to obtain:

new solutions
new columns to use in the branch-and-price procedure

9López-Ibáñez et al. 2011.
10“Heuristics algorithms made by the interoperation of metaheuristics and

mathematical programming techniques” - Boschetti et al. 2009
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Observations and future work

Thanks for your attention.
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