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The Antarctic fungal strain Aspergillus glaucus 363 produces cold-active (CA) Cu/Zn-

superoxide dismutase (SOD). The strain contains at least one gene encoding Cu/Zn-SOD

that exhibited high homology with the corresponding gene of other Aspergillus species.

To our knowledge, this is the first nucleotide sequence of a CA Cu/Zn-SOD gene in fungi.

An effective laboratory technology for A. glaucus SOD production in 3 L bioreactors was de-

veloped on the basis of transient cold-shock treatment. The temperature downshift to

10 �C caused 1.4-fold increase of specific SOD activity compared to unstressed culture.

Maximum enzyme productivity was 64 � 103 U kg�1 h�1. Two SOD isoenzymes (Cu/Zn-

SODI and Cu/Zn-SODII) were purified to electrophoretic homogeneity. The specific activity

of the major isoenzyme, Cu/Zn-SODII, after Q-Sepharose chromatography was 4000 U mg
�1. The molecular mass of SODI (38 159 Da) and of SODII (15 835 Da) was determined by

electrospray quadropole time-of-flight (ESI-Q-TOF) mass spectrometry and dynamic light

scattering (DLS). The presence of Cu and Zn were confirmed by inductively coupled plasma

mass spectrometry (ICP-MS). The N-terminal amino acid sequence of Cu/Zn-SODII revealed

a high degree of structural homology with Cu/Zn-SOD from other fungi, including Aspergil-

lus species.

ª 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
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disorders, and, cardiovascular disease, as well as ageing (see

Rowe et al. 2008).

There are four types of SODs grouped according to their

catalytic metal cofactor: Cu/Zn-SOD, Mn-SOD, Fe-SOD, and

Ni-SOD (Youn et al. 1996; Fridovich 1998).

As is typical for eukaryotes, the filamentous fungi possess

two different, evolutionary unrelated forms of SOD, Mn- and

Cu/Zn-containing enzyme. Both isoenzymes have been deter-

mined in different fungal species, belonging to the genera As-

pergillus, Penicillium, Cladosporium, Mucor, Fusarium, and

Alternaria (Angelova et al. 2005), Neurospora crassa (Chary

et al. 1994), Humicola lutea (Krumova et al. 2008), various path-

ogenic fungi (see Fernandes et al. 2008). Only Cu/Zn-SOD has

been found in cells of Aspergillus niger 26 (Abrashev et al.

2008; Dolashki et al. 2008). Mn-SOD has been isolated as a sin-

gle isoenzyme from the thermophilic fungus Chaetomium ther-

mophilum (Guo et al. 2008), the entomopathogenic fungus

Beauveria bassiana (Xie et al. 2012), Candida albicans (Lamarre

et al. 2001), and several other fungi (Frealle et al. 2006).

The potential therapeutic applications of SOD are based on

its scavenging action on the toxic �O2
� that may occur in dif-

ferent pathological states. This enzyme might interrupt in-

flammatory cascades in the cells and thereby limit further

disease progression. As has been reviewed by El Shafey et al.

(2010), SOD is very useful for the treatment of systemic inflam-

matory diseases, skin ulcer lesions, degenerative diseases,

radiation-induced side effects such as radiation-induced scle-

rosis and radiation-induced fibrosis (following irradiation for

treatment of breast cancer), for stimulation of hair growth,

and to reduce hair loss etc. Purified enzyme is used in many

pharmaceutical compositions for treatment of diseases in-

cluding myocardial ischaemia, Peyronie’s Disease, multiple

sclerosis, colitis, diabetic retinopathy, etc (El Shafey et al.

2010; Raimondi et al. 2010).

The use of exogenous antioxidant, for example SOD, in the

assisted reproductive technology (ART) procedures prevents

the deleterious effects of oxidative stress on sperm viability

and protects functional parameters of spermatozoa (Alvarez

2012; Atig et al. 2012; Agarwal et al. 2014).

In contrast to the industrial use of SOD, the enzyme used

therapeutically has to maintain its catalytic activity at lower

temperatures. Cold-active (CA) enzymes are known to retain

high conformational flexibility at low temperature (Feller &

Gerday 2003; Feller 2013). In recent years these enzymes raised

great interest in the area of science and biotechnology. Cold-

adapted microorganisms are known as good producers of

cold-tolerant enzymes (Brenchley 1996; Joseph et al. 2008;

Margesin et al. 2008; Nam & Ahn 2011; Feller 2013). Filamen-

tous fungi isolated from extreme cold environments synthe-

size CA amylase, xylanase, cellulase, phosphatase,

pectinase, lipase, etc (Hou et al. 2006; Kim et al. 2010;

Krishnan et al. 2011; Singh et al. 2012). High production of

cold-tolerant chitinase by Antarctic fungus Lecanicillium mus-

carium CCFEE 5003 has been reported (Fenice et al. 2012;

Barghini et al. 2013). These fungi could be suitable sources of

antioxidant enzymes, especially SOD, because of enhanced

level of free radicals caused by harsh conditions (very low

temperatures, wide thermal fluctuations, frequent freeze/

thaw cycles, extreme dryness, high salt concentrations, low
nutrient availability, high radiation) (Russell 2003, 2006;

Onofri et al. 2007; Chattopadhyay et al. 2011).

At the same time, CA SOD is very poorly investigated.

Zheng et al. (2006) isolated and characterized CA Fe-SOD

from the psychrophilic bacteria Marinomonas sp. NJ522. Later,

Pedersen et al. (2009) and Merlino et al. (2010) reported the

structure and flexibility of CA Fe-SOD produced by the cold-

adapted bacteria Aliivibrio salmonicida and Pseudoalteromonas

haloplanktis, respectively. But there are no published data

about CA SOD from fungi. No information is available also

on biotechnological production of such SOD and its applica-

tion for human in vitro fertilization.

Our previous results showed that the filamentous fungi

isolated from the permanent Bulgarian Antarctic base ʻSt.

Kliment Ohridskiʼ on Livingston Island synthesize CA SOD

(Tosi et al. 2010). The best producer among thirty tested

strains was Aspergillus glaucus 363. The present research

was designed to study in more details the conditions for

the production of a novel CA SOD by this Antarctic fungus.

To develop an effective laboratory technology we used

a new approach based on the relationship between oxida-

tive stress and cold shock. Furthermore, the study’s aim

was to purify the novel enzyme and to characterize it

structurally.
Materials and methods

Fungal strains, culture media, and cultivation

The fungal strain, Aspergillus glaucus 363 (having optimal

growth temperature at 25 �C), isolated from Livingston Is-

land (South Shetlands archipelago, Antarctica) (Tosi et al.

2010) was used for the experiments. The strain has been

deposited in the National Bank for Industrial Microorgan-

isms and Cell Cultures, Bulgaria (NBIMCC 8861). It is main-

tained at 4 �C on beer agar, pH 6.3. The composition of the

seed and production media was as described previously

(Angelova et al. 1996). Cultivation was performed in a 3 L

bioreactor ABR-09 developed and constructed by the for-

mer Central Laboratory for Bioinstrumentation and Autom-

atisation (CLBA) of the Bulgarian Academy of Sciences. The

bioreactor was equipped with temperature, pH, and dis-

solved oxygen (DO) automatic monitoring and control

equipment.

For the submerged cultivation, 74mL of seedmediumwere

inoculated with 6 mL spore suspension at a concentration of

2 � 108 spores mL�1 in 500 mL Erlenmeyer flasks. The cultiva-

tion was performed at 25 �C for 24 h on a rotary shaker

(220 rpm). For bioreactor cultures, 200 mL of the seed culture

was brought into the 3 L bioreactor, containing 1800 mL of

the production medium. The cultures were grown at 25 �C
with a stirrer speed of 400 rpm and air flow of 0.5 v.v.m. In

the time of the middle exponential phase (18 h), the tempera-

ture was reduced to 4 or 10 �C. This downshift was reached in

approx. 40 min. After an incubation of 6 h under cold stress

conditions, the temperature was upshifted to the optimal

value and the cultivation continued until the 72nd hour. The
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control variants were grown at optimal temperature during

the whole period.

Cell-free extract preparation and enzyme activity
determination

The cell-free extracts were prepared as previously described

in detail (Krumova et al. 2008). All steps were performed at

0e4 �C. SOD activity was measured by the nitro-blue tetrazo-

lium (NBT) reduction method of Beauchamp & Fridovich

(1971). One unit of SOD activity was defined as the amount

of enzyme required for inhibition of the reduction of NBT by

50 % (A560) and was expressed as units per mg protein

(U mg�1 protein).

SOD purification

Cell free extract from 36-h culture fromAspergillus glaucuswas

clarified by filtration through celite and Millipore’s device Pel-

licon XL Durapore 0.1, concentrated and fractionated by ultra-

filtration with Pellicon XL 10 (10 kDa). All purification steps

were carried out at 4 �C using an FPLC system (€AKTA purifier

GE Healthcare Life Sciences, USA).

Step 1. Superdex 100 column chromatography (gel filtra-

tion). Active fractions were concentrated and applied to

a column Superdex (10/300 GL), pre-equilibrated with

20 mM TriseHCl buffer with pH 7.8 including 100 mM

NaCl. The protein was eluted with the same buffer at

a flow rate of 0.25 mL min�1 at 4 �C.
Step 2. Phenyl-Sepharose column chromatography (hydro-

phobic interaction chromatography). For additional re-

moval of accompanying proteins, the active fraction from

Superdex column was brought to 40 % ammonium sul-

phate saturation (0.02 M potassium phosphate buffer at

pH 7.8). The dialysed enzyme solution was loaded onto

a Phenyl-Sepharose column equilibrated with the above

buffer at a flow rate of 120 mL h�1. The residual protein

was eluted with 15 % buffered solution of ammonium

sulphate.

Step 3. Q-Sepharose column chromatography (ion-ex-

change chromatography). The active peak fractions from

Phenyl-Sepharose column were pooled, concentrated,

and applied to a column of Q-Sepharose pre-equilibrated

with 20 mM TriseHCl buffer with pH 7.8 including

100 mM NaCl. Unbound enzyme protein was eluted with

the same buffer; bound enzyme protein (major isoenzyme)

was eluted with buffer containing 0.6 M NaCl. The enzyme

activity was recovered in both fractions (bound and un-

bound). At each stage of purification, active fractions

were analysed for SOD activity.
DNA isolation procedure

Fifteen millilitre yeast extract peptone-dextrose (YEPD) me-

dium (g L�1: yeast extract 10.0, peptone 20.0, glucose 10)

were inoculated with a single fungal colony and incubated

in 100 mL Erlenmeyer flasks. After incubation for 48 h on a ro-

tary shaker at 180e200 rpm and 25 �C the resulting pellet was
collected and washed with 5 mL 0.98 % saline solution. The

pellet was ground in a mortar with quartz sand. Twomillilitre

1� Tris-EDTA (TE) buffer (10 mM Tris/HCl, pH 8.0, 1 mM EDTA)

were added to the cell lysates and the homogenates dispensed

in Eppendorf tubes (500 mL tube�1). The DNA isolationwas per-

formed according to Maniatis et al. (1982). The DNA was puri-

fied via GFX columns (GE Healthcare, Little Chalfont,

Buckinghamshire, England). Its quality and quantity was

checked by measurement of the UV absorption, and used as

a template for PCR amplification experiments.

PCR conditions and DNA sequencing

The amplification was performed on an Eppendorf Mastercy-

cler personal thermocycler (Eppendorf AG, Hamburg, Ger-

many) using PuReTaq� Ready-To-Go� PCR beads

(Amersham Biosciences, Piscataway, NJ, USA). The final con-

centration of primers in the reaction mixture was

0.4 pmol mL�1. The concentration of the DNA matrix was

50 ng/25 mL (final volume of the reaction mixture).

The universal primers used for fungal 18S rDNA amplifica-

tionwere PFf (AGGGATGTATTTATTAGATAAAAAATCAA) and

PFr (CGCAGTAGTTAGTCTTC AGTAAATC) (Jafger et al. 2000).

PCR conditions: initial step, 95 �C, 5min; amplificatione 35 cy-

cles, 95 �C, 30 s; 58 �C, 30 s; 72 �C, 45 s; extension step, 72 �C,
7 min.

The obtained PCR products were purified by the GFX� PCR

DNA and gel band purification kit (GE Healthcare). All DNA

amplified fragments were sequenced on an ABI Prism 310 Ge-

netic Analyser (Applied Biosystems, Foster City, CA, USA). The

reaction mixture for DNA sequencing contained 2 mL of puri-

fied PCR product (2 ng mL�1), 1.3 mL Big Dye� terminator kit v.

3.1, 2 mL 5� sequencing (Seq) buffer, 0.35 mL primers

(10 pmol mL�1). The volume was brought to 10 mL with distilled

water.

Comparative sequence analysis

The raw data obtained from the sequencing were checked for

errors by the program Sequence Scanner V1.0 (Applied Biosys-

tems). DNA sequences were formatted in a form suitable for

comparison by the BLAST analysis database of National Cen-

ter for Biotechnology Information (NCBI). The corresponding

protein sequences were established from the DNA sequence

using DNASTAR Inc., Madison,WI software. The pair andmul-

tiple sequence alignment were performed using ClustalW2.

Analytical methods

Soluble reducing sugars were determined by the Somo-

gyieNelson method (Somogyi 1952). Protein was estimated

by the Lowry procedure (Lowry et al. 1951) using solution of bo-

vine serum albumin as standard. The dry weight determina-

tion was performed on samples of mycelia harvested

throughout the culture period. The culture fluid was filtered

through a Whatman (Clifton, USA) No. 4 filter. The separated

mycelia were washed twice with distilled water and dried to

a constant weight at 105 �C.
The possible glycosylation of SODI and SODII was checked

by a qualitative modification of the colourimetric method of
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Dubois et al. (1956) in phenolesulphuric acid. Dynamic light

scattering (DLS)was performed on aDynaPro NanoStar instru-

ment (Wyatt Technology Corporation) operated in batchmode

at 20 �C and fitted with a laser beam emitting at 658 nm. Sam-

ples were filtered on Whatman Anotop 10 inorganic mem-

brane (0.02 mm cut off) and loaded into a 10 mL quartz

microcuvette. Scattering data were analysed using DYNAM-

ICS v. 7.1.1.3 software (Wyatt Technology Corp.). A globular

proteinmodelwas used formass estimation.Mass determina-

tion was performed on an electrospray quadropole time-of-

flight (ESI-Q-TOF) instrument (Waters, Micromass) in positive

ion mode. Samples (10 mM) were analysed in 30 % acetonitrile,

0.5 % formic acid, 25 mM ammonium acetate. Spectra decon-

volution technique of calculation was the maximum entropy

(Max ent1). The metal content of the purified proteins was de-

termined by inductively coupled plasma mass spectrometry

(ICP-MS) at the Malvoz Institute, Laboratory of Environmental

Chemistry (Li�ege, Belgium) for Cu, Zn,Mn, Fe, andNi. Differen-

tial scanning microcalorimetry was performed using a Micro-

Cal VP-DSC instrument at a scan rate of 60 K h�1 and under

w25 psi positive cell pressure. Samples were dialysed over-

night against 30 mM 3-(N-morpholino) propanesulfonic acid

(MOPS), 50 mM NaCl, pH 7.5. Both the sample and the refer-

ence buffer were brought to 0.5 M 3-(1-pyridinio)-1-

propanesulfonate (i.e. a nondetergent sulfobetaine) in order

to prevent aggregation. The N-terminal amino acid sequence

was determined by automated Edman degradation using

a pulsed-liquid-phase protein sequencer Procise 494 (Applied

Biosystems) fitted with an on-line phenylthiohydantoin

analyser.

Sodium dodecyl sulphate polyacrylamide gel electrophore-

sis (SDS-PAGE, 12 % gel) was used to verify the protein purity

of the enzyme under denaturing conditions, as was described

by Laemmli (1970). Protein marker was from Pharmacia (Swe-

den) with a broad range of 14e97 kDa. Protein bands were vi-

sualized by Coomassie brilliant blue R-250 (Bio-Rad, USA)

staining. Zones of SOD activity were stained with NBT using

10 % nondenaturing PAGE, as described by Beauchamp &

Fridovich (1971).

Results

Taxonomic identification of the fungal strain

Using classical taxonomy based on morphology, the producer

of CA SODwas previously identified asAspergillus glaucus (Tosi

et al. 2010). Molecular methods have been widely applied to
TTGCTGTCCTCCGTGGTGACTCCAAGATCA
CGACGAGAACTCTCCCACCACCGTCTCTT
GCCAAGCGTGGCTTCCATGTCCACCAGTT
CCGCTGGTCCTCACTgtatgtcctcttcccagtggtcac
TATGGCAAGACCCATGGAGCTCCTGAGGA
GTAACTTCGAGACCGATGCTGAGGGTAAC
TTATTAAGCTGATTGGTGCCGAGAGCGTT
gttaacagtgagctgacaacaatgttagCGGACCTTGGTC

Fig 1 e Partial nucleotide sequence of Cu/Zn-SOD gene from th

introns are indicated by lowercase letters.
the identification of a large number of Aspergillus species.

The study of the 18S rDNA sequences can provide important

complementary information for the definition of species and

their appropriate identification. In the present work, confir-

mation of the morphological identification by molecular

methods was done.

The molecular taxonomic affiliation of the investigated

Antarctic fungal strain was performed on the bases of the

comparison with 18S rDNA sequences of reference organisms

published in the gene sequence database of NCBI Data Bank.

The validation of the genotypic vs. the phenotypic analyses in-

dicated that the investigated strain is closely related to the

species A. glaucus.
Sequence analyses of the SOD gene

For the nucleotide sequence of the Cu/Zn-SOD gene, a pair of

oligonucleotide primers (AFCUF e

50TTGCTGTCCTCCGCGGTGACTC CA30 and AFCUR e

50ATGACACCACAGGCGGGACGAG30) was designed on the

basis of the Cu/Zn-SOD gene of Aspergillus fumigatus Af293

(Nierman et al. 2005). The PCR product (about 650 bp) obtained

from genomic DNA of the strain was electrophoretically ana-

lysed and found to have appropriate profile. It was purified

and sequenced. The obtained partial DNA gene sequence con-

sisted of 484 bp and is provided in Fig 1.

The BLAST analysis demonstrated similarity of the se-

quenced fragment with genes coding for enzymes with Cu/

Zn-SOD activity. It comprised two putative introns consisting

of 53 and 65 bases corresponding to the second and third in-

trons identified inA. fumigatus (Lima et al. 2007). The coding re-

gion (Fig 1) was aligned with the sequences in the NCBI

GenBank. Therewas 100 % identity of the nucleotide sequence

of the Cu/Zn-SOD gene obtained with the corresponding A.

fumigatus Af293 sequence NCBI Acc. No. XM_748622.1 and A.

fumigatus AF128886.1. Furthermore, the sequence identity of

the investigated gene with the Cu/Zn-SOD gene of Neosartoria

fishery (NCBI Acc. No. XM_001259765.1) was 98 % and the iden-

tity with the closest similar gene in Penicillium (Penicillium

chrysogenum Wisconsin 54-1255 NCBI Acc. No.

XM_002568648.1) was 84 %.

The deduced protein sequence consisted of 121 amino

acids (Fig 2). The protein sequence comparison by the BLASTP

2.2.26þ program revealed 100 % identity with Cu/Zn SOD

(SOD1) of the referent strain A. fumigatus Af293. The similari-

ties established with other members of the Cu/Zn-SOD en-

zyme’s superfamily varied between 100 % and 71 %.
CCGGCACTGTCACCTTCGAGCAGGC
GGAACATCAAGGGCAACGACCCCAAC
CGGTGACAACACCAACGGCTGCACCT
tctgagaaccagaactgaccgacctccagTCAACCCC
CTCCGAGCGCCATGTCGGTGACCTTG
GCCGTCGGCTCCAAGCAGGACAAGC

CTGGGCgtaagtttttttttttctgcagatggtaatgcataga
GTTCACGCCGGTACCGACGACC 

e Aspergillus glaucus 363 (GenBank: JN206685.1). The two



Fig 2 e Multiple alignment of the amino acid sequences of the metal binding region of Cu/Zn-SOD enzymes from different

fungi.
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The multiple sequence alignment analysis showed the ex-

istence of key amino acids’ residues responsible for Cu2þ

(His43, His45, His59, His116) and Zn2þ (His59, His67, His76,

Asp79) binding in positions cited by other researchers (Lin

et al. 2008). The comparison of the deduced amino acid se-

quence of Aspergillus glaucus strain 363 Cu/Zn-SOD protein

fragment with the similar proteins in different fungi demon-

strated very conservative structure of the active site regions

(Fig 2).
Production of CA SOD

During the course of previous investigation on Antarctic fungi,

a high level of CA SOD in Aspergillus glaucus 363 was detected

(Tosi et al. 2010). Furthermore, short-term treatment of expo-

nentially growing culture of A. glaucus 363 with low tempera-

tures enhanced the level of oxidative stress that resulted in

the activation of antioxidant enzyme defence (Kostadinova

et al. 2012). Based on the abovementioned findings, a transient

cold-stress was applied in order to increase the yield of the

first antioxidant enzyme SOD. Changes in biomass content,

glucose consumptions, intracellular protein synthesis, and

SOD production after 6 h temperature downshift and subse-

quent recovery at the optimum temperature were evaluated

(Fig 3). In the control experiment (Fig 3A), the growth (maxi-

mum d.w. 2.16 g/100 mL) and protein synthesis rose simulta-

neously until the 48 h of cultivation coinciding with a rapid

glucose uptake. Maximum SOD activity (about 29 U mg�1 pro-

tein) was recorded 36 h after inoculation. The transient expo-

sure to 10 or 4 �C (Fig 3B and C, respectively) caused a delay in

biomass formation and prolongation of the exponential

growth phase, a decrease in the protein level and activation

of antioxidant defence. Maximum mycelia growth of 1.9 and

1.8 g/100 mL, respectively, was achieved after 72 h of incuba-

tion. Thus, the biomass content was between 11 % and 17 %

lower than in the control variant. The same trend of decreas-

ing was observed for the intracellular protein content. In con-

trast, short-term treatment with cold temperatures resulted

in significant increase in SOD activity compared to the control

and this increase remained even after recovery of the optimal

temperature. The cultures exposed to 10 �C demonstrated

34 % higher specific SOD activity, while the antioxidant re-

sponse of the cold-treated cells at 4 �C resulted in 71 %
increase in SOD level. It should be noted that the maximum

enzyme activity in the cultures exposed to 4 �C was realized

after the 48th hour.
Comparison of the efficiency of SOD biosynthesis by
Aspergillus glaucus 363 grown under different conditions

Comparison of kinetic relations (substrate consumption and

product formation parameters) for CA SOD production be-

tween three variants of bioreactor cultures (control, cold

stress at 10 �C, and cold stress at 4 �C) is given in Table 1.

The results indicated that the highest value of the kinetic pa-

rameters for biomass and yield of proteinwere observed in the

control cultures. But, the application of 6 h cold stress resulted

in enhanced both specific and total SOD production. More-

over, enzyme yield coefficient (U g�1) and SOD productivity

(U kg�1 h�1) were significantly higher than in the unstressed

cells. Despite the reduced yield of biomass (g L�1) and protein

(mg L�1) after temperature downshift, the increased specific

SOD activity led to the enhanced value of total SOD activity

and enzyme yield coefficient (Yp/x). The Yp/x demonstrated

25 % and 28 % increase at 10 and 4 �C, respectively, compared

to the control. It should be noted however that this increase at

4 �C was detected later (after 48 h vs. 36 h at 10 �C). Thus, the
most effective SOD production was observed after cold stress

at 10 �C. As seen in Table 1, the SOD productivity is highest af-

ter exposure at 10 �C, compared to the control and to the cold

stress at 4 �C.
Purification of Aspergillus glaucus SODs

In a previous paper we reported the presence of three SOD iso-

enzymes in the cell-free extract from A. glaucus 363

(Kostadinova et al. 2012). They were designated as Mn-SOD,

Cu/Zn-SODI, and Cu/Zn-SODII in the order of their migration

towards the anode. The most abundant isoforms are Cu/Zn-

SODI and Cu/Zn-SODII. In the present study, the cell-free ex-

tract (1500 mL) obtained from 150 g fresh biomass (29 g d.w.)

was used in the experiments. The purification protocol in-

cluded concentration by ultrafiltration, gel filtration on Super-

dex 100, hydrophobic interaction chromatography on Phenyl-

Sepharose, followed by a final ion-exchange chromatography

on Q-Sepharose to produce a homogenous enzyme. Summary
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Fig 3 e Time courses of mycelia growth (6), SOD production (B), residual glucose (-), and intracellular protein content (C) in

the fungal cultures during fermentation in 3 L bioreactor. A e growth at optimal temperature; B e growth after 6 h cold stress

at 10 �C and the subsequent restoration of the normal conditions; C e growth after 6 h cold stress at 4 �C and the subsequent

restoration of the normal conditions.
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of purification procedures is presented in Table 2 and Fig 4A, B,

C. In the first step, Superdex fast flow gel filtration successfully

separated ultrafiltered solution into fractions by their molecu-

lar mass (Fig 4A). This chromatography enables the achieve-

ment of an 11-fold increase in the specific activity and

enzyme yield of 35 %. Further purificationwas achieved by hy-

drophobic interaction chromatography on Phenyl-Sepharose

column, giving rise to one active peak (Fig 4B) with specific ac-

tivity of 749 U mg�1 protein, which was 28.8-fold higher than

that of the crude enzyme with 8.1 % yield. PAGE analysis after

Superdex and Phenyl-Sepharose column showed that the ac-

tive peak contained also the above mentioned SOD bands

(Cu/Zn-SODI and Cu/Zn-SODII), except for Mn-SOD (Fig 5A,

lane 1; B, lane 1). These two enzymes were separated by
chromatography on Q-Sepharose (Fig 4C). The major isoen-

zyme, Cu/Zn-SODII, was purified to homogeneity with a spe-

cific activity of 4000 U mg�1, 153-fold purification, and an

overall activity yield of 9.7 % (Fig 5A, lane 2; B, lane 2). The mi-

nor isoenzyme, Cu/Zn-SODI, gave a specific activity of

610 U mg�1 with 23-fold purification and 0.65 % yield (Fig 5A,

lane 3; B, lane 3).

Characterization of Aspergillus glaucus SODs

Table 3 summarizes the results of SODI and SODII character-

ization. The possible protein glycosylation was checked by

a qualitative colourimetric method in phenolesulphuric

acid. SODI responded positively to this test whereas SODII



Table 1 e Comparison of SOD productivities in unstressed and cold-stressed culturesa.

Cultivation
systema

Cultivation
time [h]

DWb

[g L�1]
Yield of proteinc

[mg L�1]
Specific SOD

activityd

[U (mg protein)�1]

Total SOD
activitye

[U L�1] � 103

Yield coefficientf

(Yp/x) [U g�1] � 103
SOD productivityg

[U kg�1] h�1 � 103

Unstressed

culture

36 17.52 1095.00 29.5 32.3 1843.7 51.3

Stressed

culture

10 �C 36 14.52 845.38 39.5 33.4 2299.7 63.89

4 �C 48 14.74 680.72 51.1 34.7 2363.1 49.2

a A. glaucus was cultivated as unstressed and stressed (4 h at 10 or 4 �C; see Materials and methods) cultures.

b Biomass content as dry weight at the time of harvest.

c Yield of protein is calculated as mg intracellular protein in the dry biomass, produced per litre of culture medium.

d Activities at the time of harvest.

e Total SOD activity is calculated as amount of enzyme per dry weight biomass, produced per litre of culture medium.

f SOD yield coefficient is calculated as amount of enzyme per kg dry biomass.

g SOD productivity is calculated as amount of enzyme per kg dry biomass produced per hour.
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was found to be free of glycosylation. The size distribution of

both SODs in solution was analysed by DLS. The hydrody-

namic radius of SODI (2.9 nm) can accommodate a modelled

globular protein of about 40 kDa and the radius of SODII

(1.8 nm) corresponds to a globular protein of about 14 kDa.

Furthermore, the low polydispersity parameter (distribution

of sizes) below 10 % for both SODs indicates monodisperse

and very homogenous monomer populations, without evi-

dence for dimers or higher oligomers. The mass of both

SODs was determined more precisely by ESI-Q-TOF mass

spectrometry. The mass of SODI (38 159 Da) and of SODII

(15 835 Da) confirmed the estimates provided by DLS.

Themetal content of both SODswas further determined by

ICP-MS. In the case of SODII, ICP-MS indicates a 1/1molar ratio

(metal/protein) for Cu and Zn, without significant amounts of

Fe, Mn or Ni. Accordingly, this low molecular weight (MW)

SOD clearly belongs to the Cu/Zn-SOD type. For SODI, the fol-

lowing molar ratios (metal/protein) were found: Cu ¼ 0.7;

Zn ¼ 0.4; Mn ¼ 0.16. These ratios suggest that the high MW

SOD is also a Cu/Zn-SOD. These low ratios also suggest that

its metal binding affinity is weak, resulting in the loss of metal

ions during the purification process as both metals were lack-

ing in the buffers. Finally, the melting temperature Tm was

recorded by differential scanning calorimetry. SODII displays

a Tm value of 80 �C and therefore its structure is rather stable
Table 2 e Purification of Cu/Zn-SOD from A. glaucus cells.

Step Total SOD
activity
(units)

Specific SOD
activity
(U mg�1)

Yield
(%)

Purification
(fold)

Cell-free extract 66 838 26 100 1.0

Superdex 7887 142 35 11.8

Phenyl-Sepharose 5416 749 8.1 28.8

Q-Sepharose I

peak

6500 4000 9.7 153.4

Q-Sepharose II

peak

430 610 0.65 23.5
to temperature. By contrast, SODI is more heat-labile

(Tm ¼ 54 �C). This can explain the low metal content of SODII

as heat-labile psychrophilic proteins generally bind their co-

factors with low affinity (Feller 2013).

The N-terminal amino acid sequence of SODII determined

by automated Edman degradation corresponded to VKA-

VAVLRGDSKITG. A BLAST search (http://web.expasy.org/

blast/) of this sequence against the whole databases retrieved

only Cu/Zn SODs from fungi, including Aspergillus species. All

these SODs are small proteins (153e155 amino acids, includ-

ing the initial formyl-methionine), with masses in the range

15 800e15 900 Da and binding one Cu ion and one Zn ion.

More specifically, this sequence is 100 % identical to N-termi-

nal sequences of the fungiHumicola lutea,Aspergillus fumigatus,

Thermoascus aurantiacus, and Aspergillus fischerianus. Attempts

to determine the N-terminal sequence of SODI were

unsuccessful.
Discussion

Antarctica constitutes a large unrevealed reservoir of cold-

adapted organisms, including fungi that can be exploited as

producers of valuable thermo-sensitive enzymes. Our previ-

ous studies evidenced that Antarctic fungi possess powerful

enzymatic systems and synthesized CA antioxidant enzymes,

SOD, and catalase (Tosi et al. 2010). The present paper reports

that Aspergillus glaucus 363 is an effective producer of Cu/Zn-

SOD. The strain contains at least one gene encoding Cu/Zn-

SOD that exhibited high homology with the corresponding

gene of Aspergillus fumigatus Af293 and A. fumigatus

AF128886. To our knowledge, this is the first nucleotide se-

quence of a CA Cu/Zn-SOD gene in fungi. Identification of

genes encoding CA SOD synthesis is very seldom published.

Until now, such identification has been carried out in bacterial

strains Aliivibrio salmonicida (Fe-SOD, sodB) and Psychromonas

arctica (Pedersen et al. 2009; Na et al. 2011).

Although A. glaucus 363 was isolated from samples taken

from Antarctica, this strain belongs to themesophilic temper-

ature group (Tosi et al. 2010). Mesophilic fungi have been found

in different cold ecosystems (Margesin et al. 2008). According

http://web.expasy.org/blast/
http://web.expasy.org/blast/


Fig 4 e Chromatographic patterns observed during purifi-

cation of A. glaucus SOD. SOD samples were applied to

a column of Sephadex (A), Phenyl-Sepharose (B), and

Q-Sepharose (C).

Fig 5 e PAGE analyses of A. glaucus SOD isoenzymes after

different step of purification. (A) SDS-PAGE and protein

staining; (B) native PAGE staining for activity. PSt e protein

standards; 1 e after Phenyl-Sepharose column; 2 and 3 e

after Q-Sepharose chromatography.
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to Zucconi et al. (1996), such fungi can be assigned to dominant

indigenous or mesophilic psychrotolerant species. Moreover,

the produced SOD by A. glaucus 363 retains psychrophilic

characteristics. The majority of CA enzymes of microbial
origin are produced by psychrophilic or psychrotolerant

strains. However, some mesophilic microorganisms can also

synthesize thermo-sensitive enzymes. A similar phenomenon

has been reported for CA lipase found in mesophilic bacteria,

yeasts, and fungi (see Yuan et al. 2010; Bae et al. 2014). The

mesophilic fungal strain Trichoderma reesei produces several

thermo-sensitive hydrolases (Nevaleinen et al. 2012).

Generally, more reactive oxygen species (ROS) are pro-

duced in stressed cells, which cause cellular damages. The

overexpression of SODs can lead to protection against specific

stresses, implying that SOD may be the first line of defense

against ROS (Fridovich 1998). The present results suggest

that manipulation of the cell redox state allows the develop-

ment of fungal cultures with improved antioxidant defence

(Fig 3). Besides the transient character of the cold stress, the

enhancement of SOD activity was observed until the end of

cultivation. Our previous studies have demonstrated that

the increased level of ROS generated during the temperature



Table 3 e Characterization of A. glaucus SODs.

SODI SODII

Glycosylation þ �
Hydrodynamic radius 2.9 nm 1.8 nm

Polydispersity 10 % 6 %

Mass by ESI-Q-TOF 38 159 � 4 Da 15 835 � 2 Da

Metal content (molar ratio)

Cu 0.7 1

Zn 0.4 1

Melting point 54 �C 80 �C
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downshift induced SOD biosynthesis in A. glaucus 363

(Kostadinova et al. 2012). Similar approach has been used for

improving SOD activity in different pro- and eukaryotic organ-

isms (Smirnova et al. 2001; Baek & Skinner 2012; Kayihan et al.

2012; Xu et al. 2013). High ROS concentrations generated by ex-

posure to H2O2, high DO, and superoxide-generating chemi-

cals were reported to cause activation of SOD synthesis

(Angelova et al. 2005; Li et al. 2009). According to Baez &

Shiloach (2013), superoxide stress regulator (SoxRS) and SOD

are the main defence mechanism that protects bacteria from

the toxic effects of high oxygen saturation.

Due to the wide range of SOD applications, numerous di-

rect and indirectmethods have been developed for production

of mesophilic enzyme. Both native and recombinant SODs are

now available (Xie et al. 2010; Zhu et al. 2013; Tuteja et al. 2015).

Despite great efforts, efficient production of recombinant SOD

in heterologous host has failed because of deficit in its metal

cofactors (Bafana et al. 2011). Thus, more efficient microbial

technologies need to be elaborated. Indeed, there is no infor-

mation also about technology for CA SOD production. We

used the relationship between low temperature treatment

and enhanced antioxidant defense to develop a laboratory

technology for effective production of CA SOD by the fungus

A. glaucus 363. Our results showed that the cold-stress biopro-

cessing strategy led to significant increase in enzyme yield.

This strategy could be useful for large-scale efficient produc-

tion of CA SOD. There is no information about the transient

temperature downshift application for improvement of SOD

yield in biotechnological process. Zhu et al. (2013) reported

the positive effect of NH4
þ and Mn2þ ions on the production

of hyperthermostable Mn-SOD in 5 L bioreactors. This is an-

other bioprocessing strategy that is based on the metal ions-

induced oxidative stress. Our previous studies demonstrated

a significant increase in the yield of mesophilic SOD in biore-

actor cultures by using both an exposure to 20 % DO level or

glucose-feeding technology (Angelova et al. 2001; Krumova

et al. 2007). Our study offers a simple and effective procedure

for CA SOD purification. The specific activity of the major iso-

enzyme Cu/Zn-SODII was improved by 150 % while total pro-

tein content was decreased by more than 90 %. Such specific

activity (4000 U mg�1) is comparable or even higher than the

activity of commercial mesophilic Cu/Zn-SOD.

In addition to the partial gene sequence of Cu/Zn-SODII, all

structural parameters (mass, metal content, N-terminal se-

quence) relate this major SOD enzyme from A. glaucus to
homologous SODs specifically found in fungi. For instance,

the closest homologue from A. fumigatus Af293 (based on nu-

cleotide and N-terminal sequences) is a small Cu/Zn-SOD (153

amino acid residues, formyl-Met removed) of 15 835 Da, in

perfect agreement with the experimentally determined mass

of Cu/Zn-SODII. By contrast, identification of the high MW

Cu/Zn-SODI from A. glaucus requires further investigations.

The experiments with purified enzyme demonstrated its

protective effect on normozoospermic and oligo-astheno-

teratozoospermic male partner’s semen samples undergoing

manipulation procedures for in vitro fertilization (unpublished

data).

Conclusion

Taken together, our results presented an effective laboratory

technology for production of CA SOD by the Antarctic fungus

Aspergillus glaucus 363. The major isoenzyme Cu/Zn-SODII is

a 15.8 kDa protein, closely related to some homologous SODs

from fungi. The purification protocol allows obtaining enzyme

with 4000 U mg�1 specific activity that is comparable or even

higher than the activity of commercial mesophilic SOD. These

findingsmakeA. glaucus 363 worthy of further investigation in

larger scale operations. The purified CA enzyme SOD reported

in the present work would be boon for application in ART.
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