Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000	000		00	00000

A Refined Method for Estimating the Global Hölder Exponent

T. Kleyntssens, D. Kreit & S. Nicolay

ITNG 2016

Las Vegas, April 11-13, 2016

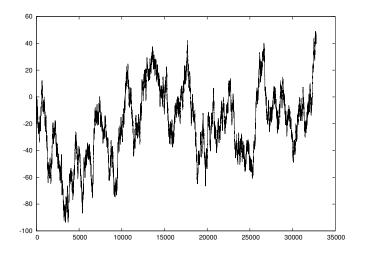
Introduction	Definitions	Some Properties	Wavelets	UsefulIness
000000				
The idea				

A function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to the Hölder space $\Lambda^s(\mathbb{R}^d)$ iff there exists a constant C such that for each $x \in \mathbb{R}^d$, there exists a polynomial P_x of degree at most s for which

 $|f(x+h)-P_x(h)|\leq C|h|^s.$

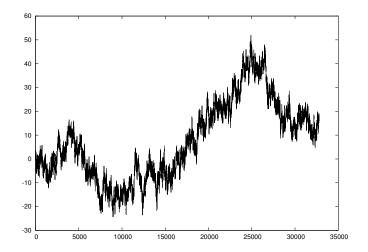
Introduction	Definitions	Some Properties	Wavelets	UsefulIness
•000000	000		00	00000
The idea				

A function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to the Hölder space $\Lambda^s(\mathbb{R}^d)$ iff there exists a constant C such that for each $x \in \mathbb{R}^d$, there exists a polynomial P_x of degree at most s for which

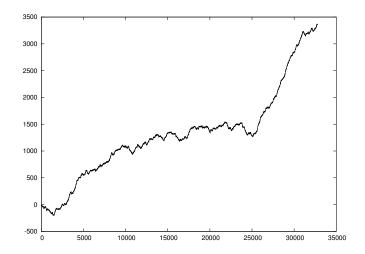

 $|f(x+h)-P_x(h)|\leq C|h|^s.$

Since these spaces are embedded, on can define the Hölder exponent of f as follows :

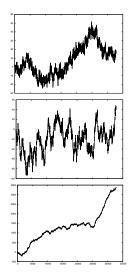
$$H_f = \sup\{s : f \in \Lambda^s(\mathbb{R}^d)\}.$$


Introduction	Definitions	Some Properties	Wavelets	Usefullness
000000	000		00	00000
The idea				

Example: a sample path of the Brownian motion has a Hölder exponent equal to 1/2 a.s.


Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000		00	00000
The idea				

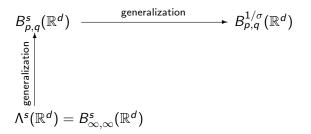
Example: a sample path of the fractional Brownian motion with Hurst index 0.3 has a Hölder exponent equal to 0.3 a.s.


Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000	000	00	00	00000
The idea				

Example: a sample path of the fractional Brownian motion with Hurst index 0.7 has a Hölder exponent equal to 0.7 a.s.

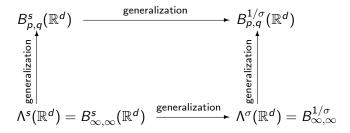
Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000			00000
The idea				

The regularity increases with the Hölder exponent


Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000				
Generalized Besov spaces				

A natural generalization consists in replacing the exponent s with a sequence σ satisfying some properties

$$B^{s}_{p,q}(\mathbb{R}^{d}) \xrightarrow{\text{generalization}} B^{1/\sigma}_{p,q}(\mathbb{R}^{d})$$


Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000				
Generalized Besov spaces				

A natural generalization consists in replacing the exponent s with a sequence σ satisfying some properties

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000				
Generalized Besov spaces				

A natural generalization consists in replacing the exponent s with a sequence σ satisfying some properties

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
000000				
Generalized Besov spaces				

Such a generalization could help to better characterize some specific functions or processes

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
000000				
Generalized Besov spaces				

Such a generalization could help to better characterize some specific functions or processes

For example, the sample path of a Brownian motion W satisfies

$$|W(t+h) - W(t)| \leq C \sqrt{|h| \log |\log |h||}$$

for some constant $C > \sqrt{2}$ a.s.

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
000000				
Generalized Besov spaces				

Such a generalization could help to better characterize some specific functions or processes

For example, the sample path of a Brownian motion W satisfies

$$|W(t+h) - W(t)| \leq C\sqrt{|h|\log|\log|h||}$$

for some constant $C > \sqrt{2}$ a.s.

Therefore, this method could be used to detect if a process is issued from a Brownian motion

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000	000	00	00	00000
Admissible sequence				

A sequence of real positive numbers is called admissible if

 $\frac{\sigma_{j+1}}{\sigma_j}$

is bounded.

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000	000	00	00	00000
Admissible sequence				

A sequence of real positive numbers is called admissible if

 $\frac{\sigma_{j+1}}{\sigma_j}$

is bounded.

For such a sequence, we set

$$\underline{s}(\sigma) = \lim_{j} \frac{\log_2(\inf_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_j})}{j}$$

and

$$\overline{s}(\sigma) = \lim_{j} \frac{\log_2(\sup_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_j})}{j}.$$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
	000			
Notations				

- the open unit ball centered at the origin is denoted B,
- the set of polynomials of degree at most n is denoted $\mathbf{P}[n]$,
- $[s] = \sup\{n \in \mathbb{Z} : n \leq s\},$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
	000			
Notations				

- the open unit ball centered at the origin is denoted B,
- the set of polynomials of degree at most n is denoted $\mathbf{P}[n]$,

•
$$[s] = \sup\{n \in \mathbb{Z} : n \leq s\},$$

• if f is defined on \mathbb{R}^d ,

$$\Delta_h^1 f(x) = f(x+h) - f(x)$$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
	000			
Notations				

- the open unit ball centered at the origin is denoted B,
- the set of polynomials of degree at most n is denoted $\mathbf{P}[n]$,

•
$$[s] = \sup\{n \in \mathbb{Z} : n \leq s\},$$

• if f is defined on \mathbb{R}^d ,

$$\Delta_h^1 f(x) = f(x+h) - f(x)$$

and

$$\Delta_h^{n+1}f(x) = \Delta_h^1 \Delta_h^n f(x),$$

for any $x, h \in \mathbb{R}^d$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
	000			
Definition of the generalized global Hölder spaces				

Definition

Let s > 0 and σ be an admissible sequence; a function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(\mathbb{R}^d)$ iff there exists C > 0 s.t.

$$\sup_{h|\leq 2^{-j}} \|\Delta_h^{[M]+1}f\|_{\infty} \leq C\sigma_j$$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
	000			
Definition of the generalized global Hölder spaces				

Definition

Let s > 0 and σ be an admissible sequence; a function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(\mathbb{R}^d)$ iff there exists C > 0 s.t.

$$\sup_{h|\leq 2^{-j}} \|\Delta_h^{[M]+1}f\|_{\infty} \leq C\sigma_j$$

Proposition

Let s > 0 and σ be an admissible sequence; a function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(\mathbb{R}^d)$ iff there exists C > 0 s.t.

$$\inf_{P\in\mathbf{P}_{[M]}}\|f-P\|_{L^{\infty}(2^{-j}B+x)}\leq C\sigma_j,$$

for any $x \in \mathbb{R}^d$ and any $j \in \mathbb{N}$.

Introduction	Definitions	Some Properties	Wavelets	Usefullness
		0		
Banach Spaces				

• One sets
$$\Lambda^{\sigma}(\mathbb{R}^d) = \Lambda^{\sigma, \overline{s}(\sigma^{-1})}(\mathbb{R}^d)$$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
		0		
Banach Spaces				

• One sets
$$\Lambda^{\sigma}(\mathbb{R}^d) = \Lambda^{\sigma,\overline{s}(\sigma^{-1})}(\mathbb{R}^d)$$

• For s > 0, one has $\Lambda^s(\mathbb{R}^d) = \Lambda^\sigma(\mathbb{R}^d)$ with $\sigma_j = 2^{-js}$

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000	●○	00	00000
Banach Spaces				

• One sets
$$\Lambda^{\sigma}(\mathbb{R}^d) = \Lambda^{\sigma,\overline{s}(\sigma^{-1})}(\mathbb{R}^d)$$

- For s > 0, one has $\Lambda^{s}(\mathbb{R}^{d}) = \Lambda^{\sigma}(\mathbb{R}^{d})$ with $\sigma_{j} = 2^{-js}$
- The application

$$|f|_{\Lambda^{\sigma,M}} = \sup_{j} (\sigma_j^{-1} \sup_{|h| \leq 2^{-j}} \|\Delta_h^{[M]+1} f\|_{L^{\infty}})$$

defines a semi-norm on $\Lambda^{\sigma,M}$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000	000	●○	00	00000
Banach Spaces				

• One sets
$$\Lambda^{\sigma}(\mathbb{R}^d) = \Lambda^{\sigma,\overline{s}(\sigma^{-1})}(\mathbb{R}^d)$$

- For s > 0, one has $\Lambda^s(\mathbb{R}^d) = \Lambda^\sigma(\mathbb{R}^d)$ with $\sigma_j = 2^{-js}$
- The application

$$|f|_{\Lambda^{\sigma,M}} = \sup_{j} (\sigma_j^{-1} \sup_{|h| \leq 2^{-j}} \|\Delta_h^{[M]+1} f\|_{L^{\infty}})$$

defines a semi-norm on $\Lambda^{\sigma,M}$ Therefore $\|f\|_{\Lambda^{\sigma,M}} = \|f\|_{L^{\infty}} + |f|_{\Lambda^{\sigma,M}}$ is a norm on this space

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000	000	●○	00	00000
Banach Spaces				

• One sets
$$\Lambda^{\sigma}(\mathbb{R}^d) = \Lambda^{\sigma,\overline{s}(\sigma^{-1})}(\mathbb{R}^d)$$

- For s > 0, one has $\Lambda^s(\mathbb{R}^d) = \Lambda^\sigma(\mathbb{R}^d)$ with $\sigma_j = 2^{-js}$
- The application

$$|f|_{\Lambda^{\sigma,M}} = \sup_{j} (\sigma_j^{-1} \sup_{|h| \leq 2^{-j}} \|\Delta_h^{[M]+1} f\|_{L^{\infty}})$$

defines a semi-norm on $\Lambda^{\sigma,M}$ Therefore $\|f\|_{\Lambda^{\sigma,M}} = \|f\|_{L^{\infty}} + |f|_{\Lambda^{\sigma,M}}$ is a norm on this space

Theorem

Let M>0; the space $(\Lambda^{\sigma,M}(\mathbb{R}^d),\|\cdot\|_{\Lambda^{\sigma,M}})$ is a Banach space

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
0000000	000	●○	00	00000
Banach Spaces				

• One sets
$$\Lambda^{\sigma}(\mathbb{R}^d) = \Lambda^{\sigma,\overline{s}(\sigma^{-1})}(\mathbb{R}^d)$$

- For s > 0, one has $\Lambda^s(\mathbb{R}^d) = \Lambda^\sigma(\mathbb{R}^d)$ with $\sigma_j = 2^{-js}$
- The application

$$|f|_{\Lambda^{\sigma,M}} = \sup_{j} (\sigma_j^{-1} \sup_{|h| \leq 2^{-j}} \|\Delta_h^{[M]+1} f\|_{L^{\infty}})$$

defines a semi-norm on $\Lambda^{\sigma,M}$ Therefore $\|f\|_{\Lambda^{\sigma,M}} = \|f\|_{L^{\infty}} + |f|_{\Lambda^{\sigma,M}}$ is a norm on this space

Theorem

Let
$$M > 0$$
; the space $(\Lambda^{\sigma,M}(\mathbb{R}^d), \|\cdot\|_{\Lambda^{\sigma,M}})$ is a Banach space

For example, a sample path of the Brownian motion belongs to $\Lambda^{\sigma}(\mathbb{R})$ with $\sigma = (2^{-j/2}\sqrt{\log j})_j$ a.s.

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000	○●	00	00000
About the Regularity				

Theorem

Let σ be an admissible sequence and M, N be two positive integers such that

$$N < \underline{s}(\sigma^{-1}) \le \overline{s}(\sigma^{-1}) < M;$$

Any element of $\Lambda^{\sigma}(\mathbb{R}^d)$ is equal a.e. to a function $f \in C^N(\mathbb{R}^d)$ satisfying $D^{\alpha}f \in L^{\infty}(\mathbb{R}^d)$ for any multi-index α such that $|\alpha| \leq N$ and

$$\sup_{|j|\leq 2^{-j}} \|\Delta_h^{M-|\alpha|} D^{\alpha} f\|_{L^{\infty}} \leq C 2^{j|\alpha|} \sigma_j,$$

for any $j \in \mathbb{N}$ and $|\alpha| \leq N$.

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000	○●	00	00000
About the Regularity				

Theorem

Let σ be an admissible sequence and M,N be two positive integers such that

$$N < \underline{s}(\sigma^{-1}) \le \overline{s}(\sigma^{-1}) < M;$$

Any element of $\Lambda^{\sigma}(\mathbb{R}^d)$ is equal a.e. to a function $f \in C^N(\mathbb{R}^d)$ satisfying $D^{\alpha}f \in L^{\infty}(\mathbb{R}^d)$ for any multi-index α such that $|\alpha| \leq N$ and

$$\sup_{|\mathbf{h}|\leq 2^{-j}} \|\Delta_{\mathbf{h}}^{\mathcal{M}-|\alpha|} D^{\alpha} f\|_{L^{\infty}} \leq C 2^{j|\alpha|} \sigma_{j},$$

for any $j \in \mathbb{N}$ and $|\alpha| \leq N$. Conversely, if $f \in L^{\infty}(\mathbb{R}^d) \cap C^N(\mathbb{R}^d)$ satisfies the previous inequality for $|\alpha| = N$ then f belongs to $\Lambda^{\sigma}(\mathbb{R}^d)$.

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000		●○	00000
Definitions				

Under some general conditions, there exist a function ϕ and $2^d - 1$ functions $\psi^{(i)}$ called wavelets s.t.

$$\{\phi(\cdot - k) : k \in \mathbb{Z}^d\} \bigcup \{\psi^{(i)}(2^j \cdot - k) : k \in \mathbb{Z}^d, j \in \mathbb{N}_0\}$$

forms an orthogonal basis of $L^2(\mathbb{R}^d)$.

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000		●○	00000
Definitions				

Under some general conditions, there exist a function ϕ and $2^d - 1$ functions $\psi^{(i)}$ called wavelets s.t.

$$\{\phi(\cdot - k) : k \in \mathbb{Z}^d\} \bigcup \{\psi^{(i)}(2^j \cdot - k) : k \in \mathbb{Z}^d, j \in \mathbb{N}_0\}$$

forms an orthogonal basis of $L^2(\mathbb{R}^d)$. Any function $f \in L^2(\mathbb{R}^d)$ can be decomposed as follows,

$$f(x) = \sum_{k \in \mathbb{Z}^d} C_k \phi(x-k) + \sum_{j \ge 0, k \in \mathbb{Z}^d, 1 \le i < 2^d} c_{j,k}^{(i)} \psi^{(i)}(2^j x - k),$$

with

$$C_k = \int f(x)\phi(x-k) \, dx, \quad c_{j,k}^{(i)} = 2^{dj} \int f(x)\psi^{(i)}(2^jx-k) \, dx.$$

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000		●○	00000
Definitions				

Under some general conditions, there exist a function ϕ and $2^d - 1$ functions $\psi^{(i)}$ called wavelets s.t.

$$\{\phi(\cdot - k) : k \in \mathbb{Z}^d\} \bigcup \{\psi^{(i)}(2^j \cdot - k) : k \in \mathbb{Z}^d, j \in \mathbb{N}_0\}$$

forms an orthogonal basis of $L^2(\mathbb{R}^d)$. Any function $f \in L^2(\mathbb{R}^d)$ can be decomposed as follows,

$$f(x) = \sum_{k \in \mathbb{Z}^d} C_k \phi(x-k) + \sum_{j \ge 0, k \in \mathbb{Z}^d, 1 \le i < 2^d} c_{j,k}^{(i)} \psi^{(i)}(2^j x - k),$$

with

$$C_k = \int f(x)\phi(x-k) \, dx, \quad c_{j,k}^{(i)} = 2^{dj} \int f(x)\psi^{(i)}(2^jx-k) \, dx.$$

In what follows, we will assume that the wavelets are the Daubechies wavelets

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
A Characterization				00000

Theorem

Let σ be an admissible sequence such that $\underline{s}(\sigma^{-1}) > 0$. If f belongs to $\Lambda^{\sigma}(\mathbb{R}^d)$, there exists a constant C > 0 such that

$$|C_k| < C$$
 and $|c_{j,k}^{(i)}| \le C\sigma_j$

for any $j \in \mathbb{N}$ any $k \in \mathbb{Z}^d$ and any $i \in \{1, \dots, 2^{d-1}\}$.

Introduction	Definitions	Some Properties	Wavelets	Usefullness
			0•	
A Characterization				

Theorem

Let σ be an admissible sequence such that $\underline{s}(\sigma^{-1}) > 0$. If f belongs to $\Lambda^{\sigma}(\mathbb{R}^d)$, there exists a constant C > 0 such that

$$|C_k| < C$$
 and $|c_{j,k}^{(i)}| \le C\sigma_j$

for any $j \in \mathbb{N}$ any $k \in \mathbb{Z}^d$ and any $i \in \{1, \dots, 2^{d-1}\}$.

Conversely, if $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ and if the previous relations hold, then f belongs to $\Lambda^{\sigma}(\mathbb{R}^d)$.

Introduction	Definitions	Some Properties	Wavelets	UsefulIness	
0000000	000	00	00	0000	
Power Spectrum of a Function					

$$S_f(j) = \sqrt{rac{1}{\# \Psi_j} \sum_{i,k} |c_{j,k}^{(i)}|^2}$$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness	
				0000	
Power Spectrum of a Function					

$$S_f(j) = \sqrt{\frac{1}{\# \Psi_j} \sum_{i,k} |c_{j,k}^{(i)}|^2}$$

If f is associated to a Hölder exponent to $H_f = h$, one should have

$$S_f(j) \sim C 2^{-jh}$$

for some constant ${\ensuremath{\mathcal{C}}}$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness	
0000000	000			00000	
Power Spectrum of a Function					

$$S_f(j) = \sqrt{\frac{1}{\# \Psi_j} \sum_{i,k} |c_{j,k}^{(i)}|^2}$$

If f is associated to a Hölder exponent to $H_f = h$, one should have

$$S_f(j) \sim C 2^{-jh}$$

for some constant C which implies

$$\log_2 S_f(j) \sim -hj + C'$$

Introduction	Definitions	Some Properties	Wavelets	UsefulIness	
0000000	000			00000	
Power Spectrum of a Function					

$$S_f(j) = \sqrt{\frac{1}{\# \Psi_j} \sum_{i,k} |c_{j,k}^{(i)}|^2}$$

If f is associated to a Hölder exponent to $H_f = h$, one should have

$$S_f(j) \sim C 2^{-jh}$$

for some constant C which implies

$$\log_2 S_f(j) \sim -hj + C'$$

so that the Hölder exponent can be estimated using a log-log plot

Introduction	Definitions	Some Properties	Wavelets	UsefulIness
				00000
Another Way				

One can also determine h by fitting the curve $\gamma(h, C) = C2^{-h}$ to the function S_f (using e.g. the Levenberg-Marquardt algorithm)

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000		00	○●○○○
Another Way				

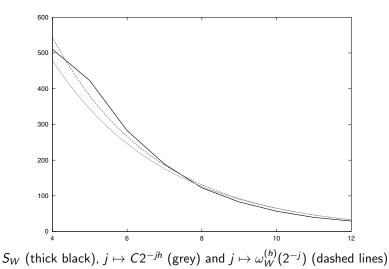
One can also determine *h* by fitting the curve $\gamma(h, C) = C2^{-\cdot h}$ to the function S_f (using e.g. the Levenberg-Marquardt algorithm)

Using the previous theorem, this method can be adapted for more general curves $\gamma(h, C) = C\omega^{(h)}(2^{-\cdot})$

Introduction	Definitions	Some Properties	Wavelets	Usefullness
0000000	000		00	○●○○○
Another Way				

One can also determine *h* by fitting the curve $\gamma(h, C) = C2^{-\cdot h}$ to the function S_f (using e.g. the Levenberg-Marquardt algorithm)

Using the previous theorem, this method can be adapted for more general curves $\gamma(h, C) = C\omega^{(h)}(2^{-\cdot})$


For the Brownian motion, one is naturally led to choose

$$\omega_W^{(h)}(r) = (r \log |\log r|)^h$$

in order to get a sharper estimation and help to discern between two models

For the Brownian motion W, the "usual" method gives $H_W = 0.48 \pm 5 \, 10^{-2}$ and the new one gives $H_W = 0.499 \pm 3 \, 10^{-2}$

Introduction	Definitions	Some Properties	Wavelets	Usefullness	
				00000	
Discerning Between Two Models					

If
$$Z_k \stackrel{\text{iid}}{\sim} N(0,1)$$
 let

$$W_{uni}: x \mapsto \sum_{k=0}^{\infty} \phi^k \cos((\omega^k + Z_k)\pi)$$

and

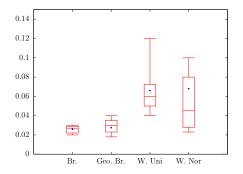
$$W_{norm}: x \mapsto \sum_{k=0}^{\infty} Z_k \phi^k \cos(x \omega^k \pi)$$

two generalizations of the Weierstraß function ($\phi \in (0,1)$ and $\phi \omega > 1$).

Introduction	Definitions	Some Properties	Wavelets	Usefullness	
				00000	
Discerning Between Two Models					

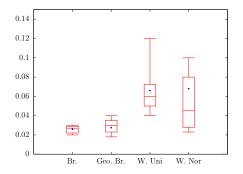
If
$$Z_k \stackrel{\text{iid}}{\sim} N(0,1)$$
 let

$$W_{uni}: x \mapsto \sum_{k=0}^{\infty} \phi^k \cos((\omega^k + Z_k)\pi)$$


and

$$W_{norm}: x \mapsto \sum_{k=0}^{\infty} Z_k \phi^k \cos(x \omega^k \pi)$$

two generalizations of the Weierstraß function ($\phi \in (0, 1)$ and $\phi \omega > 1$).


The first process is well known to behave as the Brownian motion, while the study of the behavior of the second one has still to be carried out

When the behavior of the process is well known (Brownian motion, geometric Brownian motion and W_{uni}), the numerical tests confirm that the new method is able to detect a logarithmic correction

When the behavior of the process is well known (Brownian motion, geometric Brownian motion and W_{uni}), the numerical tests confirm that the new method is able to detect a logarithmic correction

When performed on W_{norm} , this technique suggests that there is no logarithmic correction