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Abstract Experimental data is often the result of long

and costly experimentations. Many times, measurements

are used directly without (or with few) analysis and treat-

ment. This paper, therefore, presents a detailed methodol-

ogy to use steady-state measurements efficiently in the

analysis of a thermodynamic cycle. The reconciliation

method allows to correct each measurement as little as

possible, taking its accuracy into account, to satisfy all

constraints and to evaluate the most probable physical

state. The reconciliation method should be used for mul-

tiple reasons. First, this method allows to close energy and

mass balances exactly, which is needed for predictive

models. Also, it allows determining some unknowns that

are not measured or that cannot be measured precisely.

Furthermore, it fully exploits the collected measurements

with redundancy and it allows to know which sensor should

be checked or replaced if necessary. An application of this

method is presented in the case of a reversible HP/ORC

unit. This unit is a modified heat pump which is able to

work as an organic Rankine cycle by reversing its cycle.

Combined with a passive house comprising a solar roof and

a ground heat exchanger, it allows to get a positive energy

building. In this study case, the oil mass fraction is not

measured despite its strong influence on the results. The

reconciliation method allows to evaluate it. The efficiency

of this method is proven by comparing the error on the

outputs of steady-state models of compressor and

exchangers. An example is given with the prediction of the

pinch-point of an evaporator. In this case, the normalized

root mean square deviation (NRMSD) is decreased from

14.3 to 4.1 % when using the reconciliation method. This

paper proves that the efficiency of the method and also that

the method should be considered more often when dealing

with experimentation.

Keywords Reconciliation method � Experimental

analysis � Reversible heat pump/organic Rankine cycle

Abbreviations

Nomenclature

A Expander exchange area, m2

c Reconciled variable

C Specific heat capacity, J/(K.kg)

h Specific enthalpy, J/(kg)

m Number of constraints

_m Mass flow rate, kg/s

n Number of measured variables

NRMSD Normalized root mean square deviation

P Pressure, bar
_Q Heat flow rate, W

t Temperature, �C
u Measured variable

U Expander heat exchange coefficient, W/(m2K)

w Weight function
_W Power, W

x Fraction

z Unmeasured variable

& Olivier Dumont

olivier.dumont@ulg.ac.be

Sylvain Quoilin

squoilin@ulg.ac.be

Vincent Lemort

vincent.lemort@ulg.ac.be

1 Aerospatial and Mechanical Engineering Department/Energy

Systems, University of Liege, Liege, Belgium

123

Int J Energy Environ Eng

DOI 10.1007/s40095-016-0206-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s40095-016-0206-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40095-016-0206-4&amp;domain=pdf


Greek symbols

a Lagrange function

c Redundancy level

D Difference

k Lagrange multiplier

u Minimization function

r Standard deviation

q Density, kg/m3

Subscripts and superscripts

amb Ambient

cd Condenser

el Electrical

ex Exhaust

exp Expander

ev Evaporator

i Index of the measured/reconciled variable

j Index of the constraint

k Index of independent variables

m Mean

min Minimum

max Maximum

meas Measured

min Minimum

oil Oil

pred Predicted

p Constant pressure

r Refrigerant

s Index of measurement

su Supply

w Water

Introduction

Numerical values are always affected by random errors

plus gross errors (error that cannot be explained with

statistical distribution). Gross errors are outliers (process

leaks and malfunction) or bias (systematical offset).

This paper presents the application of a mathematical

tool, called the reconciliation method (RM). The latter

is recommended to obtain reliable information about the

studied process but gross errors have to be identified

and eliminated before the procedure. This technique is

used since 1961 in chemical engineering [1]. In 1980,

the reconciliation method was applied to adjust material

balancing of mineral processed data [2]. Later, Weiss

and Romagnoli used this tool to better determine the

regeneration cycle time of a reactor in an industrial case

study [3]. Heyen and Kalitvebtzeff developed a RM

optimization to reduce energy use in production plants

[4]. Placido and Loureiro study the placement of new

instruments to improve the estimation accuracy in

ammonia plant units [5]. Schladt and Hu developed a

rigorous model to estimate concentrations in a distilla-

tion column trough the reconciliation method [6]. In

2008, Lid and Skogestad [7] used the RM method to

assess the optimal operation of a catalytic naphtha

reformer. Despite the proven performance of the

method, few authors use it in refrigeration systems. In

2007, Bruno et al. applied the method to a hybrid

solar/gas single/double effect absorption chiller [8]. In

2013, Martinez-Maradiaga et al. used the method for

absorption refrigeration system to obtain performance

calculations that are in agreement with the laws of

conservation [9]. In 2015, an optimization of redundant

measurements location for thermal capacity of power

unit steam boiler using data reconciliation method is

performed [10]. Finally, a data reconciliation based

framework for integrated sensor and equipment perfor-

mance monitoring in power plants is provided by [11].

Some authors predict unmeasured values (flowrate, oil

fraction…) simply by minimizing the sum of the residue of

each component [12]. A more complete and accurate

method taking into account measurements’ redundancy and

accuracy of sensors exists: the reconciliation method cor-

rects each measurement as little as possible, taking its

precision into account (assuming a Gaussian distribution

around the measured value), to satisfy all constraints and to

evaluate the most probable physical state [9]. Redundancy

is obtained by having two sensors measuring the same

variable and/or variable that can be obtained through bal-

ance equations (heat balance, residue, mass balance, ther-

modynamic state of equilibrium…). This redundancy

allows correcting measurements while non-redundant

measurements will remain untouched. The RM method

does not correct data to better fit a model but simply

imposes constrains (physical laws) to improve the dataset

intrinsic quality.

Reconciliation method should be used for multiple

reasons. First, without this method, it is impossible to close

energy and mass balances exactly, which is needed for

predictive models. Also, it allows determining some

unknowns that are not or that cannot be measured precisely

(oil fraction, refrigerant mass flow rate…). Moreover, it

fully exploits the collected measurements with redundancy.

Finally, it allows to know which sensor should be checked

or replaced if necessary.

Mathematically, the minimization of (1) allows to

evaluate corrected (or reconciled) values (ci) (and eventu-

ally additional unknowns) based on the measured values

(ui) and on their standard deviation (ri) with regard to a

certain number of constraints (w) by minimizing (2) with

Lagrange formalism (k is a Lagrange multiplier).
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uðuiÞ ¼
Xn

i¼1

ðui � ciÞ2

r2i
ð1Þ

a ¼
Xn

i¼1

ðui � ciÞ2

r2i
þ
Xm

j¼1

kjwðci; zkÞ ð2Þ

Validation of reconciliation

Data reconciliation is based on twomain assumptions. On the

one hand, most influent physical phenomena should be cor-

rectly described. The first assumption is reached using the

validation of measurements. The validation of measurements

is achieved by checking heat balances on exchangers, on

compressors and on expanders, cross-checking of pressures…
On the other hand, it assumes a Gaussian distribution of

the errors. This needs to eliminate gross error (outliers). In

this paper, a Kriging method (or Gaussian process regres-

sion) is used in this aim [13]. Other advanced methods exist

to treat gross error in data reconciliation: Fair, Welsch,

Hampel, Cauchy, logistic, Lorentzian, and Quasi-Weighted

Least Square, for example [14–16].

Finally, to check the confidence of the corrected values,

heat balances and residues should be verified a posteriori

and the weighted deviation (wi) should be evaluated (3) to

give the confidence level of the correction.

wi ¼
jui � cij

ri
ð3Þ

The weight is a random variable following a Chi-squared

distribution with c, the degree of freedom. The degree of

freedom is equal to the number of reconciled variables

minus the number of constraints (=the redundancy level).

For example, the confidence level of the RM with a

redundancy level of 5, a weight of 1.145 and 21 measured

variables is 95 %.

Global methodology

A step by step global methodology can therefore be

proposed (Fig. 1). First, the measurements have to be

validated: energy and mass balances have to be verified

taking into account the propagation of errors due to

measurement devices. This step insures the quality of the

data, but is also necessary to apply correct physical

constraints (2) in the reconciliation method. Following

this, the elimination of irrelevant points (outliers) is

mandatory to eliminate gross error (which is mandatory

for RM). Finally, the reconciliation method can be

applied and validated through the weights and confidence

level (3).

Description of the study case

The reconciliation method is applied in the case of a

reversible heat pump/organic Rankine cycle (HP/ORC)

unit. This unit is a modified heat pump that is able to work

as an ORC by reversing its cycle. The test bench is fully

described with all its components and sensors by Dumont

et al. [17, 18].

The system represented in Fig. 2 presents 21 different

sensors (1 mass flow rate sensor (refrigerant), 2 volumetric

flow sensors (water), 4 pressure sensors, 2 differential

pressure sensors, 10 thermocouples, 1 density sensor and 1

wattmeter). Measurements are performed in steady–state

conditions and averaged on a 5-min basis [18]. The oil

mass fraction is not measured despite of its strong influence

on the results. The reconciliation method allows to evaluate

it. The method is presented in the case of the organic

Rankine cycle operation.

Fig. 1 Global methodology to threat experimental data

Int J Energy Environ Eng

123



Application of the method to the case study

Model: assumptions and constraints

First, a zero pressure drop is assumed in the pipes. The

redundancy on pressure measurements leads to the first

constraint (4).

DP1 ¼ P4 � P1 ð4Þ

Also, the first principle of thermodynamic is applied to

the expander (5) with the following hypothesis: perfect

mixture between oil and refrigerant, kinetic and potential

energy neglected and ambient losses are evaluated with (6).

Two unmeasured variables are added [ambient temperature

(Tamb) and heat transfer coefficient between the expander

and the ambient (U)] because they play an important role in

the heat balance of the expander.

_Wexp;el ¼ _mr hexp;su � hexp;ex
� �

þ moil:cp;oil: Texp;su � Texp;ex
� �

� _Qexp;amb ð5Þ
_Qexp;amb ¼ A:U: Texp;m � Tamb

� �
ð6Þ

The density measurement allows to evaluate the mass

conservation at the inlet of the pump (7).

1

qmeas

¼ xoil

qoil
þ ð1� xoilÞ

qr
ð7Þ

Finally, heat balances are performed on the evaporator

(8) and on the condenser (9) neglecting ambient heat losses

and supposing a perfect mixture of oil and refrigerant.

mev;w:cp;w: Tev;w;su � Tcd;w;ex
� �

¼ _mr hev;ex � hev;su
� �

þ _moil:cp;oil: Tev;ex � Tev;su
� �

ð8Þ

mcd;w:cp;w:ðTcd;w;ex � Tcd;w;suÞ ¼ mr hcd;su � hcd;ex
� �

þ moil:cp;oil:ðTcd;su � Tcd;exÞ
ð9Þ

Assuming these assumptions, 5 constraint equations allows

exploiting the redundancy of the measurements.

Optimization function, derivatives and redundancy

level

In this case study, the number of unknowns is equal to 29:

there are 21 measurements to reconcile, plus two additional

variables (expander heat transfer coefficient and ambient

temperature), plus the oil fraction and 5 Lagrange

Fig. 2 Hydraulic scheme of the test-rig (Dumont [17])
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multipliers (2). 29 equations are needed: the 5 physical

constraints (4, 5, 7–9), 23 equations resulting from the

partial derivatives regarding each reconciled variable to

minimize (2) and 1 additional coming from the minimi-

sation of (1). The solution is computed with EES solver

coupled with the Coolprop library [19] (which allows to

evaluate derivatives of thermodynamic properties). The

redundancy level is simply equal to the number of con-

straints in this case, 6.

Methodology

The applied methodology is conducted using the following

6 steps:

1. The corrected values are imposed to be equal to

measurements (guess value).

2. The standard deviation for each sensor is computed

following sensor datasheet.

3. The weights are evaluated through Eq. 3.

4. The confidence in the reconciliation method is eval-

uated (see ‘‘Validation of reconciliation’’).

5. Physical constraints are imposed and partial deriva-

tives of Eq. 2 are computed and imposed equal to zero.

At this step, guess values for corrected values have to

be removed.

6. Finally, the minimization of Eq. 1 allows to evaluate

unmeasured variable(s).

Results

Reconciliation method

41 steady-state measurement points are reconciled. The

results obtained from the reconciliation method are detailed

for one point in Table 1. For each measurement, the orig-

inal value, the reconciled value, the weight (3) and the

confidence level are given. The ambient temperature (T11)

and the heat exchange coefficient of the expander (U) are

not measured but estimated with a large standard deviation

to evaluate (6). The method applied to a typical point

(Table 1) leads to an oil fraction of 6.2 % which is a

realistic value compared to the amount of oil and refrig-

erant injected into the system. Logically, measurements

with high accuracy (i.e. low standard deviation) are very

slightly (or not at all) corrected. The weighted correction is

not really a reliable assessment of confidence since cor-

rection will be zero for non-redundant variables. They will

not be corrected and results are, therefore, optimistic in

Table 1. A reliable criterion is to use the value of the

Table 1 Results from

reconciliation method for one

measurement point. Each

measurement is detailed in

Fig. 2

Measurement Std. deviation Original value Reconciled value Weight Confidence

T1 (�C) 0.5 16.02 16.02 0 1

T2 (�C) 0.5 17.14 17.11 0.0549 1

T3 (�C) 0.5 99.3 99.31 0.0265 1

T4 (�C) 0.5 98.5 98.38 0.2181 0.9998

T5 (�C) 0.5 63.14 63.11 0.0634 1

T6 (�C) 0.5 34.53 34.65 0.2406 0.9997

T7 (�C) 0.5 11.51 11.24 0.5438 0.9973

T8 (�C) 0.5 31.54 31.82 0.5438 0.9973

T9 (�C) 0.5 105 104.9 0.1635 0.9999

T10 (�C) 0.5 83.68 83.76 0.1635 0.9999

T11 (�C) 10 20 19.64 0.0070 1

P1 (bar) 0.0625 8.325 8.325 0.01386 1

P2 (bar) 0.1 28.45 28.56 1.075 0.9826

P3 (bar) 0.06 28.59 28.56 0.6045 0.9963

P4 (bar) 0.0625 8.608 8.599 0.1411 0.9999

DP1 (bar) 0.0012 0.2738 0.2738 0 1

DP2 (bar) 0.00075 0.06781 0.06781 0 1

M1 (g/s) 0.000235 0.235 0.235 0.0158 1

M2 (l/s) 0.02984 0.5968 0.5863 0.3521 0.9992

M3 (l/s) 0.02495 0.499 0.5255 1.062 0.9831

W1 (W) 0.25 2630 2630 0.0872 1

U [W/(m2.K)] 2 10 10.02 0.00863 1

q1 (kg/m3) 24.25 1209 1213 0.4359 0.9985
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objective function, u (Eq. 1), that should follow a Chi-

square distribution [4]. In this case, the confidence of the

reconciliation method reached a probability of 73 %.

Improvement in the validation of semi-empirical

models

The efficiency of this method is proven by comparing the

outputs of steady-state models of the different components

with and without the reconciliation method. For the sake of

conciseness, the models are not presented in this paper.

Exchangers are subdivided into three zones and modeled

by means of the e-NTU method [20]. The expander is

modeled through a semi-empirical model taking into

account internal leakages, ambient losses, under- or over-

expansion losses and electro-mechanical losses [21]. A

comparison between reconciled and non-reconciled mea-

surements is performed with the prediction of the pinch-

point in the evaporator in Fig. 3.

The improvement obtained with the RM for the evap-

orator pinch-point prediction is obvious on this graph. To

quantify this improvement, results are compared in terms

of the normalized root mean square deviation—NRMSD

(10). xpred corresponds to the prediction of the model and

xmeas corresponds to the measurement value (or to the

reconciled value in the case of the RM).

NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
s¼1ðxmeas;s � xpred;sÞ2

n

s

:
1

ðxmax � xminÞ
ð10Þ

Table 2 compares the NRMSD for different models with

and without reconciliation method. These results show that

reconciled values are closer to semi-empirical model pre-

dictions than non-treated measurements. It proves the

efficiency of the method and that it should be considered

more often when dealing with experimentation.

Conclusion

Experimental data are often the result of long and costly

experimentations. Many times, measurements are used

directly without (or with few) analysis and treatment.

This paper presents a simple mathematical tool to threat

and enhance the quality of measured data. This reconcili-

ation method is described and a global methodology

including validation of measurement, elimination of irrel-

evant points and validation of the reconciliation method is

proposed.

The efficiency of the global methodology is proven with

experimental data of a reversible HP/ORC unit. The normal

root mean square deviation on model predictions is sig-

nificantly lower when using reconciled values for model

calibration. This proves the validity of the method.

The presented methodology is simple and fast to per-

form. More advanced methodologies exist but are more

complex and require more computational time [12, 13].

Moreover, advanced physical phenomena such as oil sol-

ubility could be taken into account for more accurate

results.
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