
Structural Identifiability Analysis of a Cardiovascular1

System Model I,II
2

Antoine Pironeta,∗, Pierre C. Daubya, J. Geoffrey Chaseb, Paul D. Dochertyb,3

James A. Revieb, Thomas Desaivea4
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Abstract8

The six-chamber cardiovascular system model of Burkhoff and Tyberg has been9

used in several theoretical and experimental studies. However, this cardiovas-10

cular system model (and others derived from it) are not identifiable from any11

output set.12

In this work, two such cases of structural non-identifiability are first pre-13

sented. These cases occur when the model output set only contains a single14

type of information (pressure or volume).15

A specific output set is thus chosen, mixing pressure and volume informa-16

tion and containing only a limited number of clinically available measurements.17

Then, by manipulating the model equations involving these outputs, it is demon-18

strated that the six-chamber cardiovascular system model is structurally glob-19

ally identifiable.20

A further simplification is made, assuming known cardiac valve resistances.21

Because of the poor practical identifiability of these four parameters, this as-22

sumption is usual. Under this hypothesis, the six-chamber cardiovascular system23
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model is structurally identifiable from an even smaller dataset.24

As a consequence, parameter values computed from limited but well-chosen25

datasets are theoretically unique. This means that the parameter identification26

procedure can safely be performed on the model from such a well-chosen dataset.27

The model is thus fully suitable to be used for diagnosis.28

Keywords: Identifiability; parameter identification; lumped-parameter model;29

physiological model.30

1. Introduction31

1.1. Background32

Accurately determining cardiac parameters in the intensive care unit is dif-33

ficult since only indirect data of the patient’s cardiovascular state is available34

and this state is also rapidly changing. Mathematical models of the cardiovas-35

cular system (CVS) have been developed to provide clinicians with additional36

information regarding the overall picture of the cardiac and circulatory state.37

To be clinically relevant, these models have to be patient-specific, which means38

that their parameters have to be identified so that simulations represent a pa-39

tient’s individual state. This task is not obvious due to the indirect nature of40

the necessary clinical data.41

The CVS can be modelled using very different approaches, including finite42

element models [1], pulse-wave propagation models [2], and lumped-parameter43

models [3]. The present study focuses on one such lumped-parameter model.44

Lumped-parameter models represent whole sections of the CVS as single ele-45

ments (chambers or resistances, for example). An important advantage of these46
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models is that they have few parameters, and thus, these parameters can be more47

readily identified from clinical data. The main drawback of lumped-parameter48

models is that they cannot be used to gain local spatial information on the CVS.49

The CVS model used in this work has been developed by Burkhoff and50

Tyberg [3]. It is a simple lumped-parameter model that describes the whole51

CVS using six state equations and thirteen parameters (cf. Figure 1). This52

model is the simplest model to consider systemic and pulmonary circulations.53

This model has allowed theoretical studies assessing the consequences of left54

ventricular dysfunction [3] and ventricular interaction [4].55

From an experimental point of view, a similar model has been used for hemo-56

dynamic monitoring during septic shock [5] and pulmonary embolism [6, 7]. The57

model parameters, such as systemic and pulmonary vascular resistances, ven-58

tricular end-systolic elastances and pulmonary arterial elastance, are needed by59

clinicians to assess the severity of a condition. The model has also recently60

been used to compute total stressed blood volume [8], an index of fluid respon-61

siveness [9]. Furthermore, many other models, more complex, can be seen as62

extensions of this simple model [4, 10–13]. One of these more complex models63

has been used to investigate the haemodynamic state of patients after mitral64

valve replacement surgery [14].65

However, as will be shown further, there are several measurement sets from66

which the parameters of this model (and other models derived from it) cannot67

be uniquely computed. The key question is: can we find a measurement set68

which allows to identify all model parameters? In more theoretical terms, this69
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Figure 1: Schematic representation of the six-chamber CVS model.

question can be stated as: what is the set of model outputs one has to include in70

the model definition for this model to be structurally globally identifiable? This71

notion of structural identifiability is defined in the next subsection.72

1.2. Structural identifiability73

Structural identifiability analysis of a model determines whether all model74

parameters can be uniquely retrieved in the perfect conditions of noise-free and75

continuous measurements of the model outputs. If the answer is yes, then76

the model is said to be structurally globally identifiable [15, 16]. Otherwise, if77

there exists multiple parameter values for the given model outputs, the model is78

structurally locally identifiable. Finally, if there is an infinite number of possible79

parameter values, the model is termed structurally non-identifiable.80

Structural identifiability is called structural because it only depends on the81

model equations (its structure). Thus, it depends on the roles of the parameters82

and the nature and number of the available model outputs. For instance, if the83

number of model outputs is too low, the model is likely to be non-identifiable.84
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Taking the measurement noise and the practically finite number of data85

points into account and investigating if the model parameters still can be uniquely86

determined relates to a different topic, called practical identifiability [17]. The87

tools used to investigate practical identifiability are different and include, for88

instance, sensitivity analyses and parameter correlation analyses [8]. Structural89

identifiability is a necessary condition for practical identifiability. It is therefore90

risky to perform a parameter identification procedure on a model which has not91

been shown to be structurally identifiable.92

1.3. Goal93

This work aims to prove the structural identifiability of the CVS model from94

a clinically available output set. As said above, this structural identifiability95

analysis is a necessary step to ensure that results obtained when identifying the96

model parameters from limited clinical data are unique, and thus, relevant.97

2. Methods98

2.1. Six-chamber cardiovascular system model99

The CVS model that is the focus of this work has been previously presented100

by Burkhoff and Tyberg [3] and is shown in Figure 1. The model comprises six101

elastic chambers linked by resistive vessels. These six chambers represent the102

aorta, the vena cava, the pulmonary artery, the pulmonary veins (i = ao, vc, pa103

and pu) and the two ventricles (i = lv and rv).104
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The arterial and venous chambers are modelled as passive chambers with a105

constant linear relationship between pressure Pi and (stressed) volume Vi:106

Pao(t) = Eao · Vao(t) (1)
107

Pvc(t) = Evc · Vvc(t) (2)
108

Ppa(t) = Epa · Vpa(t) (3)
109

Ppu(t) = Epu · Vpu(t) (4)

where the constant parameters Ei are called the elastances of the chambers.110

Ventricular chambers are active. Thus, the relationship between pressure111

and volume is time-varying [18]:112

Plv(t) = Elv · elv(t) · Vlv(t) (5)
113

Prv(t) = Erv · erv(t) · Vrv(t). (6)

In Equations (5) and (6), the constant parameters Elv and Erv are the end-114

systolic elastances and the functions elv(t) and erv(t) are called the driver func-115

tions. These driver functions can take different forms, but for the model to116

correctly mimic the physiological activity of the normal heart, elv(t) and erv(t)117

have (at least) to be periodic with period T (the cardiac period), range from 0118

(diastole) to 1 (end-systole) and rise and fall at approximately the same time.119

Equally, it has been shown that while this approach still holds in disease, there120

are subtle changes to driver functions based on disease sate [19]. Also note121

that, for simplicity, no end-diastolic pressure-volume relationships were inserted122

in Equations (5) and (6).123
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The six chambers are linked by resistive vessels, representing the four heart124

valves (mitral: mt, aortic: av, tricuspid: tc and pulmonary: pv) and the sys-125

temic and pulmonary circulations (sys and pul). In these last two vessels, flow126

Q is given by Ohm’s law:127

Qsys(t) =
Pao(t)− Pvc(t)

Rsys
(7)

128

Qpul(t) =
Ppa(t)− Ppu(t)

Rpul
, (8)

where Rsys (respectively Rpul) denotes the total resistance of the systemic (re-129

spectively pulmonary) circulation. In the case of the valves, the model assumes130

that there is only flow when the pressure difference across the valve is positive.131

Hence, one has:132

Qmt(t) =
1

Rmt


Ppu(t)− Plv(t) if Ppu(t) > Plv(t)

0 otherwise

(9)

133

Qav(t) =
1

Rav


Plv(t)− Pao(t) if Plv(t) > Pao(t)

0 otherwise

(10)

134

Qtc(t) =
1

Rtc


Pvc(t)− Prv(t) if Pvc(t) > Prv(t)

0 otherwise

(11)

135

Qpv(t) =
1

Rpv


Prv(t)− Ppa(t) if Prv(t) > Ppa(t)

0 otherwise.

(12)

Finally, volume change in any of the model chambers is dictated by the136

difference between flow going in and coming out of the chamber:137

V̇lv(t) = Qmt(t)−Qav(t) (13)
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138

V̇ao(t) = Qav(t)−Qsys(t) (14)
139

V̇vc(t) = Qsys(t)−Qtc(t) (15)
140

V̇rv(t) = Qtc(t)−Qpv(t) (16)
141

V̇pa(t) = Qpv(t)−Qpul(t) (17)
142

V̇pu(t) = Qpul(t)−Qmt(t). (18)

Summing Equations (13) to (18) gives:143

V̇lv(t) + V̇ao(t) + V̇vc(t)

+ V̇rv(t) + V̇pa(t) + V̇pu(t) = 0

(19)

and integrating Equation (19) yields:144

Vlv(t) + Vao(t) + Vvc(t)

+ Vrv(t) + Vpa(t) + Vpu(t) = SBV.

(20)

Equation (19) expresses the fact that, since the model is a closed-loop, there145

is no flow going in or out of the whole CVS. Equation (20) expresses that, as146

a consequence, total (stressed) blood volume in the model is a constant. This147

constant volume value is denoted SBV and represents another model parameter.148

The model parameter set p thus consists of thirteen elements:149

p = (Eao Evc Epa Epu Elv Erv

Rsys Rpul Rmt Rav Rtc Rpv SBV).

(21)

Several examples of parameter identification procedures performed on this model150

and based on actual measurements are available in the literature [5–8, 13, 14].151
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2.2. Output sets152

In this section, three different output sets yk (k = 1, 2 or 3) are proposed153

for this model. Structural identifiability of the model is then assessed for each154

of these output sets.155

2.2.1. Output set containing only volumes156

To show a first example of structural non-identifiability, it is assumed that157

all chamber volumes are model outputs. Consequently, the outputs of the six-158

chamber model are:159

• volume in the aorta Vao(t),160

• volume in the pulmonary artery Vpa(t),161

• volume in the vena cava Vvc(t),162

• volume in the pulmonary veins Vpu(t),163

• volume in the left ventricle Vlv(t) and164

• volume in the right ventricle Vrv(t).165

and the output set is166

y1 = (Vao(t) Vpa(t) Vvc(t) Vpu(t) Vlv(t) Vrv(t)) . (22)

2.2.2. Output set containing only pressures167

For the second example of structural non-identifiability, it is assumed that168

all chamber pressures are model outputs. Consequently, the outputs of the169

six-chamber model are:170
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• pressure in the aorta Pao(t),171

• pressure in the pulmonary artery Ppa(t),172

• pressure in the vena cava Pvc(t),173

• pressure in the pulmonary veins Ppu(t),174

• pressure in the left ventricle Plv(t) and175

• pressure in the right ventricle Prv(t)176

and the output set is:177

y2 = (Pao(t) Ppa(t) Pvc(t) Ppu(t) Plv(t) Prv(t)) . (23)

2.2.3. Clinically available output set178

Finally, to show structural identifiability, the outputs of the six-chamber179

model are chosen to be the following clinically available measurements:180

• pressure in the aorta Pao(t),181

• pressure in the pulmonary artery Ppa(t),182

• pressure in the vena cava Pvc(t),183

• pressure in the pulmonary veins Ppu(t) and184

• stroke volume SV.185

Stroke volume is defined as the volume of blood ejected by the heart each time186

it beats. It is thus a scalar quantity. At steady state, left and right ventricular187
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stroke volumes are equal. The availability of these measurements in a clinical188

setting is explained in Section 4. The output set now reads:189

y3 = (Pao(t) Ppa(t) Pvc(t) Ppu(t) SV). (24)

2.3. Figures190

In the next section, theoretical results are presented, which are valid for any191

non-trivial value of the model parameters p, and any driver functions elv(t) and192

erv(t) respecting the conditions described in Section 2.1. To provide an illustra-193

tion of the theoretical results, several figures are also presented. The generation194

of such figures required choosing a particular error metric and particular pa-195

rameter values, as described in this section. As previously stated, these choices196

only relate to the generation of the figures, while the results presented remain197

completely general.198

2.3.1. Error vector199

To illustrate the results, an error vector ek is defined, representing the rela-200

tive difference between references yk(t) and simulations ŷk(p, t) of the output201

over one cardiac period T :202

eki (p, t) =
yki (t)− ŷki (p, t)

yki (t)
for 0 ≤ t < T . (25)

2.3.2. Error function203

Then, a scalar error function ψk is defined as the integral over one cardiac204

period of the sum of the squared components of ek:205

ψk(p) =

∫ T

0

∑
i

[eki (p, t)]2 dt. (26)
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This scalar error function ψk is represented in the figures of the next section.206

2.3.3. Reference outputs207

In this work, since the focus is set on structural identifiability, the data208

used is assumed to be perfect, in other words, noise-free and continuous. To209

remain as close as possible to this hypothesis, the reference curves yk required210

for illustration are obtained from model simulations with a given parameter211

set p∗. The goal of the procedure is to investigate whether or not a different212

parameter set p† can lead to the same curves.213

The reference parameter set p∗ can be arbitrarily chosen, since it is only214

necessary for illustrative purposes. It was obtained from a previously pub-215

lished study on the same model [8]. The simulation also required specific driver216

functions to be chosen, more precisely [8]:217

elv(t) = erv(t) = exp
[
−80(t mod 0.6)− 0.3)2

]
, (27)

where t is expressed in seconds and mod denotes the modulo operator.218

3. Results219

As previously mentioned, there are certain measurement sets from which the220

model parameters cannot be uniquely determined. In these cases, the model is221

structurally non-identifiable. Two such cases are first described in this section.222

3.1. Output set containing only volumes223

From the model equations, it can be seen that all simulated volumes will224

be exactly the same if all elastances (Eao, Evc, Epa, Epu, Elv and Erv) and225
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resistances (Rsys, Rpul, Rmt, Rav, Rtc, Rpv) are multiplied by the same fac-226

tor. Indeed, expressing Equations (13) to (18) solely in terms of volumes by227

substituting pressures and flows using Equations (1) to (12) shows that equa-228

tions linking volume derivatives to volumes only involve the following ratios of229

elastances to resistances:230

Epu

Rmt
,
Elv

Rmt
,
Elv

Rav
,
Eao

Rav
,
Eao

Rsys
,
Evc

Rsys
,
Evc

Rtc
,
Erv

Rtc
,
Erv

Rpv
,
Epa

Rpv
,
Epa

Rpul
,
Epu

Rpul
. (28)

As an illustration, Figure 2 shows that the error function ψ1 is identically zero231

all along the line a = b, where a is a factor multiplying all the elastances and b232

is one multiplying all the resistances.233
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Figure 2: Level curves of the error function ψ1 when all the elastances are multiplied by a

and all the resistances are multiplied by b. The dotted line is the curve a = b.
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3.2. Output set containing only pressures234

Once again, from the model equations, it can be seen that all simulated235

pressures will be exactly the same if all elastances (Eao, Evc, Epa, Epu, Elv236

and Erv) and resistances (Rsys, Rpul, Rmt, Rav, Rtc, Rpv) are multiplied by237

the same factor, while SBV is divided by this factor. For illustration, Figure 3238

shows that the error function ψ2 is equal to zero all along the curve c = 1/d,239

where c is a factor multiplying all the elastances and resistances and d is the240

one multiplying SBV.241
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Figure 3: Level curves of the error function ψ2 when all the elastances and resistances are

multiplied by c and SBV is multiplied by d. The dotted line is the curve c = 1/d.

3.3. Clinically available output set242

It can be shown that all thirteen parameters of the six-chamber CVS model243

can be uniquely retrieved from the output set y3. The corresponding demonstra-244

tion is quite technical and is provided in the following section. This outcome, in245
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turn, proves that the six-chamber CVS model is structurally globally identifiable246

from these output signals. Consequently, given all required measurements of the247

outputs, there exists one and only one possible parameter set corresponding to248

these measurements.249

The error function ψ3 thus possesses a unique global minimum. Figures 4250

and 5 confirm that when the output set y3 is selected, the two indeterminations251

of Figures 2 and 3 do not occur and the error function ψ3 has a single minimum.252
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Figure 4: Level curves of the error function ψ3 when all the elastances are multiplied by a

and all the resistances are multiplied by b.

3.4. Demonstration of structural identifiability from the third output set253

To perform the structural identifiability analysis of a model, it is assumed254

that the outputs can be perfectly and continuously measured [20]. Consequently,255

they can be differentiated as much as necessary. As a reminder, the outputs of256

the six-chamber model are chosen to be:257
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Figure 5: Level curves of the error function ψ3 when all the elastances and resistances are

multiplied by c and SBV is multiplied by d.

• pressure in the aorta Pao(t),258

• pressure in the pulmonary artery Ppa(t),259

• pressure in the vena cava Pvc(t),260

• pressure in the pulmonary veins Ppu(t) and261

• stroke volume SV.262

Furthermore, it will also be assumed that the left and right driver functions263

elv(t) and erv(t) are known.264

In the following sections, it is shown that unique relationships can be es-265

tablished between the thirteen model parameters in p and the five previously266

mentioned model outputs in y3. This outcome implies that the six-chamber267

model is identifiable from this output set.268
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3.4.1. During the whole cardiac cycle269

Integrating Equation (7) over a whole heart beat from 0 to one cardiac period270

T yields:271 ∫ T

0

Qsys(t) dt =

∫ T

0
[Pao(t)− Pvc(t)] dt

Rsys
. (29)

Rearranging this equation gives:272

Rsys =

∫ T

0
Pao(t) dt−

∫ T

0
Pvc(t) dt∫ T

0
Qsys(t) dt

. (30)

This actually corresponds to the medical definition of systemic vascular resis-273

tance [21].274

During a whole cardiac cycle, all blood ejected by the heart, i.e. the stroke275

volume, flows through the systemic circulation:276

∫ T

0

Qsys(t) dt = SV. (31)

Using Equations (30) and (31) then gives:277

Rsys =

∫ T

0
Pao(t) dt−

∫ T

0
Pvc(t) dt

SV
. (32)

Equation (32) makes it possible to compute Rsys, since all elements of the right-278

hand side are known. This can also be applied to the pulmonary circulation,279

thus proving the identifiability of Rpul.280

3.4.2. During ejection281

When the aortic valve opens (tAV O), left ventricular pressure equals aortic282

pressure:283

Pao(tAV O) = Plv(tAV O) (33)
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Using Equation (5) gives:284

Pao(tAV O) = Elv · elv(tAV O) · Vlv(tAV O)

⇔ Vlv(tAV O) = Pao(tAV O)
Elv·elv(tAV O) .

(34)

This last quantity is the end-diastolic volume. Similarly, at the time of aortic285

valve closing (tAV C), left ventricular pressure once again equals aortic pressure:286

Pao(tAV C) = Plv(tAV C)

= Elv · elv(tAV C) · Vlv(tAV C)

⇔ Vlv(tAV C) = Pao(tAV C)
Elv·elv(tAV C) .

(35)

This is the end-systolic volume. By definition, the stroke volume SV is equal to287

the difference between the end-diastolic and end-systolic volumes:288

SV = Vlv(tAV O)− Vlv(tAV C)

= 1
Elv

(
Pao(tAV O)
elv(tAV O) −

Pao(tAV C)
elv(tAV C)

) (36)

289

⇔ Elv =
1

SV

(
Pao(tAV O)

elv(tAV O)
− Pao(tAV C)

elv(tAV C)

)
(37)

which provides the third identified parameter Elv. The right ventricular end-290

systolic elastance Erv is identifiable using the right ventricular counterpart of291

Equation (37).292

During cardiac ejection, right ventricular pressure is higher than vena cava293

pressure (Prv(t) > Pvc(t)). Consequently, the combination of Equations (7),294

(11) and (15) can be written:295

V̇vc(t) = Qsys(t) =
Pao(t)− Pvc(t)

Rsys
. (38)

Combining this equation with Equation (2) gives:296

Ṗvc(t) = Evc ·
Pao(t)− Pvc(t)

Rsys
. (39)
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The previous equation shows that Evc can be identified:297

Evc =
Ṗvc(t) ·Rsys

Pao(t)− Pvc(t)
. (40)

Since the data is assumed to be perfect, the right-hand side of Equation (40) is298

exactly equal to Evc at any time during cardiac ejection.299

The reasoning that has been exposed for the systemic circulation can be300

transposed to the pulmonary side. Consequently, pulmonary vein elastance Epu301

can be obtained using the counterpart of Equation (40).302

3.4.3. During filling303

Focusing now on (left) ventricular filling (Pao(t) > Plv(t)), the combination304

of Equations (7), (10) and (14) gives:305

V̇ao(t) = −Qsys(t) = −Pao(t)− Pvc(t)

Rsys
. (41)

Using Equation (1), Equation (41) becomes:306

Ṗao(t) = −Eao ·
Pao(t)− Pvc(t)

Rsys
. (42)

This equation can be solved for Eao, proving that this parameter is identifiable:307

Eao = − Ṗao(t) ·Rsys

Pao(t)− Pvc(t)
. (43)

Since the data is assumed to be perfect, the right-hand side of Equation (43) is308

exactly equal to Eao at any time during ventricular filling. The same reasoning309

applies to the right ventricular filing, hence providing the value of Epa, which310

will be used further in this demonstration.311
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During right ventricular filling (Pvc(t) > Prv(t)), flow through the tricuspid312

valve is not zero. The combination of Equations (2), (7), (11) and (15) yields:313

Ṗvc(t) = Evc

(
Pao(t)− Pvc(t)

Rsys
− Pvc(t)− Prv(t)

Rtc

)
. (44)

If Equation (44) is differentiated once more, the result is:314

P̈vc(t) = Evc

(
Ṗao(t)− Ṗvc(t)

Rsys
− Ṗvc(t)− Ṗrv(t)

Rtc

)
. (45)

To eliminate Ṗrv(t), the derivative of Equation (6) can be used:315

Ṗrv(t) = Erv · ėrv(t) · Vrv(t) + Erv · erv(t) · V̇rv(t). (46)

To eliminate V̇rv(t), the combination of Equations (11), (12) and (16) during316

filling yields:317

V̇rv(t) =
Pvc(t)− Prv(t)

Rtc
. (47)

The algebraic system formed by Equations (6), (44), (45), (46) and (47) counts318

five equations and five unknowns Rtc, Prv(t), Vrv(t), Ṗrv(t), V̇rv(t). Solving this319

system with a symbolic computation software (Mathematica Version 8.0, Wol-320

fram Research, Inc., Champaign, IL) shows that it has a unique solution at each321

instant. The uniqueness of the solution, in turn, guarantees the identifiability322

of the parameter Rtc. It also provides the curve of Vrv(t) during filling, which323

will be useful further in this demonstration. The approach applied here can be324

repeated with the other side of the circulation to prove the identifiability of the325

mitral valve resistance Rmt and the availability of the left ventricular volume326

curve Vlv(t) during filling.327

Since arterial and venous pressures are known, as well as the elastances of the328

four corresponding chambers (Eao, Evc, Epa and Epu), stressed volume in these329
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chambers can be obtained from Equations (1) to (4). And, since ventricular330

volumes Vlv(t) and Vrv(t) are now also known, SBV can be computed from its331

definition (Equation (20)):332

SBV = Vlv(t) + Pao(t)
Eao

+ Pvc(t)
Evc

+ Vrv(t) +
Ppa(t)
Epa

+
Ppu(t)
Epu

.

(48)

3.4.4. During ejection (bis)333

The knowledge of the aortic elastance Eao from the previous section now334

makes it possible to obtain the value of the aortic valve resistance Rav. To335

do so, it is necessary to return to the ejection phase and to apply a similar336

reasoning as the one used to compute the tricuspid valve resistance Rtc. During337

left ventricular ejection (Plv(t) > Pao(t)), flow through the aortic valve is not338

zero. The combination of Equations (1), (7), (10) and (14) now yields:339

Ṗao(t) = Eao

(
Plv(t)− Pao(t)

Rav
− Pao(t)− Pvc(t)

Rsys

)
. (49)

If Equation (49) is differentiated once more, the result is:340

P̈ao(t) = Eao

(
Ṗlv(t)− Ṗao(t)

Rav
− Ṗao(t)− Ṗvc(t)

Rsys

)
. (50)

To eliminate Ṗlv(t), the derivative of Equation (5) can be used:341

Ṗlv(t) = Elv · ėlv(t) · Vlv(t) + Elv · elv(t) · V̇lv(t). (51)

To eliminate V̇lv(t), the combination of Equations (9), (10) and (13) during342

ejection yields:343

V̇lv(t) = −Plv(t)− Pao(t)

Rav
. (52)
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The algebraic system formed by Equations (5), (49), (50), (51) and (52) counts344

five equations and five unknowns Rav, Plv(t), Vlv(t), Ṗlv(t), V̇lv(t). Solving this345

system shows that it has a unique solution at each instant. This outcome, in346

turn, guarantees the identifiability of the parameter Rav. The parameter Rpv347

can also be computed using the same manipulation on the right ventricle and348

pulmonary artery.349

All thirteen model parameters have thus been shown to be computable from350

the selected set of model outputs, which implies that the six-chamber CVS351

model is structurally globally identifiable from this set of model outputs. For352

a better understanding, the demonstration exposed above is summarized in353

Table 1. Each model parameter involved is linked with the equation(s) used to354

compute it from the output set y3.355

4. Discussion356

The aim of this work was to investigate the structural identifiability of a357

lumped-parameter CVS model, from three different output sets. The property358

of being structurally identifiable guarantees that all model parameters can be359

uniquely retrieved under the assumption of perfect measurements of the outputs.360

If a model cannot be shown to be structurally identifiable, performing parameter361

identification using real data is risky, because there is no guarantee that the362

resulting parameter values are unique.363

The first output set y1 contained volumes in all six model chambers and364

using it resulted in a case of structural non-identifiability. Two conclusions365
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Parameter Corresponding Equation(s)

Rsys (32)

Rpul (32)*

Elv (37)

Erv (37)*

Evc (40)

Epu (40)*

Eao (43)

Epa (43)*

Rtc (6), (44), (45), (46) and (47)

Rmt (5), (44)*, (45)*, (46)* and (47)*

SBV (48)

Rav (5), (49), (50), (51) and (52)

Rpv (6), (49)*, (50)*, (51)* and (52)*

Table 1: Summary of the demonstration of structural identifiability of the six-chamber CVS

model. The asterisk (*) denotes the right or pulmonary circulation counterpart of an equation.

can be derived from this result. First, the model will also be structurally non-366

identifiable from any output set that is a subset of y1, i.e. that contains only367

volumes in part of the model chambers. Second, it can be stated that a good368

output set for this CVS model has to contain more information than only vol-369

umes.370

Similarly, the second output set y2 contained pressures in all six model371
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chambers and also resulted in a case of structural non-identifiability. This sec-372

ond result implies that the model will also be non-identifiable from an output set373

containing only pressures in part of the model chambers and that a good output374

set for this CVS model must include more information than only pressures.375

Taking these two observations together results in the conclusion that a good376

output set for this CVS model must combine information on both pressures and377

volumes for the model to stand a chance to be structurally identifiable. How-378

ever, due to the lumped nature of the model and technical limitations, chamber379

volumes are actually very difficult to measure. Hence, only one (unavoidable)380

volume measurement, stroke volume, was included in the third output set y3.381

The rest of the set consisted of arterial and venous pressures, both on the sys-382

temic and pulmonary sides. The model was then showed to be structurally383

identifiable from this output set.384

Plots of the error function associated to the third output set helped illustrate385

that the non-identifiability cases vanished for this output set. However, the386

plots of Figures 4 and 5 do not constitute by themselves a demonstration of387

identifiability. To demonstrate identifiability from plots of the error function388

would require the impossible task of plotting the 13-dimensional error function389

for all parameter values. This is the reason why the mathematical demonstration390

of Section 3.4 was performed.391

The measurements contained in y3 can easily be obtained in an intensive care392

unit setting. First, stroke volume is generally determined using transpulmonary393

thermodilution techniques [22]. Second, systemic arterial pressure and vena394
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cava pressure can be obtained using arterial and central venous lines [9]. Finally,395

pulmonary arterial and venous pressures can be measured using a pulmonary396

occlusion catheter, which is the most invasive of these instruments [23].397

The six-chamber CVS model was thus shown to be structurally globally398

identifiable from a limited output set containing arterial and venous pressures399

and stroke volume. However, this limited measurement set might still be re-400

duced. It would thus be useful to investigate the structural identifiability of all401

model parameters from other output sets, either smaller or containing different402

outputs.403

To reduce the number of model outputs, additional assumptions may be404

suitable. For instance, these assumptions can take the form of the definition of405

a relation between parameters. Another way to reduce the size of the output406

set is to fix some model parameters to population values. For instance, valve407

resistances Rmt, Rav, Rtc and Rpv were observed to have a bad practical identi-408

fiability [8, 24]. A second demonstration, performed in Appendix A, shows that,409

if valve resistances are not identified, the remaining parameters can be identified410

using an output set y4 containing only aortic pressure Pao(t), pulmonary artery411

pressure Ppa(t) and stroke volume SV. In this case, venous pressures Pvc(t) and412

Ppu(t) do not have to be included in the outputs, which is a significant improve-413

ment. Fortunately, valve resistances might be determined a priori as population414

constants based on experimental tests or anthropomorphic data.415

It is also important to mention that, even if the present analysis was focused416

on a particular CVS model, the two non-identifiability cases mentioned in Sec-417
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tion 3 are not exclusive to the model of Burkhoff and Tyberg. Many other CVS418

models suffer the same non-identifiability cases, since they involve very similar419

equations.420

The demonstration presented in Section 3.4 is based on the equations of the421

present model, and thus, cannot be applied as such to other CVS models. How-422

ever, most CVS models are built from elements similar to those involved in the423

model of Burkhoff and Tyberg, for instance time-varying elastances (Equations424

(5) and (6)) and vascular resistances (Equations (7) and (8)). Consequently,425

Equations (32) and (37), that were developed to show the identifiability of these426

parameters, can be used with other models.427

5. Conclusions428

The six-chamber CVS model of Burkhoff and Tyberg [3] has been used to429

track the evolution of diseases in animal experiments [5–7]. However, this CVS430

model (and others) are not identifiable from any output set. In this work,431

two such cases of structural non-identifiability have first been presented. These432

cases occur when the model output set only contains a single type of information433

(pressure or volume).434

Thus, a specific output set was chosen mixing pressure and volume informa-435

tion and containing only a limited number of clinically available measurements.436

Then, by manipulating the model equations involving these outputs, it was437

demonstrated that the six-chamber CVS model is structurally globally identifi-438

able. This means that the model parameters are unique and can theoretically439
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be identified from the specified limited output set.440

A further simplification was made, assuming known cardiac valve resistances.441

Because of the poor practical identifiability of these four parameters, this as-442

sumption is usual. Under this hypothesis, the six-chamber CVS model is struc-443

turally identifiable from an even smaller dataset involving only aortic pressure,444

pulmonary artery pressure and stroke volume.445

The results of this work imply that parameter values computed from lim-446

ited but well-chosen datasets are theoretically unique. As a consequence, the447

parameter identification procedure can theoretically be performed on the model448

from such a well-chosen dataset. The model is thus fully suitable to be used for449

diagnosis.450
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[15] É. Walter, L. Pronzato, Identification of parametric models from experi-506

mental data, Communications and Control Engineering, Springer, 1997.507

[16] L. Ljung, System identification: theory for the user, P T R Prentice Hall,508

1987.509

[17] P. Docherty, J. G. Chase, T. Lotz, T. Desaive, A graphical method for510

practical and informative identifiability analyses of physiological models:511

A case study of insulin kinetics and sensitivity, BioMedical Engineering512

OnLine 10 (1) (2011) 39.513

[18] H. Suga, K. Sagawa, Instantaneous pressure-volume relationships and their514

ratio in the excised, supported canine left ventricle, Circulation Research515

35 (1) (1974) 117–126.516

[19] D. Stevenson, J. Revie, J. G. Chase, C. Hann, G. Shaw, B. Lambermont,517

A. Ghuysen, P. Kolh, T. Desaive, Beat-to-beat estimation of the continuous518

left and right cardiac elastance from metrics commonly available in clinical519

settings, BioMedical Engineering OnLine 11 (1) (2012) 73.520

[20] H. Pohjanpalo, System identifiability based on the power series expansion521

of the solution, Mathematical Biosciences 41 (12) (1978) 21 – 33.522

30



[21] R. Klabunde, A. Dalley, Cardiovascular physiology concepts, Lippincott523

Williams & Wilkins, 2004.524

[22] C. Hofhuizen, B. Lansdorp, J. G. van der Hoeven, G.-J. Scheffer, J. Lemson,525

Validation of noninvasive pulse contour cardiac output using finger arte-526

rial pressure in cardiac surgery patients requiring fluid therapy, Journal of527

Critical Care 29 (1) (2014) 161 – 165.528

[23] K. Abe, T. Mashimo, I. Yoshiya, Arterial oxygenation and shunt fraction529

during one-lung ventilation: a comparison of isoflurane and sevoflurane,530

Anesthesia & Analgesia 86 (6) (1998) 1266–1270.531

[24] J. A. Revie, D. J. Stevenson, J. G. Chase, C. E. Hann, B. C. Lambermont,532

A. Ghuysen, P. Kolh, G. M. Shaw, S. Heldmann, T. Desaive, Validation of533

subject-specific cardiovascular system models from porcine measurements,534

Computer Methods and Programs in Biomedicine 109 (2) (2013) 197 – 210,535

Control 2010 Special Edition.536

Appendix A. Demonstration of structural identifiability from the fourth537

output set538

In this section, identifiability of the six-chamber is demonstrated from a539

further reduced output set y4. To do so, a simplifying hypothesis is necessary,540

assuming known valve resistances. Thus, Rmt, Rav, Rtc and Rpv are assumed541

known and are not part of the parameter set. The reduced output set used here542

contains:543
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• pressure in the aorta Pao(t),544

• pressure in the pulmonary artery Ppa(t) and545

• stroke volume SV.546

In particular, this output set does not contain venous pressures. Left and right547

driver functions elv(t) and erv(t) are still assumed known.548

Appendix A.1. During Ejection549

The reasoning presented in 3.4.2 to obtain Equation (37) expressing Elv in550

terms of Pao(t), elv(t) and SV can be repeated here, since all these outputs551

are known. Left ventricular end-systolic elastance Elv is thus obtained using552

Equation (37).553

During cardiac ejection, left ventricular pressure is higher than aortic pres-554

sure (Plv(t) > Pao(t)) and pulmonary vein pressure (Plv(t) > Ppu(t)). Conse-555

quently, the combination of Equations (9), (10) and (13) can be written:556

V̇lv(t) = −Plv(t)− Pao(t)

Rav
(A.1)

Combining this equation with Equation (5) gives:557

V̇lv(t) = −elv(t) · Elv · Vlv(t)− Pao(t)

Rav
(A.2)

Since Pao(t), Elv, elv(t) and Rav are known, this linear differential equation558

with variable coefficients can be solved for Vlv(t) (during cardiac ejection). The559

initial condition required for solving is obtained from Equation (34). Once Vlv(t)560

is known, Plv(t) during ejection can be computed using Equation (5). It will be561

used further in the demonstration.562
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During ejection, the combination of Equations (7), (10) and (14) gives:563

V̇ao(t) =
Plv(t)− Pao(t)

Rav
− Pao(t)− Pvc(t)

Rsys
. (A.3)

Multiplying both sides of this equation by Eao and using the fact that Pao(t) =564

Eao · Vao(t) yields:565

Ṗao(t) =
Eao

Rav
(Plv(t)− Pao(t))− Eao

Rsys
(Pao(t)− Pvc(t)). (A.4)

Differentiating this equation with respect to time then results in:566

P̈ao(t) =
Eao

Rav
(Ṗlv(t)− Ṗao(t))− Eao

Rsys
(Ṗao(t)− Ṗvc(t)). (A.5)

Then, taking into account that Prv(t) > Pvc(t) during ejection, Equations (2),567

(7), (11) and (15), can be used to substitute Ṗvc(t):568

P̈ao(t) = Eao

Rav
(Ṗlv(t)− Ṗao(t))

− Eao

Rsys

(
Ṗao(t)− Evc

Rsys
(Pao(t)− Pvc(t))

)
.

(A.6)

The same two steps can be repeated twice to obtain the following two equations:569

P
(3)
ao (t) = Eao

Rav
(P̈lv(t)− P̈ao(t))

− Eao

Rsys
· P̈ao(t)

+Eao·Evc

R2
sys

(
Ṗao(t)− Evc

Rsys
(Pao(t)− Pvc(t))

) (A.7)

570

P
(4)
ao (t) = Eao

Rav
(P

(3)
lv (t)− P (3)

ao (t))

− Eao

Rsys
P

(3)
ao (t)

+Eao·Evc

R2
sys

P̈ao(t)

−Eao·E2
vc

R3
sys

(
Ṗao(t)− Evc

Rsys
(Pao(t)− Pvc(t))

)
.

(A.8)

The algebraic system formed by Equations (A.4), (A.6), (A.7) and (A.8)571

counts four equations and four unknowns Pvc(t), Rsys, Eao and Evc (since Pao(t)572

33



and Plv(t) are known). Solving this system shows that it has a unique solution573

at each instant. This outcome, in turn, guarantees the identifiability of the three574

parameters Rsys, Eao and Evc. It also provides the time course of Pvc(t) during575

ejection.576

The reasoning that has been presented in this section can be extended to577

the right side of the circulation, thus proving the identifiability of parameters578

Erv, Rpul, Epa and Epu.579

Appendix A.2. During Isovolumic Contraction and Ejection580

During isovolumic contraction and ejection, the mitral and triscuspid valves581

are closed. Hence, Qmt(t) = Qtc(t) = 0. Combining Equations (7), (11) and582

(15) during this period gives:583

V̇vc(t) =
Pao(t)− Evc · Vvc(t)

Rsys
. (A.9)

This linear differential equation with variable coefficients can be solved for584

Vvc(t), since Pao(t), Evc and Rsys are now known. To obtain the required initial585

condition, a series of further manipulations is performed. First, at the time of586

tricuspid valve closing, vena cava pressure equals right ventricular pressure:587

Pvc(tTV C) = Prv(tTV C). (A.10)

Using Equations (2) and (6) then yields:588

Evc · Vvc(tTV C) = Erv · erv(tTV C) · Vrv(tTV C)

⇒ Vvc(tTV C) = Erv

Evc
· erv(tTV C) · Vrv(tTV C).

(A.11)
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On the other hand, the right or pulmonary side counterpart of Equation (34)589

is:590

Vrv(tPV O) =
Ppa(tPV O)

Erv · erv(tPV O)
(A.12)

where tPV O denotes the time of pulmonary valve opening. Using the fact591

that right ventricular volume does not change between tricuspid valve closing592

and pulmonary valve opening (Vrv(tTV C) = Vrv(tPV O)) to combine Equations593

(A.11) and (A.12) finally gives the needed initial condition:594

Vvc(tTV C) =
Ppa(tPV O)

Evc
· erv(tTV C)

erv(tPV O)
. (A.13)

As before, the approach applied here can be transposed to the other side of595

the circulation, which gives the time course of Vpu(t) during right ventricular596

isovolumic contraction and ejection. Finally, since Vlv(t), Pao(t), Vvc(t), Vrv(t),597

Ppa(t) and Vpu(t) are now available during ejection, SBV can be computed from598

its definition (Equation (20)):599

SBV = Vlv(t) + Pao(t)
Eao

+ Vvc(t)

+ Vrv(t) +
Ppa(t)
Epa

+ Vpu(t).

(A.14)

The 9 model parameters of interest can thus be computed from the restricted600

set of model outputs y4. The analysis presented in this section is summarized601

in Table A.2 for clarity.602
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Parameter Corresponding Equation(s)

Rtc Known

Rav Known

Rmt Known

Rpv Known

Elv (37)

Rsys (A.4), (A.6), (A.7) and (A.8)

Eao (A.4), (A.6), (A.7) and (A.8)

Evc (A.4), (A.6), (A.7) and (A.8)

Erv (37)*

Rpul (A.4)*, (A.6)*, (A.7)* and (A.8)*

Epa (A.4)*, (A.6)*, (A.7)* and (A.8)*

Epu (A.4)*, (A.6)*, (A.7)* and (A.8)*

SBV (A.14)

Table A.2: Summary of the demonstration of structural identifiability of the six-chamber

CVS model with known valve resistances. The asterisk (*) denotes the right or pulmonary

circulation counterpart of an equation.
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