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In this work, the manipulation of an electrically charged droplet bouncing on a vertically vibrated bath is
investigated. When a horizontal, uniform, and static electric field is applied to it, a motion is induced. The
droplet is accelerated when the droplet is small. On the other hand, large droplets appear to move with a
constant speed that depends linearly on the applied electrical field. In the latter regime, high-speed imaging
of one bounce reveals that the droplet experiences an acceleration due to the electrical force during the
flight and decelerates to 0 when interacting with the surface of the bath. Thus, the droplet moves with a
constant average speed on a large time scale. We propose a criterion based on the force necessary to move a
charged droplet at the surface of the bath to discriminate between constant speed and accelerated droplet
regimes.
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Open microfluidics aims to transport and manipulate
droplets. The transport should be quick, without alteration
of the droplet content, and should allow one to perform
operations including sorting, mixing, and analyzing the
fluids. Open devices were demonstrated to be an interesting
way to perform these different tasks, especially for micro-
chemical analysis purposes [1]. In Ref. [2], Seo et al.
created a platform that allows one to manipulate a single
droplet on a flexible superhydrophobic surface. The path
followed by the droplet is fully programmable. In the same
spirit [3], Katsikis et al. developed a system that can
manipulate numerous droplets on a surface using a mag-
netic field. The surface is patterned with magnetic elements
that define tracks followed by the droplets in the manner of
an electronic circuit. In this Letter, we show that a charge
droplet can be manipulated at the surface of a vibrated bath
of oil. The main advantage is that a droplet is never in
contact with the surface while the programmability of the
path is preserved.
Methods have been developed to study charged droplets

in nonconductive liquids [4]. But, the study of a charged
droplet in air has been limited to small charged droplets via
electrodynamics [5] or acoustic traps [6]. We propose a
method to manipulate an electrically charged droplet on a
vertically vibrating bath of oil, i.e., without any contact
between the liquid and the charged droplet.
The vibrating bath storage system is based on delayed

coalescence. When a droplet falls on a liquid bath, the
intervening air layer takes a finite time to drain from
underneath the droplet. On the other hand, when the bath
oscillates above a certain amplitude and frequency, the
droplet may bounce and the air layer is regenerated at
each bounce [7]. In the case of a high viscosity liquid bath
(more than 200 mm2=s), the bath can be considered
“rigid” [8] and the droplet bounces at the same place on
the bath.

We have chosen a bath of silicone oil whose cinematic
viscosity is 1000 mm2=s as in Ref. [8]. The charged droplet
was made of silicone oil with a smaller viscosity, i.e.,
1.5 mm2=s. Electrically charged droplets are created in a
horizontal plane capacitor as described in Ref. [9]. In the
present case, the oil being a bad electrical conductor, charge
induced in the droplet depends on the purity of the liquid
and on the droplet generation time. In order to ensure a
minimum conductivity of the silicone oil, a small amount of
ethanol (less than 1%) was added to the liquid used to
generate the electrically charged droplets. The charge of
the droplets was measured before and after using a
Faraday cup.
The droplet radius rwas tuned between 0.35 and 0.9 mm

while the measured charge carried by the droplet was in the
range between 11 and 20 pC. The characteristic discharge
time can be estimated, considering the ratio between the air
electrical permittivity ε0 and conductivity of the droplet σd,
to be 350 s. Therefore, during one experimental run (5 s),
the charge and the radius do not change. For our experi-
ments, letting the charged droplet evaporate while being
stored on the oscillating bath allowed one to vary the
droplet radius. Given the previously calculated time for
the discharge, we assume the charge is conserved while the
droplet slowly evaporates.
The vertical acceleration threshold of the bath needed to

observe a droplet bounce depends on the frequency and on
the droplet size and viscosity [10]. We found that the
threshold is not affected by the charge carried by the
droplet. In the following, all the experiments were per-
formed at a frequency f ¼ 40 Hz and an acceleration of
11.7 m=s2 (minimum acceleration for the bouncing of the
largest considered droplets).
To apply an electric field onto the electrically charged

droplet, two plane electrodes were placed on opposite sides
of the bath [see the sketch in Fig. 1(a)]. The use of two large
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(compared to the droplet size) planar electrodes
(60 × 45 mm) separated by 53 mm allowed obtaining a
homogeneous electric field between the electrodes to
prevent dielectrophoresis effects.
We begin by presenting the macroscopic droplet motion,

i.e., on a time scale much larger than the period of one
oscillation. Then, we investigate the influence of the
applied voltage and the droplet size. Finally, the mechanism
of the droplet motion is determined by analyzing the
trajectory of the droplet during one oscillation.
The droplet moves along the x direction when a voltage

is applied between both electrodes. The data of Fig. 2(a)
correspond to the trajectories of the droplet taken from the
experiments for which the voltage was varied while the
radius was kept constant (i.e., 0.8 mm). A charge q of 15�
5 pC was measured for this set of experiments. The grey
triangles, green bullets, and brown squares correspond to
applied voltage V of 2000, 3000, and 4000 V, respectively.
The data of Fig. 2(b) correspond to trajectories taken from
experiments for which the droplet size was varied while the
voltage between the electrodes V ¼ 1000 V was kept
constant. Open circles, triangles, and squares correspond
to droplets of 0.56, 0.60, and 0.70 mm of radius, respec-
tively. A charge of 14� 3 pC was measured during this set
of experiments.
From these data, we deduce the following general trends:

(i) large droplets (r > 0.5 mm) have a constant speed, and
this constant speed is acquired very quickly after the
voltage on the lateral electrodes is switched on; (ii) for
large droplets, the droplet speed increases with the applied
voltage; and (iii) when the size of the droplets decreases

(r < 0.5 mm), the second derivative of the trajectory
increases. In the Supplemental Material, a movie of each
behavior is shown in Ref. [11].
To determine the crossover point between the accelerated

and the constant speed regimes, the trajectories of electri-
cally charged droplets (14 pC) were recorded for several
radii during evaporation and the voltage between the
electrodes was kept at 1000 V. As a first approach, the
trajectories were fitted by a parabola xðtÞ ¼ at2 þ btþ c
which can be considered as the first terms of the develop-
ment of any exact solution. The parameters a (the second
derivative) and b (the slope of the trajectories) are reported
as a function of the droplet radius in Fig. 2(c). The
parameter a (red crosses) increases when the droplet size
decreases. The increase is suddenly rapid at r ≈ 0.5 mm
showing a change of behavior for r ≈ 0.5 mm.
In order to investigate the surprising constant speed

motion which was observed in Fig. 2(a), we have studied
the influence of the applied voltage on the droplet velocity.
The dependence on the applied voltage for a large droplet
was determined by using a droplet of r ¼ 0.8 mm charged
with q ¼ 11� 2 pC. The droplet speed as a function of
the applied voltage between the electrodes is reported in
Fig. 2(d). As seen previously [Fig. 2(a)], the higher the

FIG. 1. (a) Sketch of the vibrating bath device (see description
in the text). (b) Image sequence of the drop during one bounce.
Images are spaced by 3.125 ms. The droplet has a radius of
0.9 mm, and the applied voltage V is 5000 V. The electrical field
is oriented from left to right, and the droplet is charged positively.
The bath is vibrated at 40 Hz.

FIG. 2. (a) The trajectories xðtÞ corresponding to charged
droplets (q ¼ 15 pC and r ¼ 0.8 mm) under 2000 V
(grey triangles), 3000 V (green bullets), and 4000 V (red
squares). (b) Horizontal position x over the time of 14 pC
charged droplets of radius 0.70 mm (open squares), 0.60 mm
(open triangles), and 0.56 mm (open circles). (c) Dependence
of the fitting parameters a (red crosses) and b (green squares)
from fit with xðtÞ ¼ at2 þ btþ c, as a function of the drop
radius r. The red curve was computed according to Eq. (3).
The hatching describes the crossover between the two kinds of
drop motion (i.e., when the acceleration is considered negligible
or not). All the experiments were made at V ¼ 1000 V. (d) Speed
v of a charged droplet (q ¼ 11 pC and r ¼ 0.8 mm) as a function
of the voltage between both electrodes. The error bars are the
standard deviation on ten experiments. The red line is a fit based
on Eq. (3).
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voltage, the higher the speed. The measurements show that
v is proportional to the voltage V.
To summarize, the motion of small droplets is accel-

erated while bigger droplets move with a constant speed. In
the case of big droplets, the measurements performed at a
time scale of few seconds do not present any transient
regime between the droplet at rest and the constant speed
regime. As soon as the voltage is switched on, the droplet
moves with a constant speed. We deduce that the origin of
the constant speed is to be found on the time scale of one
bounce. The conclusion is that the system cannot be
modeled by a charged object only influenced by an electric
force and a simple law of friction. The interaction between
the droplet and the bath has to be taken into account at each
bounce.
The droplet motion during one bounce is therefore

investigated. A high-speed camera (Phantom Miro
M-310) was placed on the side of the oscillating bath in
order to capture the motion of the droplet in the x − z plane.
The details of charged droplet (r ¼ 0.9 mm and
19� 5 pC) bounces are shown in Fig. 1(b) [11]. The
voltage between both electrodes was set on 5000 V. The
displacement of the center of mass of the charged droplet is
represented on Fig. 3(a). The z position (vertical) and the x
position (horizontal) are represented by green crosses and
grey circles, respectively. Along the z axis, the drop
bounces with a frequency of 40 Hz, namely, the same
frequency as the oscillating bath. Between two cushioned
impacts with the bath, the droplet center of mass experi-
ences successive parabolic flight in the z direction. The xðtÞ
trajectory reveals a more complex structure than the
macroscopic trajectory xðtÞ presented in Fig. 2(a).
Indeed, the microscopic behavior of xðtÞ is the succession
of the same pattern. Note that this kind of pattern is not
observed for small droplets (r < 0.5 mm) for which the
trajectory is more complex.
To simplify, the motion of the droplet in the horizontal

direction x can be decomposed into two distinct steps. Step
I: When the droplet is in flight, it is submitted to the

electrical force and moves in the horizontal plane, which
corresponds to an accelerated movement. Step II: When the
droplet interacts with the bath, the droplet has nearly no
movement in the horizontal direction. As a result of steps I
and II, the droplet experiences a go-stop motion. This kind
of decomposition has been used to describe walkers [12] or
even the skipping stone motion [13].
The horizontal motion xðtÞ was analyzed by averaging

the superposition of the periodic motion. The results are
shown in Fig. 3(b) as a function of the phase ωt (ω ¼ 2πf).
The droplet dynamics is then decomposed into steps I and
II. To have access to the time scales of each step, we have to
describe the bouncing mode of the charged droplet. As a
first approximation, a bouncing droplet can be modeled by
a linear spring [8,14]. Thanks to this hypothesis, the
interaction time τc during the impact with the bath is
constant and scales with the Rayleigh period [15] of
vibration of a droplet, namely, τc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πm=8γd

p
, where

m is the mass of the droplet and γd the air-oil droplet
surface tension. The interaction time is ∼12 ms. This
contact time is used as a characteristic time during which
the charged droplet interacts with the oscillating bath.
During the “contact” time, we observed that the droplet

horizontal motion is very quickly annihilated. The hori-
zontal droplet speed is 0 during the contact time. As soon as
the droplet takes off, the electrical field exerts a force on the
droplet due to the excess of charges carried by the droplet.
The motion can be described by considering a point charge
submitted to the electric force generated by the homo-
geneous electric field E ¼ V=d. In this case, the point
charge follows the simple law

xðtÞ ¼ act2

2
¼ qE

2m
t2 ¼ 3qV

8ρπr3d
t2; ð1Þ

where ρ is the density of the droplet and ac is the theoretical
acceleration due to the electrostatic charge. This equation
was applied to the case presented in Fig. 3(b), with
d ¼ 53 mm, ρ ¼ 850 kg=m3, and r ¼ 0.9 mm. The only
parameters in the fit to Fig. 3(b) are the time of contact τc
and the value of the constant in the “no flight” zone. The
acceleration ac ¼ 0.34 m=s2 was calculated according to
Eq. (1). The result, plotted in Fig. 3(b), shows the good
agreement between the theoretical trajectory and the
experimental data. The deduced contact time 10 ms is
smaller than expected (i.e., 12 ms). This variation is
explained by the simplifications of our model. Indeed, in
the present model, the droplet deformation, the influence of
the bath deformation on the droplet bouncing, the dis-
sipation in the air film, and the characteristic time needed
for the droplet to stop were not taken into account.
However, in the following, we show that this simple
description contains the basis and relevant physical ingre-
dients to explain the macroscopic observations reported
in Fig. 2.

FIG. 3. (a) Horizontal and vertical positions of a charged
droplet as a function of time. Green crosses and grey circles
represent the vertical and the horizontal coordinates of the
droplet, respectively. (b) The green crosses are the average
position of the droplet over time during one bounce. The red
curve is the fit made from Eq. (1) in the accelerated period (step
I). The resting period (step II) is located in the shaded area.
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The model developed at the scale of one oscillation has
to be confronted to the macroscopic behavior presented in
Fig. 2. Because the drop speed is reset to 0 during one
bounce, the memory of the previous jump is annealed. This
statement ensures that the motion is periodic and that the
average speed is constant. This later is given by the sum of
the distance covered during flight time τf ¼ τ − τc and
during the contact time divided by the period τ, namely,

hvi ¼ qV
2md

τ2f
τ
: ð2Þ

Equation (2) provides the dependance of hvi on the radius
of the droplet r, namely,

hvi ¼ 3qV
8πρr3d

�
τ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ρr3=ð2γdÞ

q �
2 1

τ
: ð3Þ

Equation (3) was plotted in Fig. 2(c) by taking q ¼ 14 pC,
V ¼ 1000 V, d ¼ 53 mm, and γd ¼ 0.017 N=m. The
agreement between the experimental data and the model
is excellent.
The relation between the average speed hvi and the

applied voltage V on the electrodes is also captured by
Eq. (3). Indeed, Eq. (3) predicts a linear behavior of hvi
with V in agreement with the observations. The fit from
Fig. 2(d) gives a slope of 0.36� 0.02 μm=s V, which is in
agreement, given the experimental error bars, with the slope
computed from Eq. (2) (0.45� 0.08 μm=s V).
As indicated by the variation of the parameter a of the

trajectories [Fig. 2(c)], the approximation of a constant
speed for the droplet is not valid for small droplets. In other
words, small droplets are not stopped during the interaction
with the bath. As a consequence, a criterion on the droplet
size has to be provided to fit the domain of validity of our
model. When the droplet falls on the oil bath, the droplet
lightly bends the liquid surface. The idea is to estimate the
force necessary to extract the droplet out of this dimple by
exerting a horizontal force, i.e., the electrical force here.
Indeed, if the electrostatic force exceeds extraction force,
the droplet is not stopped when interacting with the bath.
The depth of the deformation can be approximated by

balancing the kinetic energy and the energy necessary to
deform the bath with a depth h:

2

3
ρπr3v2i ¼ γb2πrh; ð4Þ

where vi is the droplet speed just before interacting with the
oil bath, γb the surface tension of the oil bath, and h the
height of the deformation. The vertical speed vi is related to
the flight time τf, i.e., vi ¼ gτf=2, where τf ¼ τ − τc. This
equation leads to a deformation of approximately 200 μm
for a millimetric droplet. This order of magnitude is in
agreement with the observation (see Fig. 1 and Ref. [11]).

Let us consider that the droplet is on an incline plane
when the droplet is at the bottom of the dimple. The tangent
of the slope tanðαÞ of the incline is given by the ratio h=R.
The horizontal electric force qE is not able to extract the
droplet while the projection along the parallel direction of
the incline of the electric force is smaller than the projection
of the weight of the droplet, namely, qE cosðαÞ <
mg sinðαÞ. The inequality leads to the following criterion

qE
hr2

<
4

3
πρg: ð5Þ

Equations (5) and (4) provide the conditions on r, E, and q
to observe a constant speed motion of the droplet. In the
present case, the radius r⋆ below which the electrical force
qE exceeds the extraction force can be computed. Taking
into account the experimental conditions, namely,
q ¼ 14 pC, V ¼ 1000 V, and d ¼ 53 mm, one obtains
r⋆ ¼ 0.46 mm, which is in good agreement with the
observations. A shaded area in Fig. 2(c) materializes the
separation between the two kinds of motion. Droplets with
size below this crossover radius are submitted to accel-
eration after each bounce. In this case, the main deceler-
ation processes are dissipation in the air film during the
contact time and air drag during the flight, which are far
more complex to describe. Moreover, the description of the
accelerated motion is more complicated because of even-
tual complex bouncing modes (see, for example, Ref. [16])
and implies to perform experiments with a larger oscillating
bath to observe the long time scale behavior.
In conclusion, we demonstrated that charged droplets

can be manipulated when they bounce on a vibrated bath.
Large droplets influenced by a small electric field move
with a constant speed that is proportional to the charge and
the voltage. The constant speed is due to the reset to 0 of the
droplet speed during each oscillation. The droplet is
accelerated in the air by the electrical forces and stopped
during its interaction with the oscillating bath. Small
droplets influenced by a large electric field are not stopped
during the contact period. Their horizontal motion is
accelerated. A criterion was proposed to separate both
regimes [Eq. (5)].
A complete control of a droplet on the two dimensions of

the vibrating bath is presented in the Supplemental Material
using crossed horizontal electric fields [11]. Experiments
were also performed with success by using a water droplet
and by using submerged electrodes. This system allows one
to tailor or program the electrical potential landscape in
which the bouncing charged droplet evolves. Finally, the
criterion Eq. (5) is relevant in the study of particular
bouncing droplets called walkers. Walkers are bouncing
droplets that interact with the waves generated by their own
impact at the surface of the bath [17]. The walker is a
droplet plus the wave field and has been shown to possess
some properties analogous to quantum particles [18].
Recently, Perrard et al. reported experiments concerning
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the walker motion in a harmonic well. This harmonic
potential was obtained by inserting a small quantity of
ferrofluid in the walker and by using a vertical external
magnetic field as the center of attraction [19,20]. The
interaction between an electrically charged walker and an
external electrical field opens new developments in the
physics of walkers.
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