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Introduction Definitions Some Properties Wavelets Usefullness

The idea

A function f ∈ L∞(Rd) belongs to the Hölder space Λs(Rd) iff
there exists a constant C such that for each x ∈ Rd , there exists a
polynomial Px of degree at most s for which

|f (x + h)− Px(h)| ≤ C |h|s .

Since these spaces are embedded, on can define the Hölder
exponent of f as follows :

Hf = sup{s : f ∈ Λs(Rd)}.
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The idea

Example: a sample path of the Brownian motion has a Hölder
exponent equal to 1/2 a.s.
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The idea

Example: a sample path of the fractional Brownian motion with
Hurst index 0.3 has a Hölder exponent equal to 0.3 a.s.
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The idea

Example: a sample path of the fractional Brownian motion with
Hurst index 0.7 has a Hölder exponent equal to 0.7 a.s.
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The idea

The regularity increases with the Hölder exponent
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Generalized Besov spaces

A natural generalization consists in replacing the exponent s with a
sequence σ satisfying some properties

Bs
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Generalized Besov spaces

Such a generalization could help to better characterize some
specific functions or processes

For example, the sample path of a Brownian motion W satisfies

|W (t + h)−W (t)| ≤ C
√
|h| log | log |h||

for some constant C >
√

2 a.s.

Therefore, this method could be used to detect if a process is
issued from a Brownian motion
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Admissible sequence

A sequence of real positive numbers is called admissible if

σj+1

σj

is bounded.

For such a sequence, we set

s(σ) = lim
j

log2(infk∈N
σj+k

σj
)

j

and

s(σ) = lim
j

log2(supk∈N
σj+k

σj
)

j
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Notations

the open unit ball centered at the origin is denoted B,

the set of polynomials of degree at most n is denoted P[n],

[s] = sup{n ∈ Z : n ≤ s},

if f is defined on Rd ,

∆1
hf (x) = f (x + h)− f (x)

and
∆n+1

h f (x) = ∆1
h∆n

hf (x),

for any x , h ∈ Rd
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Definition of the generalized global Hölder spaces

Definition

Let s > 0 and σ be an admissible sequence; a function
f ∈ L∞(Rd) belongs to Λσ,M(Rd) iff there exists C > 0 s.t.

sup
|h|≤2−j

‖∆[M]+1
h f ‖∞ ≤ Cσj

Proposition

Let s > 0 and σ be an admissible sequence; a function
f ∈ L∞(Rd) belongs to Λσ,M(Rd) iff there exists C > 0 s.t.

inf
P∈P[M]

‖f − P‖L∞(2−jB+x) ≤ Cσj ,

for any x ∈ Rd and any j ∈ N.
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Banach Spaces

One sets Λσ(Rd) = Λσ,s(σ−1)(Rd)

For s > 0, one has Λs(Rd) = Λσ(Rd) with σj = 2−js

The application

|f |Λσ,M = sup
j

(σ−1
j sup
|h|≤2−j

‖∆[M]+1
h f ‖L∞)

defines a semi-norm on Λσ,M

Therefore ‖f ‖Λσ,M = ‖f ‖L∞ + |f |Λσ,M is a norm on this space

Theorem

Let M > 0; the space (Λσ,M(Rd), ‖ · ‖Λσ,M ) is a Banach space

For example, a sample path of the Brownian motion belongs
to Λσ(R) with σ = (2−j/2

√
log j)j a.s.
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About the Regularity

Theorem

Let σ be an admissible sequence and M,N be two positive integers
such that

N < s(σ−1) ≤ s(σ−1) < M;

Any element of Λσ(Rd) is equal a.e. to a function f ∈ CN(Rd)
satisfying Dαf ∈ L∞(Rd) for any multi-index α such that |α| ≤ N
and

sup
|h|≤2−j

‖∆M−|α|
h Dαf ‖L∞ ≤ C2j |α|σj ,

for any j ∈ N and |α| ≤ N.

Conversely, if f ∈ L∞(Rd) ∩ CN(Rd) satisfies the previous
inequality for |α| = N then f belongs to Λσ(Rd).
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Definitions

Under some general conditions, there exist a function φ and 2d − 1
functions ψ(i) called wavelets s.t.

{φ(· − k) : k ∈ Zd}
⋃
{ψ(i)(2j · −k) : k ∈ Zd , j ∈ N0}

forms an orthogonal basis of L2(Rd).

Any function f ∈ L2(Rd) can be decomposed as follows,

f (x) =
∑
k∈Zd

Ckφ(x − k) +
∑

j≥0,k∈Zd ,1≤i<2d

c
(i)
j ,kψ

(i)(2jx − k),

with

Ck =

∫
f (x)φ(x − k) dx , c

(i)
j ,k = 2dj

∫
f (x)ψ(i)(2jx − k) dx .

In what follows, we will assume that the wavelets are the
Daubechies wavelets
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A Characterization

Theorem

Let σ be an admissible sequence such that s(σ−1) > 0. If f
belongs to Λσ(Rd), there exists a constant C > 0 such that

|Ck | < C and |c(i)
j ,k | ≤ Cσj

for any j ∈ N any k ∈ Zd and any i ∈ {1, . . . , 2d−1}.

Conversely, if f ∈ L∞loc(Rd) and if the previous relations hold, then
f belongs to Λσ(Rd).
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Power Spectrum of a Function

Let Ψj denote the set of wavelet coefficients at scale j . The power
spectrum of f is defined as follows

Sf (j) =

√
1

#Ψj

∑
i ,k

|c(i)
j ,k |2

If f is associated to a Hölder exponent to Hf = h, one should have

Sf (j) ∼ C2−jh

for some constant C
which implies

log2 Sf (j) ∼ −hj + C ′

so that the Hölder exponent can be estimated using a log-log plot
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Another Way

One can also determine h by fitting the curve γ(h,C ) = C2−·h to
the function Sf (using e.g. the Levenberg-Marquardt algorithm)

Using the previous theorem, this method can be adapted for more
general curves γ(h,C ) = Cω(h)(2−·)

For the Brownian motion, one is naturally led to choose

ω
(h)
W (r) = (r log | log r |)h

in order to get a sharper estimation and help to discern between
two models
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The Case of the Brownian Motion

For the Brownian motion W , the “usual” method gives
HW = 0.48± 5 10−2 and the new one gives HW = 0.499± 3 10−2
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SW (thick black), j 7→ C2−jh (grey) and j 7→ ω
(h)
W (2−j) (dashed lines)
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Discerning Between Two Models

If Zk
iid∼ N(0, 1) let

Wuni : x 7→
∞∑
k=0

φk cos((ωk + Zk)π)

and

Wnorm : x 7→
∞∑
k=0

Zkφ
k cos(xωkπ)

two generalizations of the Weierstraß function (φ ∈ (0, 1) and
φω > 1).

The first process is well known to behave as the Brownian motion,
while the study of the behavior of the second one has still to be
carried out
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The Results
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When the behavior of the process is well known (Brownian motion,
geometric Brownian motion and Wuni ), the numerical tests confirm
that the new method is able to detect a logarithmic correction

When performed on Wnorm, this technique suggests that there is
no logarithmic correction



Introduction Definitions Some Properties Wavelets Usefullness

The Results

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Br. Geo. Br. W. Uni W. Nor

When the behavior of the process is well known (Brownian motion,
geometric Brownian motion and Wuni ), the numerical tests confirm
that the new method is able to detect a logarithmic correction

When performed on Wnorm, this technique suggests that there is
no logarithmic correction


	Introduction
	The idea
	Generalized Besov spaces

	Definitions
	Admissible sequence
	Notations
	Definition of the generalized global Hölder spaces

	Some Properties
	Banach Spaces
	About the Regularity

	Wavelets
	Definitions
	A Characterization

	Usefullness
	Power Spectrum of a Function
	Another Way
	The Case of the Brownian Motion
	Discerning Between Two Models
	The Results


