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ABSTRACT As fish move and interact with their
aquatic environment by swimming, small morphological
variations of the locomotor system can have profound
implications on fitness. Damselfishes (Pomacentridae)
have inhabited coral reef ecosystems for more than 50
million years. As such, habitat preferences and behavior
could significantly constrain the morphology and evolv-
ability of the locomotor system. To test this hypothesis,
we used phylogenetic comparative methods on morpho-
metric, ecological and behavioral data. While body elon-
gation represented the primary source of variation in the
locomotor system of damselfishes, results also showed a
diverse suite of morphological combinations between
extreme morphologies. Results show clear associations
between behavior, habitat preferences, and morphology,
suggesting ecological constraints on shape diversifica-
tion of the locomotor system. In addition, results indicate
that the three modules of the locomotor system are
weakly correlated, resulting in versatile and independ-
ent characters. These results suggest that Pomacentri-
dae is shape may result from the interaction between (1)
integrated parts of morphological variation that main-
tain overall swimming ability and (2) relatively inde-
pendent parts of the morphology that facilitate
adaptation and diversification. J. Morphol. 000:000-000,
2016.© 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Considerable morpho-functional diversity in
fishes is seen in the structures of the locomotor
system because density-related inertial forces in
aquatic systems have high impacts on swimming
performance (Videler, 1993). Because swimming is
the primary way that fish interact and move
through their environment (Fulton, 2010), swim-
ming performance is a major determinant of (1)
individual survival, (2) growth, and (3) lifetime
reproductive fitness (Webb, 1994; Plaut, 2001,
Blake, 2004). As such, small variations in swim-
ming abilities within and among species can have
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profound impacts on these three key life history
parameters (Koch and Wieser, 1983; Boisclair and
Sirois, 1993), making swimming performance a
primary target for natural selection (Huey and
Stevenson, 1979; Hertz et al., 1988).

Many studies have examined the role of body and
fin shape on swimming performance in teleosts
(Webb, 1982; Bushnell and Moore, 1991; Lighthill,
1993; Gibb et al., 1994; Gibb et al., 1999; Drucker
and Lauder, 2001, 2005; Wainwright et al., 2002;
Fulton et al., 2005; Fulton, 2007; Standen, 2008;
Aguilar-Medrano et al., 2013). Fewer studies have
examined the coordination of the locomotor and
feeding system (Rice and Westneat, 2006; Higham,
2007), and only one study has explicitly tested the
correlated evolution of teleost feeding and locomotor
systems within a single clade (i.e., labrids; Collar
et al., 2008). As such, it is unclear how morphologi-
cal variation within a single taxonomic group may
be correlated to niche partitioning via swimming
performance during evolution.

Pomacentridae (damselfishes) is a speciose fam-
ily of 394 species of marine fish (Eschmeyer, 2014)
that has inhabited reef ecosystems for more than
50 million years (Bellwood, 1996; Bellwood and
Sorbini, 1996). The vast majority of damselfish
inhabit tropical coral reefs, although some species
live in rocky reefs or kelp forests in temperate
coastal waters. Due to their wide range of
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behaviors and habitat preferences in structurally
complex environments, damselfishes are an excel-
lent model to test the role of the locomotor system
shape on niche partitioning and diversification.

The majority of ecomorphological studies on dam-
selfishes have focused on the relationship between
morphology and diet (Emery, 1973; Frédérich et al.,
2008; Cooper and Westneat, 2009; Aguilar-Medrano
et al., 2011; Frédérich et al., 2013). Only two key
studies analyzed the ecomorphological variation of
swimming performance (Fulton, 2007; Aguilar-
Medrano et al., 2013). In this study, we analyze the
morphology of the locomotor system of damselfishes
from the perspective of modularity. Modularity
refers to semiautonomous units (modules) that com-
prise higher organisms (Simon, 1962; Wagner and
Altenberg, 1996). Modules are assemblages of parts
that are integrated internally by strong interac-
tions, but are relatively independent of one another
by few or weak interactions (Wagner and Altenberg,
1996; Klingenberg, 2005). We focus on modules
because of their possible role as “building blocks” of
phenotypic adaptation (Wagner, 1995).

Functional modularity is an important determi-
nant of evolutionary diversification because it pro-
vides a link between the modular structure of
morphological traits and selection on performance
in organismal functions (Klingenberg, 2008). Hence,
in an evolutionary context, a module is a set of mor-
phological characters that (1) collectively serve a
common functional role, (2) are tightly integrated,
and (3) are relatively independent from other mod-
ules (Mitteroecker and Bookstein, 2007).

Here, we focus on three morphological modules
that play different roles in swimming fitness: mod-
ule 1, cephalic region, associated with drag reduc-
tion and lift forces (Bushnell and Moore, 1991;
Lighthill, 1993; Larouche et al., 2015); module 2,
trunk, dorsal, pelvic, and anal fins, associated with
stability and thrust (Harris, 1938; Drucker and
Lauder, 2001, 2005; Fulton, 2007; Standen, 2008);
and module 3, caudal peduncle, associated with
acceleration and thrust (Webb, 1982; Gibb et al.,
1999; Fig. 1). We study the variation along these
morpho-functional axes in an evolutionary context,
focusing on the relationship between habitat prefer-
ences and behavior to address three questions: (1)
how the morphological modules vary within Poma-
centridae, (2) do these morpho-functional modules
evolve individually or as an integrated system?, and
(3) do behavior and habitat preferences impact the
morphological variation of each module?

MATERIAL AND METHODS
Morphological Data

We conducted morphometric analyses on 739 lateral-view
photographs of adult damselfish, representing 205 species from
the time-calibrated phylogeny of Frédérich et al. (2013). These
samples represent 27 of 29 genera; however, the two missing
genera, Amblypomacentrus and Altrichthys, only contain two
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Fig. 1. Landmaks (LMs, red dots) and semilandmarks (SLMs,
blue dots) used to analyze the locomotor system of damselfishes.
A: module 1, cephalic region (CR; LMs & SLMs 1-18); module 2,
trunk (LMs & SLMs 19 to 25 and 34 to 45); module 3, caudal
peduncle (CP; LMs & SLMs 26 to 33).

species, are very similar in shape to Pomacentrus and Chrysip-
tera (Allen, 1991) and are recently diverged from these genera
(Frédérich et al., 2013). As such, the absence of these genera
should not impact the results of the study. Photographs were
largely obtained directly from accessioned museum specimens,
with additional photographs from online resources such as
MorphBank (www.morphbank.net), FishBase (Froese and
Pauly, 2014) and John E. Randall’s Fish Photos (pbs.bishopmu-
seum.org/images/JER). The complete list of species included in
this study, their sources and accession numbers are available
as supplementary online material 1.

We conducted landmark (LM)-based geometric morphometric
analyses (Bookstein, 1991; Rohlf and Marcus, 1993; Rohlf,
1999; Zelditch et al., 2004), recording x, y coordinates of LMs
and semilandmarks (SLMs) using TpsDig, version 2.17 (Rohlf,
2014). SLMs were identified using a slider file made in TpsUtil
(Rohlf, 2014). First, we studied the whole body shape variation
using a configuration made of 17 LMs and 28 SLMs. Then, the
overall body was divided into three modules based on func-
tional analyzes: module 1: cephalic region delimited by eight
LMs and 10 SLMs; module 2: trunk delimited by seven LMs
and 14 SLMs, and module 3: caudal peduncle delimited by two
LMs and six SLMs (Fig. 1). For every data set, superimposition
of LM configurations was achieved using Generalized Pro-
crustes Analysis (Rohlf and Slice, 1990). We calculated Partial
Warp scores, and we performed a Principal Components Analy-
ses (PCA) of shape variables (also called Relative Warps analy-
sis, RWs) using TpsRelw, version 1.54 (Rohlf, 2014). PCA was
used to find hypothetical variables (components) that account
for much of the variance in the morphological data (Davis,
1986). Principal components scores were used as descriptors of
shape variation (Bookstein, 1991; Rohlf, 1993). Deformation
grids using the thin-plate spline algorithm were used to visual-
ize the patterns of shape variations along PC axes (Bookstein,
1991; Rohlf, 1993).

We tested the relevance of modules defined a priori based on
functional considerations using Escoufier’s RV-coefficient and
the multi-set RV-coefficient (Klingenberg, 2009; Larouche et al.,
2015). RV-coefficient analysis is a robust method to test
whether a priori defined modules fit observed covariance matri-
ces better than a distribution of randomly generated modules of
equivalent size and number (Goswami and Polly, 2010a). The
RV coefficient is analogous to a correlation coefficient, but
instead of measuring the association between two individual
variables, it measures the association between two sets of vari-
ables. It ranges from zero to one, with zero representing a case
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of perfect modularity, in which there is no covariance between
the sets. Thus a lower value in a priori defined modules than
in randomly generated modules indicate that none of the ran-
domly generated modules are better than the a priori defined
modules. The validation of this modular configuration was done
using the function compare modular partitions in geomorph
V.20 (Adams et al., 2014) for R.

Allometric Variation

We tested the relationship between shape and size across
species using a multivariate regression of shape variables
(RWs) onto the centroid size (CS) (Bookstein, 1991; Monteiro,
1999) using TpsRegr, version 1.41 (Rohlf, 2014).

Ecological and Behavioral Diversity

We collected ecological and behavioral data from published
literature for each species, focusing on four major characters.
First, we recorded wave exposure, binning this variable into:
(1) zero to low, (2) moderate, and (3) high wave exposure. Sec-
ond, we characterized position in the water column in relation
to the substratum as: (1) on the substratum (e.g., territorials)/
close to the substratum, (2) midwater/close to the surface, or (3)
both. Finally we characterized behavior as: (1) perennial terri-
torials, solitary, or couples, (2) schooling non-perennial territori-
als, or (3) solitary, pairs, or small groups non-perennial
territorials (Supporting Information 1).

Phylogenetic Comparative Methods

We examined the evolution of morphological and ecological
traits using the time calibrated phylogeny of Frédérich et al.
(2013). We hypothesized that evolution should favor integration
within the swimming system. So, we used a phylogenetic gener-
alized least square method (PGLS) that incorporated Brownian
motion (BM) to test for a correlation between the three func-
tional modules.

To test for a correlation between ecology and morphology, we
used PGLS methods that incorporated two models of trait evo-
lution, including BM, in which disparity increases as a function
of time (Harmon et al., 2003), and the Ornstein-Uhlenbeck
(OU) model that incorporates one or more optimum trait value
0, and strength of selection o (Beaulieu et al., 2012). In other
words, BM model is a completely stochastic model, while the
OU-model incorporates both stochastic and stabilizing compo-
nents (Butler and King, 2004). To identify the pattern of mor-
phological diversification, we compared the fit of a BM-model
and OU-model for each one of the three ecological variables: (a)
wave exposure; (b) position in the water column in relation to
the substratum; and (c) behavior. If these ecological variables
shaped the evolution of damselfish morphology, we expected
that the OU-model would show better fit than the BM model.
To evaluate the best model for our data, we compared the fit of
both models using Akaike’s information criterion (AIC), which
considers the trade-off between the fit and the complexity of
the model (Akaike, 1973).

For PGLS analysis, we used packages in the R environment
version 3.0.3 (The R Foundation for Statistical Computing
2014): NLME (Pinheiro et al., 2014), GEIGER (Harmon et al.,
2008), APE (Paradis et al., 2004), and CAPER (Orme et al.,
2011).

RESULTS
Main Axes of Morphological Variation

For each module, we considered the PCs that
explained at least 70% of the shape variation (Can-
gelosi and Goriely, 2007). For the cephalic region,
four PCs accounted for 71% of shape variation
(PC1=30%, PC2=22%, PC3 =11%, PC4 = 8%). In

the trunk, three PCs accounted for 75% of the shape
variation (PC1=48%, PC2=17%, PC3 =10). The
caudal peduncle was the least complex module with
two PCs accounting for 81% of shape variation
(PC1 =68%, PC2 = 13%). For each module, the first
axis of shape variation (PC1) was related to an elon-
gation along the rostro-caudal axis of the body. For
analyses of the whole body, the first four PCs
accounted for 71% of the total variation (PC1 = 41%;
PC2=12%; PC3=10%; PC4=8%; Supporting
Information 2).

Within the cephalic region (module 1) PC1
shows that species with horizontally lengthened
cephalic profiles, typically have a snout at the
same height or higher than the eyes, big eyes, an
inferior region of the cephalic profile that is elon-
gated downwards and backwards, a supraoccipital
crest (SLMs 17 and 18) that is angled backwards
and a more angular opercular margin (e.g., Azur-
ina and Lepidozygus; Fig. 2B, PC1-). Conversely,
species with horizontally short and vertically long
cephalic profiles present the opposite character
states (e.g., Dascyllus; Fig. 2A, PC1+). The second
axis of variation shows that in species with big
eyes close to the snout, the frontal area of the
cephalic region is biggest and an elongated supra-
occipital crest (SLMs 17 and 18; e.g., Azurina and
some Chromis species; Fig. 2A,B, PC2+). In con-
trast, species with smaller eyes located below the
snout present the opposite character states (e.g.,
Amphiprion; Fig. 2A, PC2—). The third axis of var-
iation shows that in species with big eyes close to
the snout, the frontal area is higher, producing a
more rounded cephalic profile (e.g., some Pomacen-
trus, Chrysiptera Chromis, and Neopomacentrus
species; Fig. 2C, PC3—), while species with smaller
eyes located below the snout present the opposite
character (e.g., some Abudefduf and Microspatho-
don species; Figs. 2C and 3D, PC3+). Finally, PC4
segregates species with big eyes and almost round
cephalic profiles (e.g., some Chromis, Dascyllus,
and Pomachromis species; Figs. 2C and 3D,
PC4+) from medium sized eyes with and deep-
narrow cephalic profiles (e.g., some Abudefduf and
Lepidozygus species; Figs. 2C and 3D, PC4—).

The first axis of variation of the trunk (module
2) is related to an elongated profile of the trunk
region resulting from a dorsal/ventral compression
of the trunk, with greater compression in the cen-
ter and anterior edges and less in the posterior.
This morphology is associated with an elongated
base of the pectoral fin, which is positioned ante-
rior to the pelvic fin and the origin of the dorsal
fin (e.g., some Lepidozygus and Azurina species;
Fig. 3B, PC1+). The opposite morphology, shorter
profile of the trunk region, is associated with the
PC1- axis (e.g., Dascyllus; Fig. 3A, PC1—). The
second axis of variation shows that in species with
pectoral fins positioned anterior to the pelvic fin
and origin of the dorsal fin, the dorsal and anal
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Fig. 2. Principal components analysis of the cephalic region. To highlight genera with few species the same graph is presented
twice. Graph A includes all genera with more than five species while graph B only includes genera with less than five species. PC,
principal component. Thin plate spline deformation grids represent the deformation of the most extreme specimen in each direction

of the PC axes versus the grand mean.

fins are typically short resulting in a longer ventral
distance between the pelvic and anal fin (e.g., some
Abudefduf and Azurina species; Fig. 3A,B, PC2-).
The opposite morphology, more elongated dorsal
and anal fin, is associated with the PC2+ axis (e.g.,
some Amphiprion, Chromis, and Premnas species;
Fig. 3A,B, PC2+). Finally, PC3 show that in species
with pectoral fin positioned approximately at the
same high of the pelvic fin, the anal fin is typically
long and the dorsal fin short (e.g., some Lepidozygus
species; Fig. 3D, PC3+). The opposite morphology,
pectoral fins positioned anterior of the pelvic fin,
more elongated dorsal fin and shorter anal fin, is
associated with the PC3— axis (e.g., some Stegastes,
Chrysiptera, and Neophomacentrus species; Fig. 3C,
PC3-).

The main axis of variation of the caudal peduncle
(module 3) is elongation and degree of curvature.
The first axis of variation shows that long caudal
peduncles are more curved (e.g., Azurina; Fig. 4B,
PC1-) than the short ones (e.g., some Abudefduf;
Fig. 4A, PC1+). The second axis of variation shows
that species with an elongated ventral edge present
a less curved posterior edge (e.g., some Chromis spe-
cies; Fig. 4A, PC2+), while species with a shorter
ventral edge present a more curved posterior edge
(e.g., Amphiprion; Fig. 4A, PC2+).

For the analyses of whole body shape, the first
axis of variation showed that in elongated species
where the eye and the snout are at a similar height,
the pectoral fin is anterior to the pelvic fin and the
dorsal fin origin. There is a general elongation of
the cephalic region and caudal peduncle in a verti-
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cal axis, in relation to the trunk (e.g., Azurina and
Lepidozygus; Fig. 5B, PC1+). The opposite charac-
ters, deep-bodied species, are associated with PC1—
axis (e.g., Dascyllus; Fig. 5A, PCl1-). The PC2
showed a segregation among species with relatively
elongated cephalic shape, less curved caudal
peduncle, shorter anal and dorsal fins, and pectoral
fins in a less horizontal angle of insertion (e.g., some
Abudefduf, Chromis, and Azurina species; Fig.
5A,B, PC2—). The PC2+ present the contrary char-
acters, elongated anal and dorsal fin (e.g., Premnas
and Pristotis; Fig. 5B, PC2+).

Inter-Specific Allometry

Results showed CS was a significant predictor of
shape variation (P < 0.001), but only for a low per-
centage of shape variation. The trunk shape was
most strongly correlated to size (r*=0.3; df = 38—
27740; F = 350), such that elongated trunks tend
to be smaller than deep-trunks. A smaller propor-
tion of shape variation was explained by size vari-
ation in the caudal peduncle (¥>= —0.08; df = 12—
8760; F=61) and the cephalic region (+*>=0.02;
df=30-21900; F =12). Larger caudal peduncles
tend to be more curved than the smaller ones, and
larger cephalic regions are generally more verti-
cally elongated than smaller ones (Fig. 6).

Test of Modular Configuration
Defined A Priori

The RV-coefficient value obtained for priori
defined modules (RV=0.57; P=0.01; Supporting
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Fig. 3. Principal components analysis of the trunk. To highlight genera with few species the same graph is presented twice. Graph
A includes all genera with more than five species while graph B only includes genera with less than five species. PC, principal com-
ponent. Thin plate spline deformation grids represent the deformation of the most extreme specimen in each direction of the PC axes
versus the grand mean. Red dots in the grids represent fin insertions.

Information 3) is lower that any randomly gener-
ated modules (RV =0.69-1) indicating that our
priori defined modules are better option of mod-
ules segregation than any randomly generated
possibility.

Modular Evolution

PGLS analysis revealed limited relationship
among modules, supporting a modular evolution of
the body parts (Table 1). In total, only 16 of 36
comparisons revealed a significant correlation
between axis of variation in the three modules and
phylogenetic relationship. Although each module

is significantly related to at least one other module
(P <0.05), the correlation values were always very
low (2 value <0.02, Table 1).

Ecological Driving Forces

Models of trait evolution showed strong support
for the OU-model mainly in the second, third, and
fourth axes of variation (PC2, 3, and 4; Table 2)
across all modules and all ecological variables.
Behavior and position in the water column are
related to cephalic region and caudal peduncle in
axes representing a high percentage of the total
variation (behavior, module 1, PC2=23% and

Journal of Morphology
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module 3, PC2 = 13%; position in the water col-
umn, module 1, PC3=11% and module 3,
PC2 = 13%). Conversely, wave exposure is related
to all modules, in axes representing a lower per-
centage of the total variation (module 1,
PC3=11% and PC4 = 7%, module 2, PC3=10%
and module 3, PC2 = 13%; see the morphological
variation related to each axis on Results; Main
axes of morphological variation). Thus, our results
clearly indicate that the ecological variables ana-
lyzed here influenced the shape of major anatomi-
cal modules during the evolutionary processes of
the Pomacentridae family.

DISCUSSION

Although organisms are commonly viewed as
integrated morphological units, they can also be
viewed as a collection of semi-autonomous modules
with unique positions and functions. Therefore,
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understanding the adaptation, evolution, and diver-
gence within groups of organisms requires under-
standing how the underlying morphological and
functional interactions act on these units (modules)
and how changes in one unit may impact other units
and functions across phylogenies (Zelditch and Car-
michael, 1989; Marroig and Cheverud, 2001; Young
and Hallgrimsson, 2005; Goswami, 2006a,b; Klin-
genberg, 2008; Singh et al., 2012).

By examining morphometric and ecological data
from 204 species of damselfishes (including 27 of
29 genera) in a comparative phylogenetic frame-
work, this study found evidence for modular evolu-
tion in the locomotor system of damselfishes.
Specifically, results show that the modules of the
damselfish locomotor system are constrained by
behavior and habitat preferences. The integration
of these modules produces internal constraints on
the overall body morphology, resulting in distinc-
tive morphologies. However, the integration among
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locomotory modules is low (Table 1), potentially
providing flexibility in generating morphological
diversity that could contribute to species diversity.

Modularity and Ecological Constraints on
Locomotor System Shape of Damselfishes

There are different ways to conceptualize mor-
phological modules, including origins during devel-
opment (Monteiro et al., 2005), integration among
LMs with similar patterns of variation (Goswami,
2006a,b), and interactions of traits that perform
one or more coordinated functions (Klingenberg,
2008). The latter “functional modality” definition
(Mitteroecker and Bookstein, 2007) is more appro-
priate for characterizing the damselfish locomotory
system because the cephalic region, trunk, and
caudal peduncle collectively serve a common func-
tional role, are integrated, and relatively inde-
pendent from other modules.

Each module was described according to its own
functions; however they all serve the same pur-
pose, locomotion. For example, the trunk, dorsal,

pelvic and anal fins are associated with stability
and thrust (Harris, 1938; Drucker and Lauder,
2001, 2005; Fulton, 2007; Standen, 2008), while
the caudal peduncle is associated with acceleration
and thrust (Webb, 1982; Gibb et al., 1999), how-
ever, both trunk and caudal peduncle function
together to increase and keep speeds during loco-
motion. Thus, even if our results show that ana-
tomically nearby modules are more related among
it, these results are related to share functions.

To our knowledge, only few studies have ana-
lyzed morphological modularity of fishes consider-
ing the whole body. Those analyses resulted in
somewhat diverging results. Mabee et al. (2002)
considered the anal and dorsal fins as a single
module and the pelvic and pectoral fins separately.
Larouche et al. (2015) just two modules in the
whole body, the cephalic region as one module,
and trunk-caudal peduncle, including all fins as
the second module. Our results partially agreed
with both suggestions. We found a strong relation
among the caudal and dorsal region, and a rela-
tion among the pectoral and pelvic fins (Fig. 3).

Journal of Morphology
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Fig. 6. Morphological variation related to size in the three
modules of the locomotor system of damselfishes. Numbers rep-
resent the centroid size.

Also when we found a level of integration among
the trunk and the caudal peduncle, our result still
support the presence of three modules in the
whole body.

The largest source of morphological variation
observed in the damselfish locomotor system was
related to the rostro-caudal elongation of the fish
body, a major trend in shape diversity in reef
fishes (Ward and Mehta, 2010; Aguilar-Medrano
et al., 2011; Aguilar-Medrano, 2013; Claverie and
Wainwright, 2014). Although, it is interesting to
note that the three studied ecological variables do
not show significant relationships with the first
axis of variation but instead with the secondary
axes. This might indicate that the rostro-caudal
elongation of the body presents a strong phyloge-
netic signal in this fish group, while all secondary
characters have being constrained by ecology.

Most elongated damselfish were largely school-
ing pelagic feeders, inhabiting the midwater col-
umn or close to the surface (Supporting
Information 1). These species are generally small,
and their elongated body tended to be associated
with angular cephalic regions, creating a more
streamlined profile that decreases drag and
increases swimming speeds (Bushnell and Moore,
1991; Lighthill, 1993). This morphology was also
associated with big eyes that are level with the
snout, a common characteristic of predatory fishes
that improves the efficiency of feeding (Griffin
et al.,, 2001; Karplus and Algom, 1981). Lastly,
elongated body forms were associated with an
elongated caudal peduncle that is curved on the
horizontal edge and posterior edge, creating a
large area of thrust that promotes rapid accelera-
tion (Webb, 1984; Webb and Weihs, 1986; Lauder,
2000). The combination of these morphological
traits results in species that are fast and efficient
swimmers, capable of rapid accelerations (e.g.,
Azurina and Lepidozygus), characteristics required
to successfully exploit midwater habitats as well
as those close to the surface.

In contrast, most deep-bodied damselfishes are
territorial, benthic feeders, and inhabit environ-
ments close to the substratum (Frédérich et al.,
2008; Cooper and Westneat, 2009; Aguilar-
Medrano et al., 2011), and are larger than

TABLE 1. Results from phylogenetic generalized least squares analyses using a Brownian motion model for testing correlated evolu-
tion between morphological modules: Module 1, cephalic region; Module 2, trunk; and Module 3, caudal peduncle

Cephalic region Trunk Caudal peduncle
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC1

Cephalic region PC1

PC2 ns

PC3 ns ns

PC4 ns ns 0.01%*
Trunk PC1 0.02* 0.02* 0.02* ns

PC2 -0.01* -0.01% -0.01% ns -0.01*

PC3 ns —0.02% —0.02% ns ns —0.02%
Caudal peduncle PC1 -0.01* -0.01% -0.01* ns -0.01% -0.01* ns

PC2 ns Ns ns ns ns ns ns ns

Significant correlations are indicated by an asterisk,

component.

Journal of Morphology

while ns indicate

no significant results. PCs refer to each principal
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TABLE 2. Results of phylogenetic generalized least squares analyses testing correlated evolution between morphology and ecology

Position in the water

Wave exposure column Behavior

AIC Corr. AIC Corr. AIC Corr.

Whole body PC1 BM —812.08 0.004* —806.45 0.000 —809.17 —0.001

ouU —687.34 0.003 —686.84 0.003 —690.27 0.009

PC2 BM —831.40 0.000 —846.50 0.005* —833.32 0.002

ou -936.07 —0.006* -930.93 0.002 -931.29 —0.001

PC3 BM —831.28 0.002 —836.26 0.003* —831.96 0.002

ouU —1,047.55 —0.001 —1,046.14 0.000 —1,049.23 —0.003

PC4 BM —1,018.83 0.000 —1,019.09 0.001 —1,023.00 —0.005
ou -1,059.78 0.003 -1,057.73 —0.002 —-1,079.59 —0.009*

Module 1 Cephalic region PC1 BM —605.10 0.008* —606.13 0.006* —601.40 0.001
ouU —552.53 0.000 —553.62 0.006 —570.03 —0.029*

PC2 BM —649.38 0.003 —664.71 —0.008* —651.80 0.009
ou —610.05 —0.001 —610.89 —0.005 —655.71 0.040*

PC3 BM —623.04 —0.012% —616.40 0.006* -611.70 —0.002

ou —800.40 —0.007* —804.24 0.007* —796.20 —0.001

PC4 BM —642.36 —0.004 —699.05 0.014* —643.41 —0.006

ouU —794.05 —0.007* —788.80 0.000 —790.81 —0.004

Module 2 trunk PC1 BM -726.34 —0.009* —712.94 —0.001 —715.48 —0.002
ou —599.56 —0.005 —598.19 0.002 —603.65 —0.014*

PC2 BM —774.47 0.005%* —770.41 —0.001 -772.61 —0.004

ou —833.52 0.006 —829.78 0.002 —831.17 —0.003

PC3 BM —863.82 0.000 —863.90 0.001 —868.08 —0.007

ouU -952.95 0.005* —947.45 —0.001 -950.08 —0.003

Module 3 Caudal peduncle PC1 BM —497.20 0.006 —496.62 0.004 —497.55 0.003

ouU —458.71 —0.006 —468.17 0.018* —458.81 —0.005

PC2 BM —636.52 0.005 —636.36 0.004 —635.89 —0.001
ou —790.93 0.009* —793.38 —0.007* —799.06 0.015%*

Two models were used, BM (Brownian motion) and OU (Ornstein-Uhlenbeck) and compared using Akaike information criterion
scores (AIC). Corr.: correlation values. Bold values indicate the best fitted model. Asterisk indicated significant correlation (P
= < 0.05). Dashed circled values indicated significant correlation on BM as best fitted model and solid circled values indicated sig-

nificant correlation on OU as best fitted model.

schooling damselfishes. Results showed that deep-
bodied species generally have deep cephalic profiles
with lower positioned snouts that allow them to
graze on algae, or prey on benthic invertebrates
while maintaining visual awareness of predators
(Bellwood et al., 2014). In addition, these species
typically have short caudal peduncles that facilitate
strong initial swimming bursts rather than sus-
tained fast swimming required of midwater species.
Furthermore, these species have deep-trunks that
favor stability at slow swimming speeds, and are
likely advantageous for negotiating structurally
complex habitats (e.g., Dascyllus aruanus living in
branching corals; Webb, 1982; Fulton, 2007).
Despite this generality, numerous taxa deviated
from this pattern. For example Amphiprion pre-
sented a rounded cephalic profile, a trait com-
monly observed in benthic species, but its trunk
and caudal peduncle were relatively long and simi-
lar to species living in the upper and mid-water
column. In contrast, Hypsypops exhibited an angu-
lar cephalic profile, characteristic of species from
the water column, but also had a high trunk and
short caudal peduncle, traits generally associated
with benthic habitats. Thus, while the evolution of
pomacentrids is biased in specific phenotypic direc-
tions due to general rules that link the evolution

of modules of the locomotor system (Klingenberg,
2005), these links are flexible. The low association
among modules allows morphological diversity to
increase by producing unexpected combinations.
In turn, this variation may facilitate shifts into
novel niche spaces, contributing to lineage diversi-
fication in pomacentrids.

Previous studies have demonstrated the relation-
ship between cephalic shape and diet in damsel-
fishes (Emery, 1973; Gluckmann and Vandewalle,
1998; Aguilar-Medrano et al., 2011; Frédérich et al.,
2013). While the ecological variables studied in our
analysis are highly related to locomotion, they also
influence feeding behavior. For example, deep-
bodies species with short caudal peduncles were
typically associated with slower, more maneuver-
able swimmers (Bartol et al., 2002; Fulton, 2007;
Aguilar-Medrano, 2013). In turn, these characteris-
tics were associated with being territorial and her-
bivorous (Frédérich et al., 2008; Cooper and
Westneat, 2009; Aguilar-Medrano et al., 2011). Sim-
ilarly, results showed that elongated species with
longer caudal peduncles were associated with
faster, more efficient swimming (Videler, 1993; Ful-
ton, 2007; Aguilar-Medrano, 2013); these species
were typically schooling and mostly zooplanktivo-
rous (Frédérich et al., 2008; Cooper and Westneat,

Journal of Morphology
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2009; Aguilar-Medrano et al., 2011). The strong con-
nections observed between locomotion and feeding
in damselfishes (see above) is similarly seen in other
fishes, such as the Labridae (Collar et al., 2008) sug-
gesting that constraints of swimming and feeding in
an aquatic medium can have similar effects across
distantly related taxa.

Morphological Evolution of the Damselfish
Locomotor System

Our study system highlights the balance between
evolvability and morphological constraints. Evolv-
ability is the potential of populations to respond to
natural selection and evolve (Wagner and Altenberg,
1996; Klingenberg, 2005; Singh et al., 2012) rising to
novel phenotypes, while the morphological con-
straints imposed by integration of morphology within
locomotor modules reduces the potential to vary
within a population, conserving aspects across evolu-
tionary time (Klingenberg, 2005; Singh et al., 2012).

Evolutionary analysis of damselfish morphology
illuminates a limited range of morphological varia-
tion and a tendency to repeat shapes through clades
(Cooper and Westneat, 2009; Frédérich et al., 2013).
In particular, the integration among the cephalic
region, trunk, and caudal peduncle suggest the
action of morphological constraints because the
integration of modules potentially limits the varia-
tion of each module (Martin et al., 2005). As such,
evolutionary change is biased in specific phenotypic
directions (Klingenberg, 2005), potentially slowing
the rate of evolution and/or constraining morpholog-
ical evolution to a smaller range of possible varia-
tion (Goswami and Polly, 2010b). Thus, the
integration among modules may explain the limited
range of morphological variation in pomacentrids
(giving this group their distinctive shape) and the
tendency to reiterate patterns throughout the evo-
lutionary history of this group.

While results suggest integration among modules,
a high percentage of the morphological variation
within damselfishes shows little integration. The
freedom to evolve more independently from the
main body pattern may result in greater morpholog-
ical variation and species diversity in some lineages
of pomacentrids. For example, a higher level of mod-
ularity has probably operated for the evolution of
Amphiprion. This genus combines rounded cephalic
profile with elongated trunk and caudal peduncle,
and this atypical combination of shapes may be con-
sidered as a novelty in damselfishes. In addition to
physiological adaptations, this modular novelty
could be related to the colonization of untapped
niches such as sea anemones and could explain the
high rate of diversification observed in the clade of
clownfishes (Litsios et al., 2012). Such “independent”
characters are likely critical for evolvability by
increasing the potential for morphological variation
(Goswami and Polly, 2010b).

Journal of Morphology

As expected, behavior and habitat preferences
impact the morphological variation of each module
of the fish body during the evolution. Thus, selec-
tion pressure and integration of damselfish loco-
motory modules should result in a relatively low
number of morphological possibilities and corre-
spondingly limited morphological diversity. How-
ever, evolution has produced lineages of
damselfish that do not seem to follow these con-
straints. Hence the results suggest that the evolu-
tionary success of Pomacentridae may lie in the
delicately balanced interaction between integrated
parts of the morphology that produce a functional
body design and weakly integrated or relatively
independent morphological aspects that facilitate
adaptation and diversification.
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