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Abstract
The right dorsal premotor cortex (PMd) of humans has been reported to be involved in a broad range of motor and cognitive
functions. We explored the basis of this behavioral heterogeneity by performing a connectivity-based parcellation using meta-
analytic approach applied to PMd coactivations. We compared our connectivity-based parcellation result with parcellations
obtained through resting-state functional connectivity andprobabilistic diffusion tractography. Functional connectivity profiles
and behavioral decoding of the resulting PMd subregions allowed characterizing their respective behavior profile. These
procedures divided the right PMd into 5 distinct subregions that formed acognitive-motor gradient along a rostro-caudal axis. In
particular, we found 1) a rostral subregion functionally connected with prefrontal cortex, which likely supports high-level
cognitive processes, such as working memory, 2) a central subregion showing a mixed behavioral profile and functional
connectivity to parietal regions of the dorsal attention network, and 3) a caudal subregion closely integrated with the motor
system. Additionally, we found 4) a dorsal subregion, preferentially related to handmovements and connected to both cognitive
and motor regions, and 5) a ventral subregion, whose functional profile fits the concept of an eye movement-related field. In
conclusion, right PMd may be considered a functional mosaic formed by 5 subregions.
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Introduction
The premotor cortex (PM) has been defined as a distinct cortical
region within the frontal agranular cortex (Wise 1985). The PM

is located in the lateral portion of Brodmann’s area 6 (BA; Brod-
mann 1909 Q2) on the precentral gyrus, just rostral to the primary
motor cortex (M1, BA 4/Area 4; Geyer et al. 2000). However, the
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PM is not necessarily equivalent to BA 6, since the region defined
as the PM is based on functional criteria, whereas BA 6 is identi-
fied by cytoarchitectonic criteria (Brodmann 1909; Geyer et al.
2000). In nonhuman primates, the PM has been anatomically
subdivided into a dorsal part (PMd) and a ventral part (PMv) (for
a review, see Rizzolatti et al. 1998). In primates, the PMd has been
further divided into rostral and caudal subregions based on dif-
ferences in connectivity (Abe and Hanakawa 2009) and histology
(i.e., cytoarchitecture and cytochrome C staining). The rostral
subregion, termed F7 (Matelli et al. 1985, 1991), is mainly con-
nected to prefrontal regions, while the caudal subregion, termed
F2 (Matelli et al 1991) is connected to the primary motor cortex
and spinal cord (Boussaoud et al. 1995; Rizzolatti and Luppino
2001).

The dorso-ventral distinction in nonhuman primates shows
correspondence with the subdivision of the human PM into
PMd and PMv based on structural connectivity (Tomassini et al.
2007). A broad range of motor and cognitive functions, such as
movement preparation, action selection, motor learning, goal sa-
lience maintenance, visuospatial imagery, visual attention, and
working memory, have been ascribed to the PMd in humans
(for reviews, see Boussaoud 2001; Schubotz and von Cramon
2003; Chouinard and Paus 2006; Hoshi and Tanji 2007; Abe and
Hanakawa 2009; Kantak et al. 2012; Hoshi 2013). In conjunction
with previously identified PMd subregions in nonhuman pri-
mates (i.e., F2, F7), such behavioral heterogeneity suggests that
the humanPMdmaynot be a uniform region, but rather one com-
prised several distinct subdivisions with specialized function
and connectivity.

Several studieshavesuggesteda rostro-caudal organization cor-
responding to a cognitive-motor gradientwithin the frontal regions
including the PMd (Yeo et al. 2011; Choi et al. 2012; Orban et al.
2014). Furthermore, several fMRI experimentshavebeenperformed
to disentangle PMd activity related to cognitive versus motor pro-
cessing, or hand versus eyemovements by contrasting experimen-
tal conditions in rather small samples of subjects (Hanakawa et al.
2002; Amiez et al. 2006). Finally, 1 study has suggested a ventrodor-
sal organization within the superior part of precentral gyrus based
on structural connectivity (Schubotz et al. 2010). However, neither
these putative anatomical gradients nor their corresponding be-
havioural and functional attributes have been directly investigated
in the PMd, that is, using a quantitative data-driven approach. Fur-
thermore, to date, no study has examined the connectivity profile
of distinctmoduleswithin the PMd in humans at rest or challenged
with a wide range of task demands.

Using amodel-free,multimodal, connectivity-based approach,
we sought in the current study to provide a robust, data-driven
subdivision of the right PMd, aswell as ameta-analytic functional
characterization of the resulting subdivisions. Our workmay thus
provide independent support for the idea of a rostro-caudal organ-
ization of the PMd, with rostral parts more strongly associated
with cognitive functions, and caudal regionswithmotor functions
and/or for the hypothesis of a ventrodorsal distinction. Our object-
ivewas to integrate previous work and hypotheses on the PMd. To
best incorporate the findings of previous research lines, we opted
for a broad definition of the right PMd, ensuring a maximal cover-
age of previous activations attributed to this region. Importantly,
the issue of the functional heterogeneity of the PMd is further
complicated by indirect evidenceof functional hemispheric differ-
ences (Smith and Jonides 1999; Schubotz and von Cramon 2003),
which might be based on differential subdivisions within the
right and left PMd. Therefore, in the present study, we focused
on the right PMd, while the organization of the left PMd will be
addressed in a future study.

We performed connectivity-based parcellation (CBP) based on
each voxel’s co-activation pattern across a wide range of active
tasks (MACM-CBP; Eickhoff et al. 2011). Our objective was not so
much to define a rigid set of borders for subregions within the
right PMd, but rather to provide an integrative guide of the topo-
graphical organization of this region. Accordingly, to ensure that
the resulting general topographical pattern was not an artifact of
the CBP modality, we performed additional CBP analyses based
on the structural connectivity profile of the voxels, as measured
by probabilistic diffusion tractography (PDT-CBP; Behrens et al.
2003; Johansen-Berg et al. 2004), and the functional connectivity
profile, as measured during the resting state fMRI (RSFC-CBP). We
next characterized the functional connectivity profile of the clus-
ters obtained byMACM-CBP by combining resting-state functional
connectivity (RSFC) analysis andMACM. Finally, quantitative func-
tional decoding (Amft et al. 2014; Nickl-Jockschat et al. 2014) was
performed to robustly characterize the profile of behavioral func-
tions associated with each cluster obtained by MACM-CBP.

Methods
Volume of Interest

In the absence of precise landmarks of the borders of PMd,we based
our volume of interest (VOI) definition on several meta-analyses
that localized functions commonly attributed to the PMd. Our VOI
was defined by merging PMd activation sites from published
meta-analyses on action observation (Caspers et al. 2010), motor
learning (Hardwick et al. 2013), movement perception (Grosbras
et al. 2012), sustained attention (Langner and Eickhoff 2013), and
working memory (Rottschy et al. 2012) using an or combination.
The ensuing VOI was symmetrized to yield left and right PMd
VOIs. Some activation clusters provided by the meta-analyses to
some extend overlapped with primary motor cortex (M1) and pri-
mary somatosensory cortex (S1). These areas were excluded based
on their cytoarchitectonic definition (BA4a, 4p 3a, 3b, 1, 2) by using
theSPMAnatomyToolbox (Eickhoff et al. 2005). Thus, thisprocedure
ensures that our VOI does not overlapwith primarymotor cortex on
the caudal border as illustrated in Figure 1. In contrast and import-
antly, our VOI was not restricted to Area 6 on the rostral border.

Finally, white matter voxels were removed from VOI based on
the International Consortium on Brain Mapping (ICBM) tissue
probability maps (Mazziotta et al. 2001). This procedure yielded a

Figure 1. Q11VOI definition. Rendering of sensorimotor areas (areas 1, 2, 3, and 4;
green) according to cytoarchitecture (Geyer et al. 1996, 1999, available in the
SPM anatomy toolbox) and our PMd VOI Q12(red) in the right hemisphere.
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right and a left PMd VOI, comprising 4143 voxels each (voxels size
= 1 × 1 × 1)whose inferior and caudal borders are in agreementwith
previous definition of the PMd (see Supplementary Methods I.1.).
The following parcellation procedure was focused on the right
PMd VOI.

Connectivity-Based Parcellation

We first performed CBP based on the co-activation profiles of our
VOI’s voxels by using MACM. The most stable cluster solution
(k solution) was chosen based on several criteria in a data-driven
approach. To ensure that the revealed topographical organiza-
tion was not an artifact of our methods based on activation
data (cf. discussion), we then searched for a similar k solution
based on the structural connectivity profiles of the voxels by
using CBP based on PDT (PDT-CBP) and based on the uncon-
strained functional connectivity profiles of the voxels by using
CBP based on RSFC (RSFC-CBP).

Parcellation Based on Co-activation (MACM-CBP). Meta-Analytic Con-
nectivity Modeling. Whole-brain co-activation patterns for each
voxel within the right PMd were determined by using the Brain-
Map database (see Supplementary Methods I.2. for a description
of the criteria of inclusion of experiments). The experiments asso-
ciated with each seed voxel were then defined by activation at, or
in the immediate vicinity of, this particular voxel. This was per-
formed by calculating the Euclidean distances between a given
seed voxel and the individual foci of all experiments. Based on
these distances, the extent of a spatial filter was systematically
varied from including the closest 20 to 200 experiments in steps
of 5. That is, we selected the 20, 25, 30, 35, . . . , 200 experiments re-
porting activation closest to a given seed voxel. Combining the dif-
ferent filter sizes allowed generating a highly robust co-activation
map for every seed voxel independently of subjective choices
about the number of associated experiments. This procedure,
hence, provided a reliable basis for MACM-CBP, as shown in previ-
ous studies (Cieslik et al. 2013; Clos et al. 2013).

The brain-wide co-activation profile for each seed voxel given
each of the 37 filter sizes was then computed by a meta-analysis
over the associated experiments. This meta-analysis was per-
formed using the revised ALE algorithm (Eickhoff et al. 2012;
see Supplementary Methods I.3. for a description of the use of
ALE for MACM). All resulting ALE scores were recorded. To take
into account the complete brain-wide pattern of co-activation
likelihood of each seed voxel, no height threshold was set at
this point of analysis.

Connectivity-Based Parcellation Using Co-activation Patterns. The
brain-wide co-activation profiles for all seed voxels were com-
bined into a NS ×NB connectivity matrix. NS is the number of
seed voxels (i.e., 4143 voxels) and NB the number of target voxels
in the reference brain volume at 4 × 4 × 4 mm3 resolution (26 459
graymatter voxels). Altogether, 37 individual connectivity matri-
ces were computed, each representing the connectivity of the
seed voxels for a given filter size.

- . In line with previous parcellation studies
(Klein et al. 2007; Kelly et al. 2012; Clos et al. 2013), the
parcellation was performed using k-means clustering (see
Supplementary Methods I.4. for a description of k-means). In
line with previous parcellation studies of multifunctional
regions, we addressed a wide range of potential subdivisions
(Kelly et al. 2010, 2012; Kahnt et al. 2012). That is, we searched

for 2–11 different clustering solutions by making k ranging from
2 to 11, yielding 10 different clustering solutions within the right
PMd (a 2-cluster solution, a 3-cluster solution, and so on, up to
an 11-cluster solution). For each of the 370 (10 × 37) individual
parcellations, the best solutions from 500 replications with a
randomly placed initial centroid were computed Q3.

    . Like in a previous study (Clos
et al. 2013), the optimal filter range was chosen based on the
consistency of each voxel’s cluster assignment across the different
filter sizes. Those analyses are reported in Supplementary
Methods I.5. In all subsequent steps, the analysis was restricted to
the parcellations based on co-activations as estimated from the
nearest 85 to 145 experiments.

-      . In
the next step, we determined the optimal clustering solution,
that is, the parcellation that was most supported by the data.
This choice was based on 3 criteria: 1) variation of information,
2) percentage of deviants, and 3) silhouette value. The full
description of these criteria is provided in Supplementary
Methods I.6. The above criteria identified a 5k solution as the
most stable parcellation of the right PMd.

Parcellation Based on Probabilistic Diffusion Tractography (PDT-CBP).
Data Acquisition and Preprocessing. Diffusion weighted imaging
(DWI) data of 20 healthy adults were acquired using a 3.0 T GE
MR Scanner (see Wang et al. 2015 for a full description of the
data sample and acquisition parameters). The data were prepro-
cessed using FMRIB’s Diffusion Toolbox (FSL 4.0; http://www.
fmrib.ox.ac.uk/fsl). The T1 images obtained in diffusion space
were transformed to the ICBM-152 brain template while an in-
verse transformation was performed to transform the VOI
masks of the right PMd into the diffusion space for each subject.

Diffusion probabilistic tractography was performed using the
FSL package for each voxel in the PMd seed VOI to estimate the
connectivity probability as described in Wang et al. (2015).

Cross-Correlation Matrix, Parcellation, and Maximum Probability Map
of the k Solution. Cross-correlations (dimensions: number of seeds
× number of seeds) between the connectivity patterns of all vox-
els in the PMd seed VOI were calculated. The cross-correlation
matrix was then permutated using spectral clustering (not spec-
tral reordering). An edge-weighted centroidal Voronoi tessella-
tions method for automated clustering was applied to define 5
clusters as revealed as the most stable cluster solution for
MACM-CBP. Then, the maximum probability maps were created
for each k solution across all the subjects (see Wang et al. 2015
for a full description of the CBP pipeline).

Parcellation Based on RSFC (RSFC-CBP). Data Acquisition and Prepro-
cessing. EPI resting state data from 124 healthy subjects (age
range: 18–59, mean ± standard deviation: 39.5 ± 11.5, 66 males)
were acquired as part of the 1000 brains study (Caspers et al.
2014). A description of acquisition parameters is provided in
Supplementary Methods I.7. Functional image processing was
performed using SPM8 (Wellcome Trust Centre for Neuroima-
ging, London, http://www.fil.ion.ucl.ac.uk/spm/software/spm8).
Prior to further analyses, the first 4 scans were discarded. Then,
preprocessing of the EPI images included affine registration and
normalization to MNI space using unified segmentation
approach. A more comprehensive description of this procedure
is available in Supplementary Methods I.7.
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Cross-Correlation Matrix, Parcellation, and Maximum Probability Map
of the k Solution. The time series were computed for each voxels
when removing potentially noisy variance (see Supplementary
Methods I.7. for a description of the procedure). Linear (Pearson)
correlations between the time series of each seed voxels (cluster)
and all other graymatter voxels were computed and z-transform
to quantify RSFC. The individual connectivity matrices of the
seeds voxels with the whole-brain gray matter voxels. k-Means
(with k ranging from 2 to 9) was then performed on the individual
connectivity matrices. Finally, the maximum probability maps
were created for each k solution across all the subjects.

Multimodal Functional Connectivity of the MACM-CBP-
Derived Clusters

Following the parcellations of the seed region, we examined the
functional connectivity profile of each cluster by performing add-
itional MACM and RSFC analyses of the obtained clusters. While
MACM provides the co-activation pattern of the clusters across a
wide range of active tasks, RSFC provides the complementary,
task-free measure of functional connectivity of these clusters
(Eickhoff et al. 2011).

We first computed the whole-brain connectivity pattern of
each cluster and then examined the commonalities among
clusters as well as the differences between them. In other
words, for each modality (MACM and RSFC), we statistically
tested both the conjunction of all clusters and the contrasts
between them.

Task-Related Functional Connectivity (MACM).Main Effects. For each
obtained PMd subregion, an ALE meta-analysis was performed
across all BrainMap experiments featuring at least one focus of
activation within each of the derived clusters using the same
approach as described above. In contrast to theMACMunderlying
CBP, where ALE maps were not thresholded to retain the com-
plete pattern of co-activation likelihoods, we now performed
statistical inference by testing the observed ALE scores from the
actual meta-analysis against ALE scores obtained under the null
distribution of random association of foci between experiments.
A full description of this procedure is provided in Supplementary
Methods I.8. This test yielded a P value based on the proportion
of equal or higher random values. The resulting nonparametric
P values were transformed into z-scores and thresholded at a
cluster level with family-wise error rate (FWE)-corrected P < 0.05
(cluster-forming threshold at voxel level: P < 0.001).

To identify task-related co-activation common to all clusters,
we computed the overlap between the brain-wide co-activation
patterns of all MACM-CBP-derived clusters using a minimum-
statistic conjunction (Nichols et al. 2005).

Contrasts. To compare the brain-wide co-activation pattern
between clusters, we first computed the voxel-wise differences
between the ensuing ALE maps. Each of these difference scores
was then compared with a null distribution. A full description
of this procedure is provided in Supplementary Methods I.8.
This test yielded a posterior probability P testing that the differ-
ence was not due to random noise in an exchangeable set of
labels based on the proportion of lower differences in the random
exchange. The resulting probability values were then thre-
sholded at P > 0.95 (95% chance for true difference) and masked
by the respective main effects, that is, the significant effects
of the MACM for the minuend (e.g., the difference “Cluster 1 −
Cluster 2”was inclusivelymasked by themain effect of Cluster 1).

Finally, we computed the specific co-activation pattern for
all derived clusters, that is, brain regions significantly more co-
activated with a given cluster thanwith any of the other clusters.
This was achieved by performing a minimum-statistic conjunc-
tion across the results of the 4 contrasts between a given cluster
and the remaining others.

RSFC for Each Cluster
RSFC analyses were performed on the normalized resting-state
fMRI images as described at 2.2.3.1. and in Supplementary
Methods I.7. These latter were first smoothed by a 5-mm full-
width at half-maximum (FWHM) Gaussian kernel to improve
signal-to-noise ratio and to compensate for residual anatomical
variations.

Time series of the seed region were extracted for all graymat-
ter voxels. The cluster time coursewas then expressed as the first
eigen variate of these voxels’ time courses. Linear (Pearson) cor-
relations between the time series of each seed region (cluster)
and all other gray matter voxels were computed to quantify
RSFC. These voxel-wise correlation coefficients were then trans-
formed into Fisher’s z-scores. These Fisher’s z-scores were
entered into a flexible factorial model to test for consistency
across subjects, testing for the significance of the main effects
of connectivity for each cluster aswell as the differences between
the clusters.

TheCBP-derived clusterswere used as seeds for the RSFC ana-
lyses. In correspondence with the MACM analyses described
above and in line with previous studies (Clos et al. 2013), we
first calculated RSFC shared by all MACM-CBP-derived clusters.
This was achieved by computing a conjunction across the main
effect of positive connectivity of all clusters. Second, we exam-
ined the specific co-activation pattern of each cluster. These pat-
terns were obtained by performing a conjunction analysis, for
each cluster, across the contrasts between the main effect of a
given cluster and all other clusters. All analyseswere thresholded
at P < 0.05 (cluster FWE-corrected, cluster-forming threshold:
P < 0.001).

Shared Task-Related and RSFC: Conjunction Across MACM
and RSFC Results
For cross-validation, the results shared between both MACM and
RSFC analyses were then examined for each cluster using a min-
imum-statistic conjunction. This procedure aimed to character-
ize the whole-brain connectivity pattern that is similar in
resting state and in MACM (cf. Bzdok et al. 2013; Cieslik et al.
2013; Clos et al. 2013). We performed the conjunction between
RSFC and MACM for 1) Common pattern for all clusters and 2)
Specific pattern of each cluster (i.e., differences between clus-
ters). For all these conjunction analyses, only cluster extend
≥10 voxels were further reported.

Functional Characterization of the MACM-CBP-Derived
Clusters

Forward and Reverse Inference on BrainMap Meta-data
Functional characterization of the right PMd clusters revealed by
MACM-CBP was performed using the “behavioral domain” (BD)
and “paradigm class” (PC)meta-data of the included experiments
as assigned in the BrainMap database (Laird et al. 2009). A de-
scription of the behavioral processes covered by the Brainmap
paradigm class taxonomy may be found at http://brainmap.org/
taxonomy/paradigms.html. BDs include the main categories
“cognition, action, perception, emotion, interoception,” as well
as their respective subcategories. In turn, PCs categorize the
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specific task employed. To characterize the individual functional
profile of each cluster, we performed quantitative “forward
inference” and “reverse inference” as has been done in previous
parcellation studies (Bzdok et al. 2013; Cieslik et al. 2013; Clos
et al. 2013). In the forward inference approach, a cluster’s func-
tional profile is assessed by identifying taxonomic labels for
which the probability of finding activation in the respective clus-
ter is significantly higher than finding activation for that label
across the whole database by chance. Significance was deter-
mined using a binomial test (P < 0.05 corrected for multiple
comparisons using Bonferroni’s method; Clos et al. 2013;
Rottschy et al. 2013). That is, we tested whether the conditional
probability of activation in a particular region given a particular
label [P(Activation|Task)] was higher than the baseline probabil-
ity of activating this particular region [P(Activation)]. In the
reverse inference approach, a cluster’s functional profile was
determined by identifying the most likely BDs and PCs given ac-
tivation in a particular cluster, that is, the likelihood P(Task|Acti-
vation). This likelihood can be derived from P(Activation|Task) as
well as P(Task) and P(Activation) using Bayes’ rule. Significance
(at P < 0.05, corrected for multiple comparisons) was then as-
sessed by means of a χ2 test. In sum, forward inference assessed
the probability of activation given a behavioral label, whereas
reverse inference assessed the probability of each behavioral label
given an activation.

As done previously, we also performed contrast analyses
between the different clusters’ functional profiles. These con-
trasts were, in turn, constrained to those experiments in Brain-
Map activating either cluster. From this pool of experiments,
the base rate is the a priori probability of any focus to lie in either
of the 2 compared clusters given that it is located in any of them.
Forward inference here compared the activation probabilities
between the 2 clusters given a task compared with the a priori
base rate. This was again achieved by means of a binomial test
(P < 0.05, corrected for multiple comparisons). In the reverse in-
ference approach, we compared the occurrence probabilities of
the tasks given activation in 1 cluster (rather than in the other).
This probability comparison was again achieved by means of a
χ2 test (P < 0.05, corrected for multiple comparisons).

Results
Cortical Parcellation Based on Connectivity Pattern

As our study aimed to distinguish functional subregions (i.e.,
clusters) in the right PMd, we first examined themost stable clus-
ter solution obtained with CBP based on MACM across a wide
range of k-solutions (from k = 2 to k = 11). We then investigated
whether the topographical organization revealed by the ensuing
solution could be supported by CBP based on othermodalities. In
particular, we performed PDT-CBP and RSFC-CBP, again evaluat-
ing different cluster solutions (in the vicinity of the k = 5 solution
found for MACM) based on their inter-subject stability.

Cortical Parcellation Based on Co-activation Pattern (MACM-CBP)
The information, separation, and consistency criteria jointly
identified the 5-cluster (5k) solution as the best among the 10 k-
means clustering solutions. The splitting of the 5 clusters into
functional space is illustrated in Supplementary Figure 3 and
described in Supplementary Results II.1 while the resulting 5
clusters are illustrated in Figure 2A.

The rendering of the 5 clusters separately on coronal plans
with the respective number of voxels and MNI coordinates of
their respective center of gravity are illustrated in Supplementary

Figure 3B. In addition, MNI coordinates of their borders are listed
in Supplementary Results II.2, and the derived subregions inMNI
volume space are available at http://anima.fz-juelich.de/studies/
Genon_CBPrightPMd_2016. The location of the clusters high-
lights a rostro-caudal organization along the superior andmiddle
frontal gyri. This organization includes a rostral cluster that lies
anteriorly to the precentral gyrus; a central cluster that lies at
the intersection of the precentral sulcus and the superior/middle
frontal gyri; and a caudal cluster that is located at the posterior

Figure 2. Rendering of the 5k solution yielded by different CBP modalities in the
right PMd. (A) 5k solution yielded by MACM-CBP. (B) 5k solution yielded by PDT-
CBP. (C) 5k solution yielded by RSFC-CBP.
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part of the precentral gyrus. The location of the clusters further
suggests a ventrodorsal organization with a ventral cluster adja-
cent to ventral PM and mainly overlapping with the precentral
gyrus; the previously mentioned central cluster; and a dorsal
cluster adjacent to inter-hemispheric premotor areas. For con-
venience, hereafter the clusters are labeled according to their
anatomical location (i.e., rostral, caudal, central, ventral, and
dorsal).

5-Cluster (5k) Solution Revealed by Structural Connectivity Pattern
(PDT-CBP) and Unconstrained Functional Connectivity (RSFC-CBP)
The 5k solution identified by PDT-CBP showed good correspond-
ence with the 5k solution identified by MACM-CBP with both ros-
tro-caudal and ventrodorsal differentiation and a centrally
located cluster (Fig. 2B). Based on the topographical similarities
between the 5 MACM-CBP-derived cluster and the 5 PDT-CBP
clusters, we computed the percentage of overlap between each
pair of corresponding cluster. Those results are available in Sup-
plementary Table 1.

The 5k solution yielded by RSFC-CBP is illustrated in Figure 2C.
MatchingMACM-CBPand PDT-CBP, it revealed a rostro-caudal or-
ganization and a ventrodorsal organization including and a cen-
trally located cluster on the superior posterior frontal sulcus. We
nevertheless note that the rostral and central border are less dif-
ferentiated at the location of the superior frontal sulcus empha-
sizing that the rostro-caudal organization should be considered
in term of gradient and not as spatially segregated subregions.

Examination of the stability of PDT-CBP-derived parcellation
across resampling (half split) revealed that several k solutions
show good stability. In particular, stability significantly increases
(as reflected by both Cramer V and Normalized Mutual Informa-
tion) from k = 3 to k = 4 and from this latter k solution to k = 5. In
contrast, stability does not increase from k = 5 to k = 6 suggesting
that we reach a local optimum at k = 5. Thus, the 5k solution is
relatively well supported by DWI data. In contrast, examination
of percentage of deviants and silhouette value across subjects in-
dicated a general pattern of slightly linearly decrease of stability/
consistency as k increases in RSFC-CBP. Nevertheless, examin-
ation of VI between subjects across k solutions showed that
while VI tends to decrease from k = 4 to k = 5, it significantly
increase from k = 5 to k = 6 suggesting that we also reach a local
optimum at k = 5 with RSFC-CBP.

The overlap in termof number of voxels in the voxels between
the 5k parcellation revealed by MACM-CBP and the 5k parcella-
tion revealed by the 2 other CBP modalities is described in
Supplementary Results III.3.

Functional Connectivity of the Clusters Yielded by
MACM-CBP

Common Functional Connectivity Patterns
The functional connectivity profile common to all clusters across
both MACM and RSFC as well as functional connectivity profile
common to all clusters only revealed by MACM are detailed in
Table 1.

The results of the conjunction across the functional connect-
ivity patterns of all 5 clusters across both MACM and RSFC
analyses identified 2 regions common to all 5 clusters: postero-
medial frontal cortex (SMA/pre-SMA) and the central cluster.
That is, aside from common local connectivity with the central
cluster, the postero-medial frontal cortex was the only brain re-
gion that showed consistent functional coupling with all identi-
fied clusters. Nevertheless, examination of the connectivity
profile only observed by MACM additionally revealed that all

clusters were co-activated with the bilateral IPS [Area hlP2/hlP3
(Choi et al. 2006)], the bilateral Area 44 (Amunts et al. 1999), the
bilateral anterior insula, the bilateral prefrontal thalamus (Beh-
rens et al. 2003), and the right pallidum. In contrast, RSFC re-
vealed that all clusters were commonly coupled with the right
rostral and ventral clusters and the primary somatosensory cor-
tex [Area 2; (Grefkes et al. 2001)] extending to supramarginal
gyrus [Area PFt (Casper et al. 2006, 2008)].

Cluster-Specific Functional Connectivity Patterns
Contrasting each cluster’s functional connectivity patterns with
those of all 4 other clusters identified each cluster’s specific func-
tional connectivity pattern. These findings are detailed in Table 1
and illustrated in Figure 3. For the sake of robustness of the high-
lighted functional connectivity profile, we mainly relied on the
conjunction of unconstrained specific functional connectivity
(as assessed with RSFC) and task functional connectivity (as as-
sessed with MACM) as illustrated in Figure 3C. However, for the
sake of completeness, we additionally examined the pattern
yielded by RSFC (Fig. 3A) and the pattern yielded by MACM
(Fig. 3B) separately. Nevertheless, the divergence between both
approaches is discussed in Supplementary Discussion III.1.1.

Both approaches (RSFC and MACM) indicated specific con-
nectivity of each cluster with a homotopic cluster in the left
hemisphere. Each cluster showed additional specific connectiv-
ity profile reposted below.

Rostral Cluster. Both approaches showed that the rostral cluster
was specifically connected to bilateral intraparietal sulcus [IPS:
areashIP1/hIP2 (Scheperjans et al. 2008)], lateral prefrontal cortex
LPFC, midcingulate cortex and the right precuneus.

MACM further revealed that the rostral cluster was function-
ally coupled with the left ventral LPFC and the dorsomedial pre-
frontal cortex (DMPFC) while RSFC additionally revealed that it
was functionally connected to the bilateral cerebellum lobule
VII (Diedrichsen et al. 2009), the bilateral inferior temporal
gyrus, the left precuneus, the right subiculum, and the right fusi-
form gyrus.

Caudal Cluster. Both approaches revealed that the caudal cluster
was specifically connected to bilateral M1 [area 4p (Geyer et al.
1996)], bilateral SMA extending into midcingulate cortex, left
cerebellum [lobule IV/V (Diedrichsen et al. 2009)], and right par-
ietal operculum [areas OP1/OP3 (Eickhoff et al. 2006)] and frontal
operculum.

MACM further revealed that the caudal cluster was function-
ally coupled with the posterior insula, the thalamus [premotor
and prefrontal (Behrens et al 2003)], and the right putamen
while RSFC additionally revealed functional connectivity of this
cluster with parietal operculum subarea OP3/OP4 (Eickhoff et al.
2006).

Central Cluster. Both approaches showed that the central cluster
was specifically connected to bilateral IPS (area hlP3) extending
to superior parietal lobule [SPL: areas 7A/7PC/5l (Scheperjans
et al. 2008)].

MACM further revealed that the central cluster was function-
ally coupled to the right fusiform gyrus [Area FG1/FG2 (Caspers
et al. 2013)] and the left primary sensorimotor areas [Area 2
(Grefkes et al. 2001); Area 3b (Geyer et al. 1999)] while RSFC add-
itionally revealed that it was functionally connected to left Bro-
ca’s area [Area 44 (Amunts et al. 1999)], bilateral inferior
parietal lobule [Area 2 (Grefkes et al. 2001); Area PFt & Area
PFop; (Caspers et al. 2006, 2008)], and middle occipital gyrus.
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Table 1 Common and specific functional connectivity of the 5 MACM-CBP-derived clusters across tasks (MACM) and rest (RSFC)

Region Overlap with
cytoarchitectonic area

x y z Cluster size

Common to all clusters
Tasks and rest

Central cluster R NA 32 −3 57 107
Left PMd (central cluster’s homotope) L NA −33 −8 55 50
SMA/pre-SMA L NA −8 5 51 58

R NA 5 8 49 13
R NA 6 4 64 10

Tasks only
IPS L hlP3i −34 −50 51 663

R hlP2/hlP3d,i 39 −47 50 189
Broca’s area R Area 44a 54 9 28 305

L Area 44a −53 6 31 256
Thalamus R Prefrontal thalamusj 12 −14 7 191

L Prefrontal thalamusj −11 −16 7 171
Anterior insula R NA 36 23 1 165

L NA −34 23 1 162
Basal ganglia R Pallidum/putamen 19 3 3 23

Rest only
Rostral and ventral clusters R NA 26 −3 55 1369
Right somatosensory-cortex/supramarginal gyrus R Area 2c/Area PFtl 50 −32 48 301

Specific to rostral PMd
Tasks and rest

Left homotope L NA −27 9 52 332
Middle frontal L NA −40 29 33 166
Middle frontal R NA 30 8 42 1272n

33 21 42
44 48 20
48 36 24

Fp1b 30 58 10
MCC R NA 7 26 42 19
Inferior parietal/IPS R hlP1/hlP2d 42 −57 41 498

L −38 −58 41 389
Precuneus R NA 8 −62 50 63

Tasks only
Inferior frontal gyrus L NA −38 14 37 1071

R NA 32 29 −7 134
Rest only

Inferior temporal gyrus R NA 62 −34 −18 601
L −57 −54 −15 160

Precuneus L NA −6 −58 45 629
Cerebellum L Lobule VIIag −38 −65 −37 519

R 34 −62 −33 100
Medial temporal lobe R Subiculum 29 −32 −18 318
Fusifurm gyrus R NA −30 −40 −14 193

Specific to caudal PMd
Tasks and rest

Primary motor R Area 4pe 34 −26 60 1492o

Cortex L Area 4pe −36 −29 60 535o

Left homotope
SMA/Midcingulate cortex R NA 8 −10 50 153

L −5 −16 53 67
Cerebellum L Lobule VI/Vg −18 −57 −20 350
Parietal operculum R Area OP1/OP3h 47 −21 20 78
Frontal operculum R NA 44 −3 14 16

Tasks only
Putamen R NA 31 −6 −1 66
Thalamus R Prefrontal/premotor thalamus j 14 −19 8 60
Posterior insula R NA 43 1 12 44

Rest only
Parietal operculum L Area OP3/OP4h −42 −21 18 366

Continued
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Table 1 Continued

Region Overlap with
cytoarchitectonic area

x y z Cluster size

Specific to central PMd
Tasks and rest

IPS/superior R Area 7Ai/Area7PCi/hlP3i 26 −58 57 405
Parietal lobule L Area 7Ai/Area 7PCi/Area 5li −28 −56 61 335

Area 7Ai −19 −75 44 71
−14 −67 58 33

Left homotope L NA −25 −8 56 553
Tasks only

Fusiform gyrus R Area FG1/FG2k 38 −68 −12 65
Somatosensori area L Area2c/Area 3be,f −38 −36 48 13

Rest only
Inferior parietal lobule R Area2c/Area PFtl/Area PFopl 35 −41 48 1656

L −34 −44 47 1848
Middle occipital gyrus L NA −23 −76 32 136

R 29 −74 34 112
Broca area L Area 44a −52 6 29 133

Specific to ventral PMd
Tasks and rest

Superior temporal R NA 59 −41 12 49
Left homotope L NA −46 −4 48 356

Tasks only
Visual cortex R hOc5m 50 −66 5 68

Rest only
Inferior frontal R Area 45a 46 17 23 1277
Gyrus L −44 17 25 355

R NA 43 34 −7 259
Posterior middle R NA 60 −44 8 660
Temporal gyrus L NA −58 −51 10 355

Specific to dorsal PMd
Tasks and rest

Left homotope L NA −8 4 64 126
Inferior frontal gyrus/insula R NA 49 10 3 105

L −49 7 2 85
Putamen R NA 25 11 2 55
MCC R NA 10 10 40 22

Tasks only
Broca’s area L Area 44a −52 10 3 505

R Area 44/45a 55 15 6 325
Rest only

Middle frontal gyrus R NA 27 48 24 511
L −30 46 22 468

Anterior cingulate cortex L NA −8 18 31 496
R 9 20 30 462

Cerebellum L Lobule VIIag −42 −54 −33 139
Pre-SMA R NA 9 24 60 59

Note: NA, not assigned to any known probability map/not applicable.
aAmunts et al. (1999).
bBludau et al. (in press).
cGrefkes et al. (2001).
dChoi et al. (2006).
eGeyer et al. (1996).
fGeyer et al. (1999).
gDiedrichsen et al. (2009).
hEickhoff et al. (2006).
iScheperjans et al. (2008).
jBehrens et al. (2003).
kCaspers et al. (2013).
lCaspers et al. (2006); Caspers et al. (2008).
mMalikovic et al. (2007).
nThe region is part of the local connectivity of the rostral PMd itself (1083 voxels).
oThe region is part of the local connectivity of the caudal PMd itself (1765 voxels) in the right hemisphere or its left-side homotope in the left hemisphere; CBP, Co-
activation-based parcellation; MACM, meta-analytic connectivity modeling; RSFC, resting state functional connectivity; PMd, dorsal Premotor Cortex; IPS, intraparietal
sulcus; SMA, supplementary motor area.
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Ventral Cluster. Both approaches indicated that the ventral cluster
was specifically connected to the right posterior superior tem-
poral gyrus.

MACM further revealed that the ventral cluster was coacti-
vated with right visual extrastriate cortex [hOC5 (Malikovic
et al. 2007)] while RSFC showed that it was also connected to

the bilateral posterior middle temporal gyrus and the bilateral
ventral PFC [inferior frontal gyrus including Area 45 (Amunts
et al. 1999)].

Dorsal Cluster. Both approaches indicated that the dorsal cluster
was specifically connected to bilateral inferior frontal gyrus

Figure 3. Specific functional connectivity profile of the MACM-CBP-derived subregions. Color code: green = caudal cluster, blue = central cluster, red = rostral cluster,
yellow = ventral cluster, light blue = dorsal cluster. (A) RSFC. (B) Task functional connectivity (MACM). (C) Conjunction of RSFC and MACM functional connectivity
profile for each cluster.
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slightly extending to the insula, the right putamen, and the right
MCC.

MACM further revealed that the ventral cluster was coacti-
vated with Broca’s area [Area 44 (Amunts et al. 1999)] while
RSFC revealed that it was functionally connected tomiddle front-
al gyrus, bilateral ACC, left cerebellum [lobule VII, (Diedrichsen
et al. 2009)], and right pre-SMA.

Functional Characterization of the Clusters Yielded by
MACM-CBP

Forward and Reverse Inference on BrainMap Taxonomic Meta-data
Functional characterization of the 5 right PMd clusters was per-
formed by forward and reverse inference on the taxonomic labels
(BDs and PCs) provided by the BrainMap database (Laird et al.
2009). BDs and PCs significantly associated with each cluster
across both forward and reverse inference are illustrated in Fig-
ure 5 and summarized in Figure 4. A description of the behavioral
processes covered by the Brainmap paradigm class taxonomy
may be found at http://brainmap.org/taxonomy/paradigms.html.

As shown in Figure 4A, some paradigms appeared to be re-
lated to several clusters across both forward and reverse infer-
ence. In particular, the central cluster showed a common
paradigm profile with the caudal cluster regarding the PCs finger
tapping and drawing. In addition, it showed a common paradigm
profile with the rostral and ventral clusters regarding saccades
and anti-saccades. Furthermore, the central and rostral clusters
showed a common association with the PC “mental rotation.” Fi-
nally, it shared visual distractor processing/visual attention with
the ventral cluster.

Furthermore, there were several PCs specifically related to 1
particular cluster. In particular, cognitive paradigms such as
the n-back task or the Wisconsin Card Sorting Test were

specifically related to the rostral cluster. In contrast, paradigms
targeting basic motor performance, such as finger flexion/exten-
sion or isometric force paradigms, were specifically related to the
caudal cluster. Finally, imaginedmovements, sequence learning,
and visual pursuit/tracking paradigms were specifically asso-
ciated with the central cluster.

Synthesizing these findings, the functional characterization ac-
cording to PCs thus revealed that the rostral cluster wasmainly as-
sociated with paradigms engaging higher cognitive functions such
as working memory. In contrast, the caudal cluster was mainly re-
lated to paradigms targeting motor functions. In turn, the ventral
cluster was mainly associated with visual attention and eyemove-
ment paradigms, whereas the dorsal cluster was preferentially as-
sociatedwith paradigms engaging handmovements such as finger
tapping. Finally, the central cluster showedamixedpattern of asso-
ciations including paradigms targeting motor functions, visual at-
tention/eyes movements, and spatial cognition.

As illustrated in Figure 4B, the functional characterization
according to BDs of the BrainMap database corroborated the
above-described pattern emerging from the PC analysis and fur-
thermore showed that while the central cluster was specifically
associated with action imagination, the ventral cluster was spe-
cifically associated with vision.

The likelihood ratio and probabilities values associated to
each significant behavioral label for each cluster are illustrated
in Figure 5 while the results of the contrast analyses between
the different clusters’ functional profiles are illustrated in
Figure S4. These results revealed a cognitive-motor gradient
along the rostro-caudal axis. The rostral cluster wasmore related
to higher cognitive functions than the central one, which was, in
turn, more related to higher cognitive functions than the caudal
one. For example, the rostral cluster was more related to working
memory than the central one, but this latter wasmore associated

Figure 3. Continued.
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with working memory than the caudal cluster. Motor functions
showed the opposite pattern. For example, the caudal cluster
was more associated with action execution than the central
one, but this latter was more associated with action execution
than the rostral cluster.

The contrast analyses furthermore highlighted that the ven-
tral cluster showed the strongest association with eye move-
ments/visual attention. Interestingly, the contrast analyses also
showed that both the ventral and dorsal clusters were more re-
lated to speech functions than the rostral and the central ones.
In addition, the dorsal cluster was more related to music cogni-
tion than the rostral and caudal clusters. However, the ventral
and dorsal clusters differed in their functional profiles since the
contrast between them revealed that while the ventral one was
more associated with eye movements/visual attention, the dor-
sal one was more related to finger tapping.

Discussion
Using MACM-CBP, we found 5 distinct clusters within right PMd,
which were corroborated by complementary structural and

resting-state functional clustering approaches. Furthermore, by
combining task-related (MACM) and task-free (RSFC) analyses,
we characterized the whole-brain functional connectivity pat-
terns of these 5 clusters. We finally used a meta-analytic ap-
proach to assign each of the 5 clusters a specific behavioral
functional profile that complements the observed parcellation.

Consistent PMd Clustering Patterns Across Modalities

After testing a range of possible granularities based on co-activa-
tion patterns across studies (MACM), the 5-cluster (5k) solution
was found to be optimally stable. It is noteworthy, however,
that the choice of the cluster solution is an ill-posed problem
(Eickhoff et al. 2015; Ryali et al. 2015), particularly since brain ac-
tivity is likely characterized by multiple levels of organization
(Bellec 2013).Whilewe focused here on 1 particular scale, consid-
eration of other scales may well provide additional insight into
the neurobiological organization of the right PMd.

The selected 5k solution consisted of 1) a rostral cluster adja-
cent to prefrontal cortex, 2) a central cluster at an intermediate lo-
cation (and adjacent to all other ones), 3) a caudal cluster adjacent

Figure 4. Summary of functional characterization of the clusters yielded by MACM-CBP as jointly reflected by forward and reverse inference. (A) Functional
characterization according to the BrainMap paradigm classes. (B) Functional characterization according to the BrainMap behavioral domains.
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Figure 5. Functional decoding of the 5 right PMd clusters according to Brainmap. Functional decoding following forward inference expressed as likelihood ratio (left) and
reverse inference expressed as probabilities (right). Color code: red, rostral; blue, central; green, caudal; yellow, ventral; light blue, dorsal. (A) Behavioral domains. (B)
Paradigm classes.
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toM1, 4) a ventral cluster adjacent to the PMv, and 5) a dorsal clus-
ter bordering themedial premotor areas. This organization of the
right PMd along both rostro-caudal and ventrodorsal axes was
corroborated by additional parcellations based on structural con-
nectivity (PDT) and unconstrained functional connectivity
(RSFC). This cross-modal convergence suggests that the spatial
organization of the right PMd revealed by MACM-CBP is robust
across structural and functional criteria. It is important to high-
light that the clusters’ respective borders did not perfectly
match across CBP modalities, suggesting that our methods
have identified a topographical organization rather than a rigid
set of borders. In particular, the rostro-caudal organization may
be reflective of a gradient rather than sharply segregated subre-
gions. Such a gradient mirrors the rostro-caudal organization
suggested in nonhuman primates (see below) and corroborates
at least one previous fMRI study in humans, inwhich it was asso-
ciated with a cognitive-motor gradient (Orban et al. 2014).

Five Functional Subregions Within the Right PMd

Rostral PMd: Higher Cognitive Processes
Both the MACM and RSFC analyses revealed that the rostral PMd
cluster was specifically functionally coupled with the midcingu-
late cortex, bilateral LPFC, and the IPS/inferior parietal regions.
These regions are known to support higher cognitive functions
such as executive functions (Collette et al. 2006), vigilant atten-
tion (Langner and Eickhoff 2013), and workingmemory (Rottschy
et al. 2012). This cluster was also functionally connected with the
precuneus, a region that is known to play a role in higher order
visuospatial processes such as covert shift of attention and ab-
stract mental imagery tasks (Cavanna and Trimble 2006). In line
with this view, functional characterization across forward and re-
verse inference revealed that this cluster was engaged in func-
tions such as working memory. In other words, the rostral
cluster might be engaged in higher, potentially dynamic aspects
of visuospatial imagery, which may possibly include short-term
memory encoding of a location (Langner et al. 2014), mainten-
ance of spatial information (including spatial rehearsal), and spa-
tial updating. This cluster might also play a role in working
memory even when the content is not overtly spatial (Nee et al.
2013).

The rostral cluster reported here bears similarity to area F7,
the rostral subdivision of the PMd innonhumanprimates (Matelli
et al. 1985, 1991). This region predominantly receives prefrontal
inputs (Boussaoud et al. 1995; Rizzolatti and Luppino 2001) and
contains neurons that are activewhen the animal engages cogni-
tive functions such as spatial attention or memory (Boussaoud
2001; Lebedev and Wise 2001). In humans, a similar rostral PMd
subregion, termed “pre-PMd,”has been proposed, and connectiv-
ity between the pre-PMd and the prefrontal cortex has been sug-
gested (Picard and Strick 2001). Similarly, previous functional
studies have demonstrated that the most rostral part of the
PMd (or pre-PMd) is frequently engaged in high-level cognitive
operations (Hanakawa 2011), such as complex mental calcula-
tions (Zago et al. 2001). This evidence implies that our rostral
cluster roughly corresponds to the proposed human pre-PMd
and may be considered a potential homologue to F7 in the non-
human primate. Of note, as there is currently nowidely accepted
landmark separating PM and prefrontal cortex, the rostral cluster
found in the present study cannot be strictly considered a pre-
motor region. In our study, the location of the rostral cluster,
which is anterior to the precentral gyrus, leads us to consider it
a transitional region in the ill-defined premotor-prefrontal di-
chotomy. Furthermore, its behavioral functional profile supports

its consideration as a functional component of the prefrontal cor-
tex, rather than a premotor module sensu-stricto.

Caudal PMd: Motor Functions
Task-based and RSFC analyses revealed that the most caudal
PMd cluster is likely part of the brain’s motor system, including
bilateral M1, SMA, and the left cerebellum. The caudal cluster
was also specifically functionally connected to right fronto-par-
ietal operculum, which has been shown to support higher order
somatosensory and sensorimotor processing (Eickhoff et al.
2010). Supporting this view, functional characterization of the
caudal cluster revealed that it is engaged in action execution,
motor learning, and interoception. It is thus likely that several
functions that have frequently been assigned to the whole PMd
are primarily subserved by this caudal subdivision. Such pro-
cesses include 1) the creation of internal representations of ac-
tion (or pragmatic body maps) which serve movement
generation, understanding, and learning (Rizzolatti and Luppino
2001; Schubotz and von Cramon 2003), and 2) the organization of
movement or action formulation (Schubotz and von Cramon
2003).

In line with our finding of a caudal cluster adjacent to M1 in
humans, the posterior PMd adjacent to M1 in nonhuman pri-
mates has been defined as a distinct cytoarchitectonic and func-
tional area. This caudal subregion, termed F2, is connected to M1
and the spinal cord (for reviews, see Geyer et al. 2000; Abe andHa-
nakawa 2009). The caudal PMd subregion has shown a similar
connectivity pattern in humans, and fMRI studies have suggested
that this subdivision (also referred to as the “PMd proper”) is pref-
erentially activated duringmovement preparation and execution
(for a review, see Picard and Strick 2001). Such findings suggest a
functional profile for the human caudal PMd which is similar to
the one observed in nonhuman primates (Boussaoud 2001) and
consistent with the one identified here for our caudal PMd clus-
ter. Therefore, according to its integration into the sensorimotor
network and its functional profile, characterized by processes re-
lated to motor preparation and programming, the caudal cluster
may correspond to the nonhuman primate’s caudal right PMd
(area F2) and human right PMd proper.

Central PMd: the Core PMd
The central cluster was located between the rostral and caudal
ones. Compared with all other clusters, it consistently showed a
stronger functional coupling with the IPS and the SPL, regions
that are known to be engaged in top-down/goal-driven modula-
tory processes (Corbetta and Shulman 2002). Considered separ-
ately, the MACM analysis further yielded connectivity with 2
different subregions of the ventral visual stream [respectively,
FG2 and FDG1 (Caspers et al. 2015)]. Functional decoding revealed
that the central cluster was related to both motor and cognitive
functions (such as action execution and working memory), as
well as to spatial cognition and motion perception. Together,
these findings and the observation that all other clusters were
functionally coupled with the central cluster suggest that the lat-
ter plays a core role within the right PMd mosaic by linking the
functionally more specialized clusters within the right PMd.

Studies in nonhuman primates have also suggested a transi-
tional region that lies at the border between F7 (i.e., rostral PMd)
and F2 (i.e., caudal PMd), which has been named F2vr (for a re-
view, see Abe and Hanakawa 2009). F2vr receives inputs from
dorsolateral prefrontal cortex (DLPFC) and medial IPS (Luppino
et al. 2003) and has been assumed to support the integration of
a visuospatial parameter (target object) and a somatosensory/
motor parameter (arm) to complete a motor plan (for a review,
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see Abe and Hanakawa 2009). F2vr may thus subserve sensori-
motor transformations. Our study provides support for the exist-
ence of a similar transitional cluster in humans within a central
location, lying between the rostral “cognitive” cluster and the
caudal “motor” one. Functional decoding showed that this sub-
region in human PMd is engaged in target and goal maintenance
(working memory), visuospatial processes, action imagination,
and action execution. This pattern suggests that our central clus-
ter may, partly, include the human homologue of F2vr.

Ventral PMd: Eye-Related Functions
According to the functional decoding, the ventral and central
PMd clusters shared several features. In particular, both were as-
sociated with saccades, anti-saccades, and visual attention para-
digms. However, only the ventral cluster was significantly
associatedwith the broader behavioral domain of vision. This be-
havioral profile fits with the specific co-activation of this latter
cluster with the right visual cortex (see Supplementary Discus-
sion III.2.1. for further discussion of task and rest functional con-
nectivity of this cluster). These findings argue in favor of the
ventral cluster being preferentially related to “eye-centered”
functions. Such functions may cover learning sequences of eye
movements, serial visual search, and visual attention. Neverthe-
less, the ventral cluster also showed broader associations, such
as with action execution and action inhibition. Thus, while our
ventral cluster may not strictly be considered an “eye field,” it
does likely overlapwith the “premotor eye field” (see Supplemen-
tary Discussion III.2.2 for a description of the premotor eye field).

Dorsal PMd: Hand Preferences and Sequencing/Rhythm Aspects
In our MACM-CBP analysis, the dorsal PMd cluster was found to
be closely coupled with the ventral cluster (see Supplementary
Results II.1 and Supplementary Discussion III.1.2.). However,
both PDT-CBP and RSFC-CBP clearly differentiated this dorsal
subdivision as a separate cluster. BothMACMandRSFC identified
specific functionally connectivity of this subdivision with bilat-
eral prefrontal regions, insula, right putamen, and right MCC.
These findings indicate that the dorsal cluster may be engaged
in both motor and cognitive networks. Congruently, functional
decoding showed a profile of associations that included motor,
language, andmusic domains.Within the domain ofmotor func-
tions, the dorsal cluster seemed to be preferentially related to
hand/finger movements (i.e., finger tapping paradigms). In line
with these findings, this part of the PMd was found to be acti-
vated for imitation of hand movements in a previous meta-ana-
lysis (Caspers et al. 2010). Our findings thus suggest that the
dorsal cluster is related to both cognitive and motor processes,
but appears to be particularly related to hand/finger movements,
music, and language processing. There is evidence that music
processing, language processing, and tapping might be related
in certain respects (Overy et al. 2003); in particular, they may
share sequencing and rhythm-processing aspects (Petkov et al.
2005; Flaugnacco et al. 2014). Therefore, although future studies
are needed to more finely specify the motor and cognitive pro-
cesses selectively engaging the dorsal cluster; for the time
being, one can assume that this dorsal subregion preferentially
supports sequencing and rhythm-processing aspects common
to finger movements, music, and language.

Conclusion
Previous studies have suggested that the right PMd supports a
wide range of motor and cognitive functions that may be topo-
graphically organized within this region, characterized by spatial

gradients. Based on a quantitative data-driven approach, we
showed that the right PMd can be robustly subdivided into 5 dis-
tinct functional modules. Our work highlighted a rostro-caudal
organizationwith a rostral subregion supporting higher cognitive
functions, a caudal subregion relatively more associated with
motor functions, and a central subregion thatmayact as an inter-
face between the rostral-cognitive and the caudal-motor subre-
gions. Our study further revealed a ventrodorsal organization,
including a ventral subregion that supports eye-field functions,
a dorsal subregion that is preferentially related to hand/finger
movements, and rhythm/sequencing aspects in cognitive and
motor functions. How those modules may dynamically interact
is discussed in Supplementary Discussion III.2.4. Finally, we sug-
gest that the central subregion, positioned at the cross-roads of
both gradients, plays an integrative role within this right PMd
functional mosaic.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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I.	Supplemental	methods	

	

I.1.	VOI	definition	

	

Comparison	of	our	caudal	and	inferior	PMd	borders	with	previous	borders	

	

Of	 note,	 the	 inferior	 border	 of	 our	 meta-analytic	 definition	 of	 the	 PMd,	 that	 is,	

approximately	z	=	40	 in	conventional	Montreal	Neurological	 Institute	(MNI)	space,	co-

localized	 in	 a	 range	 of	 10	 mm	 with	 a	 previously	 meta-analytically	 defined	 border	

[approximately	z	=	30;	(Mayka	et	al.	2006)].	Furthermore,	our	border	co-localized	with	

previous	 PDT-based	 borders	 [approximately	 z	 =	 48	 in	MNI	 space	 by	 Tomassini	 et	 al.	

(2007)	and	approximately	z	=	52	in	Talairach	space	on	the	right	side	by	Schubotz	et	al.	

(2010)].	

	

I.2.	MACM	selection	of	experiments	

	

From	 this	 database,	 only	 experiments	 using	 functional	 Magnetic	 Resonance	 Imaging	

(fMRI)	 or	 perfusion	 positron	 emission	 tomography	 in	 healthy	 adults	 participants	

without	any	external	interventions	(such	as	pharmacological	challenges)	were	included	

in	the	analyses.	These	inclusion	criteria	resulted	in	about	7,500	eligible	experiments	at	

the	time	of	analysis.		

I.3.	ALE	for	MACM-CBP	

	

The	key	idea	behind	ALE	is	to	treat	the	foci	reported	in	the	associated	experiments	not	

as	single	points	but	as	centers	for	3-D	Gaussian	probability	distributions	that	reflect	the	

spatial	 uncertainty	 associated	 with	 neuroimaging	 results.	 For	 each	 experiment,	 the	

probability	 distributions	of	 all	 reported	 foci	were	 combined	 into	 a	modeled	 activation	

map	 for	 that	 particular	 experiment	 (Turkeltaub	 et	 al.	 2012).	 The	 voxel-wise	 union	

across	the	modeled	activation	maps	of	all	experiments	associated	with	a	particular	seed	

voxel	then	yielded	an	ALE	score	for	each	voxel	of	the	brain.	This	ALE	score	describes	the	

co-activation	probability	of	that	particular	location	with	the	current	seed	voxel.	For	each	



seed	 voxel,	 this	 computation	 was	 performed	 for	 all	 voxels	 within	 brain	 grey	 matter	

(based	on	10	%	probability	of	finding	grey	matter	according	to	ICBM).	

	

I.4.	k-means	clustering	

	

k-means	 clustering	 is	 a	 non-hierarchical	 clustering	 method	 based	 on	 an	 iterative	

algorithm.	It	can	be	used	to	divide	a	VOI	into	k	non-overlapping	clusters	(Hartigan	and	

Wong	1979).	Clustering	using	the	k-means	algorithm	consists	of	minimizing	the	variance	

within	 clusters	 and	maximizing	 the	 variance	 between	 clusters	 by	 first	 computing	 the	

centroid	of	 each	 cluster	 and	 subsequently	 reassigning	 voxels	 to	 the	 clusters	 such	 that	

their	difference	from	the	nearest	centroid	is	minimal.	

	

I.5.	Selection	of	the	optimal	filter	range	

	

In	the	present	study,	the	filter	range	with	the	lowest	number	of	deviants	(i.e.,	voxels	that	

were	assigned	differently	as	compared	to	the	solution	from	the	majority	of	filters)	was	

selected.	 The	 proportion	 of	 deviants	 (normalized	 within	 each	 cluster	 solution	 k)	 is	

illustrated	in	Figure	S1.	We	observed	the	same	profile	like	in	(Clos	et	al.	2013).	That	is,	

parcellations	 based	 on	 small	 as	 well	 as	 large	 filter	 sizes	 yielded	 more	 deviants.	 The	

enlargement	of	the	filter	size	refers	to	a	more	liberal	inclusion	of	experiments	in	term	of	

spatial	distance	for	each	seed	voxel.	It	results	in	greater	smoothness	of	the	data.	Larger	

filter	size	may	result	in	the	spatial	spectrum	of	the	voxels	becoming	actually	higher	than	

the	actual	spatial	resolution	of	the	clusters.	It	would	therefore	potentially	result	in	more	

arbitrary	cluster	borders.	Thus,	the	filter	size	range	chosen	(85	to	145)	was	based	on	the	

increase	 in	 the	 weighted	 sum	 (across	 all	 k)	 of	 the	 z-normalized	 number	 of	 deviants	

before	and	after	 these	 filter	size	values	(cut	off	at	z	<	 -0.5:	only	 those	 filter	sizes	were	

included	where	the	number	of	deviants	was	at	least	half	a	standard	deviation	lower	than	

the	average	number	of	deviants	across	all	filter	sizes).	This	filter	size	range	corresponds	

to	an	effective	distance	ranging	between	6	and	8	mm	or	between	3	and	4	voxels.	

	

[Figure	S1	about	here]	

	

I.6.	Selection	of	the	optimal	clustering	solution	

	



In	line	with	previous	CBP	studies	(Kelly	et	al.	2010;	Kahnt	et	al.	2012;	Kelly	et	al.	2012;	

Clos	et	al.	2013),	we	considered	 information-theoretic	characteristics	of	 the	respective	

cluster	solution.	Variation	of	 information	(VI)	is	an	information-theoretic	measure	that	

quantifies	 the	 distance	 between	 two	 clustering	 solutions	 in	 terms	 of	 the	 information	

gained	 and	 lost	 in	 choosing	 one	 solution	 over	 another	 (Meilă	 2007).	 For	 each	 cluster	

solution,	 VI	 between	 all	 (unique)	 combinations	 of	 the	 13	 (85,90,95…145)	 filter	 sizes	

previously	 selected	 was	 computed.	 A	 significant	 difference	 in	 VI	 between	 a	 given	

clustering	 step	 and	 the	 next	 clustering	 step	 was	 tested	 with	 a	 two-sample	 t-test.	

Solutions	were	considered	stable	if	no	significant	increase	in	VI	from	the	previous	to	the	

current	clustering	step	could	be	observed.		

Next,	 we	 considered	 a	 consistency	 criterion.	 For	 each	 cluster	 solution,	 the	 average	

percentage	 of	 voxels	 for	 each	 filter	 size	 that	 were	 assigned	 to	 a	 different	 cluster	

compared	 to	 the	most	 frequent	 (mode)	 assignment	 of	 these	 voxels	 across	 filter	 sizes	

(i.e.,	 the	percentage	of	 deviants	 or	 “misclassified	 voxels”)	was	 computed.	A	 significant	

difference	in	percentage	of	deviants	between	a	given	cluster	solution	and	the	previous	

one	was	tested	using	a	two-sample	t-test.	In	this	framework,	optimal	solutions	are	those	

k	parcellations	where	the	percentage	of	deviants	(presumably	reflecting	noise	and	local	

variance)	 is	not	 significantly	 increased	compared	 to	 the	previous	 (k-1)	 solution,	while	

the	subsequent	(k+1)	solution	leads	to	a	significantly	higher	percentage	of	deviants.		

Third,	 separation	characteristics	were	also	 taken	 into	account	 in	determining	 the	best	

cluster	solution.	As	done	in	previous	CBP	studies	(Kelly	et	al.	2010;	Cauda	et	al.	2012),	

for	each	cluster	solution,	the	silhouette	value	averaged	across	voxels	for	each	filter	in	the	

previously	selected	range	was	computed.	The	silhouette	value	is	a	measure	ranging	from	

-1	 to	1.	 It	 assesses,	 for	 each	voxel,	 how	similar	 the	voxel	 is	 to	others	within	 the	 same	

cluster,	 versus,	 how	 similar	 this	 voxel	 is	 to	 voxels	 in	 other	 clusters	 regarding	 co-

activation	profile.	A	significant	difference	in	the	silhouette	value	between	a	given	cluster	

solution	 and	 the	 previous	 one	 was	 tested	 with	 a	 two-sample	 t-test.	 Cluster	 solutions	

were	 considered	 favorable	 if	 they	 show	 a	 significantly	 higher	 silhouette	 value,	 as	

compared	 to	 the	previous	 (k-1)	solution	 (primary	criterion),	or	 if	 they	did	not	show	a	

significantly	 lower	 silhouette	 value	 than	 the	 previous	 cluster	 solution	 (secondary	

criterion).		

[Figure	S2	about	here]	



As	illustrated	in	Figure	S2,	the	above	criteria	identified	a	5-cluster	(5k)	solution	as	the	

most	stable	parcellation	of	the	right	PMd.	First,	the	VI	across	filters	showed	that	there	is	

no	 significant	 increase	 in	 VI	 from	 the	 4k	 to	 the	 5k	 solution,	 whereas	 a	 significant	

increase	 in	VI	was	observed	between	the	5k	and	the	6k	solution	(Figure	S2A).	Second,	

the	 percentage	 of	 “misclassified	 voxels”	 (deviants)	 did	 not	 significantly	 increase	 from	

the	 4k	 to	 the	 5k	 solution,	 whereas	 it	 increased	 significantly	 from	 the	 5k	 to	 the	 6k	

solution	(Figure	S2B).	Finally,	the	silhouette	value	indicated	that	the	5k	solution	led	to	

one	of	the	best	voxel	pattern	separations	(Figure	S2C).			

Notably,	no	voxel	appeared	to	be	spatially	 inconsistent	 in	 the	5k	solution,	 that	 is,	all	5	

clusters	were	formed	of	contiguous	voxels.		

	

I.7.	Acquisition	and	preprocessing	of	RSFC	data	and	time	series	computation	

From	 each	 participant,	 echo-planar	 Imaging	 (EPI)	 images	 were	 obtained	 at	 rest	

(participants	were	 instructed	 to	 keep	 their	 eyes	 closed	 and	 to	 think	 about	 nothing	 in	

particular	 but	 not	 to	 fall	 asleep)	 during	 11	minutes	 (±300	 scans).	 These	 images	were	

acquired	 with	 a	 Siemens	 TIM	 Trio	 3-T	 scanner	 using	 Blood-Oxygen-Level	 Dependent	

(BOLD)	contrast	[gradient-echo	EPI	pulse	sequence,	TR	=	2.2	s,	echo	time,	TE	=	30	ms,	

flip	angle	=	90°,	36	axial	slices	(3.1mm	thickness),	covering	the	entire	brain].	

EPI	 images	 were	 corrected	 for	 head	 movements	 by	 affine	 registration.	 This	 was	

achieved	by	using	a	 two-pass	procedure	 in	which	 the	 images	were	 first	aligned	 to	 the	

initial	volumes	and	subsequently	to	the	mean.	The	mean	EPI	image	for	each	participant	

was	 then	 spatially	 normalized	 to	 the	 Montreal	 Neurological	 Institute	 (MNI)	 single-

subject	 template	 using	 the	 “unified	 segmentation”	 approach	 (Ashburner	 and	 Friston	

2005).	The	ensuing	deformation	was	then	applied	to	the	individual	EPI	volumes.		

The	time-series	data	of	each	voxel	were	adjusted	in	order	to	remove	sources	of	artificial	

and	 confounding	 signals	 and	 hence	 reduce	 spurious	 correlations.	 To	 do	 so,	 we	 first	

performed	a	PCA	denoising	(cf.	(Behzadi	et	al.,	2007	&	Soltysk	et	al.,	2014)).	That	is,	we	

computed	a	principal	component	analysis	(PCA)	decomposition	across	the	WM	and	CSF	

regions	of	 the	brain	and	 then	 removed	variance	associated	with	 the	most	dominant	5	

components.	Furthermore,	variance	 that	 could	be	explained	by	 the	 following	nuisance	



variables	 was	 removed	 (cf.	 Satterthwaite	 et	 al.	 2013	 for	 an	 evaluation	 of	 this	

framework):	1)	the	6	motion	parameters	derived	from	the	image	realignment;	2)	their	

first	 derivatives;	 3)	 global	 signal	 (as	 average	 across	 all	 voxels	 at	 each	 time-point).	

Finally,	data	was	band-pass	filtered	with	the	cut-off	frequencies	of	0.01	and	0.08	Hz.		

I.8.	ALE	for	MACM	of	the	derived	cluster	

Main	effect	

To	 establish	 which	 regions	 were	 significantly	 co-activated	 with	 a	 given	 cluster,	 ALE	

scores	 for	 the	 MACM	 analysis	 of	 the	 respective	 cluster	 were	 compared	 with	 a	 null-

distribution.	 This	 null-distribution	 reflects	 a	 random	 spatial	 association	 between	

experiments	with	 a	 fixed	within-experiment	 distribution	 of	 foci	 (Eickhoff	 et	 al.	 2009;	

Eickhoff	et	al.	2012).	This	random-effects	inference	assesses	above-chance	convergence	

between	experiments,	not	between	clustering	of	foci	within	a	particular	experiment.	The	

observed	ALE	scores	 from	 the	actual	meta-analysis	of	 experiments	activating	within	a	

particular	 cluster	 were	 then	 tested	 against	 the	 ALE	 scores	 obtained	 under	 the	 null-

distribution	of	random	spatial	association	between	experiments.	

Contrasts	

	

The	 null-distributions	 were	 derived	 by	 first	 pooling	 all	 experiments	 contributing	 to	

either	analysis	(i.e.,	the	two	MACM	results	of	the	clusters	to	be	compared,	respectively)	

and	then	randomly	divided	into	two	groups	of	the	same	size	as	the	two	original	sets	of	

experiments	defined	by	 activation	 in	 the	 first	 or	 second	 cluster	 (Eickhoff	 et	 al.	 2011).	

ALE	scores	for	these	two	randomly	assembled	groups	were	calculated	and	the	difference	

between	these	ALE	scores	was	recorded	 for	each	voxel.	Repeating	 this	process	25,000	

times	 yielded	 a	 null-distribution	 of	 differences	 in	 ALE	 scores	 between	 the	 MACM	

analyses	of	the	two	clusters.	The	“true”	difference	in	ALE	scores	was	then	tested	against	

this	null-distribution.	

	

	

	



II.	Supplemental	results	
	

II.1.	Visualization	of	splitting	in	functional	space	

As	 done	 previously	 (Cauda	 et	 al.	 2012;	 Clos	 et	 al.	 2013),	 we	 used	 multidimensional	

scaling	(MDS)	to	visualize	the	succession	of	cluster	separation/splitting.	The	pattern	of	

connectivity	 of	 each	 voxel	 is	 a	 multidimensional	 dataset	 (N-dimensional	 functional	

space)	that	can	be	better	visualized	using	algorithms	involving	a	dimensional	reduction	

to	 2D.	 Thus,	 we	 performed	 MDS	 on	 the	 eigenimage	 of	 the	 distance	 matrices	 using	

Sammon’s	 nonlinear	 mapping	 as	 the	 goodness-of-fit	 criterion.	 In	 the	 MDS	

representation,	 voxels	 featuring	 a	 similar	 pattern	 of	 whole-brain	 co-activation	

probabilities	 are	 placed	 together	 in	 this	 visualization,	 while	 voxels	 having	 dissimilar	

patterns	of	whole-brain	co-activations	are	placed	further	apart.	The	splittings	of	the	five	

clusters	 into	 functional	 space	 (2-D	 visualization)	 across	 the	different	 cluster	 solutions	

(from	k	=	 2	 to	k	 =	 5)	 is	 shown	 in	 Figure	 S3A.	 This	 representation	 in	 functional	 space	

illustrates	 how	 the	 right	 PMd	 voxels	 can	 be	 successively	 clustered	 according	 to	 their	

functional	co-activation	profile	into	two	clusters	(k	=	2),	then	three	clusters	(k	=	3),	four	

clusters	(k	=	4)	and	finally	five	clusters	(k	=	5).	It	therefore	illustrates	how	a	child	cluster	

emerged	 from	 the	 parent	 cluster(s).	 At	 k	 =	 2,	 the	 right	 PMd	 could	 be	 divided	 into	 a	

posterior	 (caudal)	 and	 an	 anterior	 (rostral)	 cluster.	 At	 the	 next	 level	 (k	=	 3),	 a	 third	

(central)	cluster	emerged	from	both	the	anterior	and	posterior	cluster.	At	the	following	

step	(k	=	4),	the	posterior	and	anterior	clusters	remained	the	same	but	a	fourth	cluster	

emerged	mainly	from	the	central	cluster.	This	fourth	cluster	was	further	split	 into	two	

parts	at	the	last	clustering	step.	

[Figure	S3	about	here]	

	

II.2.	Borders	of	MACM-CBP-derived	clusters	

On	 the	 y-axis,	 the	 border	 between	 the	 rostral	 and	 central	 clusters	 lies	 approximately	

between	 y	 =	 0	 and	 y	 =	 5,	 while	 between	 the	 central	 and	 caudal	 clusters	 it	 lies	

approximately	between	y	=	-7	and	y	=	-14.	On	the	z-axis,	the	border	between	the	ventral	

and	central/rostral	clusters	lies	between	z	=	50	and	z	=	60,	while	the	borders	between	

the	central/rostral	and	dorsal	clusters	lies	approximately	at	z	=	70.		

	



II.3.	Overlap	between	5k	MACM-CBP	and	5k	from	other	modalities	

To roughly quantify the agreement of both parcellation into 5 clusters of our PMd VOI, we 

computed the number of overlapping voxels in each pair of clusters as reflected by a min(X) 

conjunction. This procedure revealed a major overlap between the MACM-CBP-derived 5k 

and the PDT-CBP-derived 5k spatial pattern and a decent overlap between the former and the 

RSFC-CBP-derived pattern (see Table S1). 

 
 
Table S1. Overlap between MACM-CBP-derived clusters and the respective PDT and RSFC 
–CBP-derived clusters expressed as numbers of voxels.  
 
 
	 	

MACM-CBP-derived cluster  
(number of voxels) 

PDT-CBP RSFC-CBP 

Rostral (1035) 866 508 
Caudal (784) 720 559 

Central (1049) 889 329 
Ventral (685) 666 404 
Dorsal (590) 547 455 
Total (4143) 3688 (89%) 2255 (55%) 



III.	Supplemental	discussion	

	

III.1.	Methodological	considerations	

III.1.1. Task-based functional definition of the VOI  

Our functional definition of the PMd was based on meta-analytic approach of fMRI and PET 

activation studies. However, nearly all fMRI studies require hand or eye movements in 

relation to stimuli. Therefore, our functional definition may have been biased toward a 

hand/finger functional definition. That is, it may have failed to capture the medial and 

posterior extremity of BA6 extending to M1, which is likely related to lower limb movements 

(e.g. Cauda et al. 2011). Nevertheless, while a somatotopy is relatively obvious in primary 

sensorimotor areas in activation studies, a foot/leg functional subregion in the PMd appears to 

be less supported by such studies (e.g. Rijntjes et al. 1999). Therefore, the empirical evidence 

supporting this hypothesis are still lacking and further studies should address this issue.   

III.1.2 Divergence between MACM and RSFC characterizing the FC pattern of the clusters 
 
We	generally	found	a	good	convergence	in	the	specific	pattern	of	functional	connectivity	

of	each	cluster	as	revealed	by	MACM	and	RSFC	suggesting	that	each	cluster	has	a	robust	

functional	specific	connectivity	 fingerprint.	However,	 some	cluster’s	specific	 functional	

connectivity	were	only	revealed	by	one	modality.	In	general,	RSFC	showed	more	coarse	

functional	 connectivity	 profiles,	 which	 may	 spatially	 gather	 distinct	 behaviorally	

functionally	 specialized	 lobules	 (such	 as	 the	 primary	 somatosensory	 cortex	 and	 the	

supramarginal	 gyrus).	 This	 pattern	 of	 larger	 spatial	 smoothness	 mirrors	 and	 extents	

observations	from	previous	multi-modal	connectivity	studies	(cf.	Hardwick	et	al.	2015,	

Clos	et	al.,	2014).	Whether	it	is	indeed	physiological	(reflecting	a	broader	recruitment	as	

in	 the	 arguably	 more	 specifically	 focused	 task-state)	 or	 resulting	 from	

technical/methodological	 aspects	 remains	 unclear.	 In	 contrast,	 MACM	 showed	 more	

restricted	functional	connectivity	profile.	However,	as	reflecting	co-activation	of	voxels	

during	 tasks,	 MACM	 may	 be	 influenced	 by	 the	 experimental	 settings.	 That	 is,	 some	

aspects	 of	 the	 profile	 provided	 by	 MACM	 may	 be	 potentially	 driven	 by	 some	

epiphenomena	that	may	be	universal	in	task-based	fMRI	and	PET	studies	such	as	“hand-

eye”	functional	coupling.	Nevertheless,	in	the	present	study,	MACM	allowed	highlighting	



that	 our	 ventral	 cluster	 was	 specifically	 functionally	 coupled	 with	 the	 visual	 cortex	

(which	 is	 congruent	 with	 the	 behavioral	 functional	 decoding	 of	 this	 former).	 Such	

coupling	 may	 be	 specific	 to	 the	 engagement	 in	 behavioral	 task	 and	 thus	 may	 not	 be	

consistently	evidenced	by	functional	connectivity	at	rest,	when	subjects	lie,	eyes	closed,	

in	 the	 scanner	 and	 let	 their	mind	wandering.	 	 Thus,	 despite	 the	 limitations	 of	MACM	

should	 be	 taken	 in	mind	when	 addressing	 spatial	 functional	 organization	 of	 the	 brain	

(such	as	in	CBP	issue),	in	the	present	study,	MACM	specifically	revealed	that	the	ventral	

cluster	is	functionally	connected	to	the	visual	cortex.	

	
III.1.3.	Potential	limitations	of	MACM-CBP	

	

Is	the	central	cluster	an	artifact	of	MACM-CBP?	

	

Our	parcellation	of	 the	right	PMd	is	primarily	based	on	MACM,	which	 is	a	quantitative	

approach	of	functional	activations	studies.	The	parcellation	yielded	by	MACM-CBP	relies	

on	average	of	group’s	peaks	of	activations	of	thousands	of	fMRI	and	PET	studies.	The	co-

activation	profile	of	each	seed	voxel	is	estimated	by	the	ALE	method	averaging	peaks	of	

thousands	 of	 group	 studies.	 Consequently,	 one	 may	 hypothesized	 that	 some	 voxels,	

located	at	a	spatial	border	between	two	clearly	distinct	functional	regions,	may	show	a	

mixed,	 undefined	 profile.	 According	 to	 this	 speculation,	 clustering	 and	 functional	

characterization	may	reveal	an	intermediate	cluster,	showing	an	unspecified	behavioral	

profile,	as	the	central	one	observed	in	the	current	study.	In	contrast,	RSFC-CBP	and	PDT-

CBP	are	both	based	on	unique	sample	of	subjects	whose	data	have	been	acquired	and	

preprocessed	with	similar	settings	and	procedure.	While	PDT-CBP	is	based	on	diffusion	

data	of	a	sample	of	regular	size	of	subject	in	whom	the	connectivity	profile	of	each	seed	

voxel	 is	 estimated	 by	 probabilistic	 tractography,	 RSFC-CBP	 is	 based	 on	 behaviorally	

unconstrained	 functional	 data	 of	 a	 big	 sample	 of	 subjects	 in	 whom	 the	 connectivity	

profile	of	each	seed	voxel	is	estimated	by	correlation	between	time	series.	In	both	CBP	

approaches,	 the	voxels	are	then	clustered	according	to	their	connectivity	profile	at	 the	

subject	 level.	 Then,	 for	 each	 cluster’s	 solution,	 the	 convergence	 across	 subjects	 is	

obtained	by	computing	a	maximum	probability	map.	Despite	these	CBP	approaches	may	

suffer	 form	 spatial	 uncertainty	 resulting	 in	 spurious	 clusters	 at	 the	 subject	 level,	 the	

computation	of	intersubject	should	help	to	prevent	such	biais	at	the	group	level.	Thus,	in	

summary,	 whereas	 the	 parcellation	 of	 the	 VOI	 is	 performed	 following	 averaging	 of	



group’s	peaks	with	MACM-CBP,	this	parcellation	is	performed	for	each	subject	and	then	

validated	at	the	group	level	in	PDT-CBP.	Consequently,	PDT-CBP	and	RSFC-CBP	are	less	

likely	to	result	in	the	emergence	of	spurious	intermediate	clusters.	In	the	present	study,	

both,	 PDT-CBP	 and	 RSFC-CBP,	 support	 the	 existence	 of	 a	 centrally	 located	 cluster	

suggesting	 that	 this	 latter	 is	 not	 an	 artifact	 driven	 by	 spatial	 uncertainty	 inherent	 to	

MACM.		

	

Further	evidence	against	the	hypothesis	of	the	central	cluster	being	an	artifact	of	MACM-

CBP	 (or	 even	 any	 CBP	 approach)	may	 also	 be	 found	 in	 the	 follow-up	 analysis	 of	 the	

derived	 clusters.	 Indeed,	 if	 the	 emergence	 of	 the	 central	 cluster	 were	 an	 artifact	

resulting	 from	 poor	 spatial	 resolution,	 the	 statistical	 comparison	 of	 the	 connectivity	

profile	 of	 this	 cluster	with	 the	 connectivity	 profiles	 of	 the	 other	 clusters	would	 likely	

have	 yielded	 a	 null	 result.	 Hence,	 statistical	 comparisons	 allowed	 highlighting	 a	

connectivity	profile	whose	specificity	 to	 the	central	 cluster	 is	 significant.	Finally,	 if	 the	

emergence	 of	 a	 central	 cluster	 were	 driven	 by	 the	 methods	 employed,	 previous	

parcellations	based	on	similar	methods	would	have	revealed	a	similar	pattern,	but	they	

did	 not	 (e.g.	 Bzdok	 et	 al.,	 2013,	 Cieslik	 et	 al.,	 2013,	 Eickhoff	 et	 al.,	 2014,	 Bzdok	 et	 al.,	

2015).	To	our	knowledge,	our	parcellation	of	the	right	PMd	is	the	first	MACM-CBP	study	

revealing	a	central	cluster.		

		

	
Functional	propinquity	of	the	ventral	and	dorsal	clusters	
 
When	 comparing	 the	 different	 cluster	 solutions,	 the	 splitting	 order	 towards	 more	

clusters	shows	that	a	ventral	and	a	dorsal	subregion	jointly	emerged	as	one	cluster	from	

the	central	one.	That	is,	the	comparison	of	functional	and	spatial	space	suggests	that	the	

spatially	distant	ventral	and	dorsal	clusters	could	form	a	single	cluster	at	k	=	4	based	on	

the	 similarity	 of	 the	 respective	 co-activation	 profiles.	 In	 this	 issue,	 it	 is	 important	 to	

remember	that	the	algorithm	clusters	voxels	only	according	to	the	similarity	of	their	co-

activation	profile	without	any	regards	to	their	location	in	the	brain.		This	may	result	in	

two	 spatially	 distant	 voxels	 being	 clustered	 together	 because	 they	 show	 similar	 co-

activation	profile.	As	MACM	relies	on	task	functional	connectivity,	 the	clustering	based	

on	 MACM	 is	 constrained	 by	 the	 tasks	 used	 in	 fMRI	 experiments.	 That	 may	 result	 in	

voxels	 being	 clustered	 together	 not	 because	 of	 any	 biological	 constraints	 but	 rather	



because	 of	 experimental	 functional	 constraints.	 For	 example,	 voxels	 engaged	 in	 eye	

movements	 and	 voxels	 engaged	 in	 hand	 movements	 may	 be	 likely	 to	 be	 clustered	

together	because	they	are	frequently	co-activated	across	a	range	of	behavioral	tasks.	In	

the	 present	 study,	 additional	 support	 for	 the	 distinction	 of	 the	 ventral	 and	 dorsal	

subregions	has	been	provided	by	 examination	of	 the	5k	 revealed	PDT-CBP	and	RSFC-

CBP.	 In	 particular,	 PDT-CBP	 showed	 that	 the	 ventral	 and	 dorsal	 clusters	 may	 be	

distinguished	based	on	their	structural	connectivity	profiles.	Thus,	in	the	present	study,	

examining	 different	 CBP	 modalities	 highlighted	 the	 robustness	 of	 the	 topographical	

pattern	revealed	by	MACM-CBP.	

In	 the	 same	 vein,	 following	 functional	 decoding,	 the	 ventral	 and	 dorsal	 clusters	were	

both	 related	 to	 action	 execution,	 suggesting	 that	 both	 clusters	 play	 a	 role	 in	 motor	

functions.	 However,	 the	 functional	 profiles	 of	 the	 ventral	 and	 dorsal	 clusters	 also	

showed	significant	differences.	While	 the	ventral	cluster	was	more	strongly	associated	

with	 eye	 movements/visual	 attention,	 the	 dorsal	 one	 was	 more	 strongly	 related	 to	

finger	tapping.	

 
 
III.2. Theoretical considerations 
	

III.2.1.	Functional	connectivity	between	the	ventral	cluster	and	posterior	temporal	

cortex	

Somewhat	 surprisingly,	 functional	 connectivity	 analyses	 revealed	 that	 the	 ventral	

cluster	 was	 functionally	 coupled	 with	 the	 right	 posterior	 middle/superior	 temporal	

cortex.	This	region,	however,	has	been	demonstrated	to	be	engaged	 in	 face	processing	

(Fusar-Poli,	Placentino,	Carletti,	Allen,	et	al.	2009;	Fusar-Poli,	Placentino,	Carletti,	Landi,	

et	 al.	 2009),	 particularly	 in	 gaze	 processing	 (Carlin	 and	 Calder	 2013),	 as	 well	 as	 in	

emotional	 scene	 processing	 (Sabatinelli	 et	 al.	 2011).	 This	 suggests	 that	 this	 posterior	

superior	 temporal	 region	might	 play	 a	 role	 in	 interpretation	 of	 visual	 cues.	 One	may	

assume	that	 the	process	required	 in	 the	processing	of	 faces	and	emotional	scenes	and	

supported	 by	 our	 ventral	 cluster	 is	 the	 engagement	 of	 eye	 movements	 for	 visual	

scanning.	

	



III.2.2	Two	potential	eye-field	candidates	

The location of the FEF has been debated for long. Amiez and Petrides’s (2009) review and 

empirical work has highlighted two potential eye-fields in humans: the superior precentral 

sulcus eye field (SP-EF) and the inferior precentral sulcus eye field (IP-EF). The SP-EF is 

located in the ventral branch of the superior precentral sulcus (MNI coordinates: y = -9.4, z = 

54.4). Roughly, the SP-EF corresponds to the FEF, as suggested by activation studies in 

humans (Paus, 1996). That is, activations related to saccades and more complex eye-related 

functions have been usually found at the intersection of the superior precentral sulcus (SPS) 

and the superior frontal sulcus (SFS). The IP-EF has been also called “premotor eye field”. It 

is located in the dorsal branch of the inferior precentral sulcus (MNI coordinates y = -3.9, z = 

44). This premotor eye-field shows anatomical correspondence with the eye blink area 

suggested by Kato and Miyauchi (2003a, 2003b)*. Thus, altogether, previous work suggests 

that two potential eye-fields may be found in the precentral sulcus: a more superior one (SP-

EF) showing activations for eye-related processes, and a more inferior or ventral one (IP-EF) 

showing activations for blinking and corresponding to the eye field evidenced by stimulation 

studies.  

 

Along the same lines, our quantitative approach of activation studies highlighted two potential 

eye-fields as defined by activations for saccade/antisaccade paradigms: the central cluster and 

the ventral cluster. An anatomical comparison suggests that while our central cluster overlaps 

with the SP-EF, our ventral cluster rather overlaps with the IP-EF. Similarly, a comparison of 

Kato and Miyauchi’s (2003) findings with our clusters showed that saccades are related to 

activation in both the central cluster (MNI peak coordinates: 24 -9 47) and the ventral cluster 

(MNI peak coordinates: 44 -0.2 48). In contrast, blinking activates only the inferior part of our 

ventral cluster (MNI peak coordinates: 51.5 -4 44.4). Therefore, overall, these findings 

suggest that whereas both the central and ventral clusters may be activated during saccades in 

fMRI studies and thus considered as potential eye-field, only the ventral cluster shows 

additional activation for “basic” eye-related functions like blinking, as well as a broader 

association with the domain of vision. 

 

*Note 1: Please note that the similarities between the premotor eye field and the eye blink 

area may suggest that the inferior part of the PMd is engaged in eye-movements, but also, 

more generally in upper face movements, such as eyelid movements.  

 



III.2.3.	Two	functional	labels	corresponding	to	the	central	cluster	
	
According	to	 its	spatial	 location	and	 its	 functional	pattern,	 the	central	cluster	could	be	

related	to	two	functional	concepts:	F2vr	and	SP-EF.	Whereas	F2vr	has	been	suggested	by	

studies	in	non-human	primates	(for	a	review	see	Abe	M	and	T	Hanakawa	2009),	SP-EF	

has	been	proposed	by	Amiez	and	Petrides	(2009)	following	a	review	comparing	findings	

in	non-human	primates	with	activations	studies	in	humans.	Despite	these	two	concepts	

have	not	been	comprehensively	examined	 in	 the	previous	 literature,	 from	a	 functional	

point	of	view,	one	may	assume	that	those	two	concepts	actually	refer	to	one	functional	

module.	One	may	 indeed	expect	a	 functional	module	as	F2vr	to	be	engaged	 in	a	broad	

range	 of	 visuo-spatio-motor	 functions	 including	 saccades	 characterizing	 SP-EF.	 We	

therefore	 assume	 that	 F2vr	 and	 SP-EF	 are	 two	 concepts	 referring	 to	 an	 unique	

functional	module	localized	in	the	central	cluster	in	the	present	study.		

	

III.2.4.	A	dynamic	functional	mosaic	within	the	right	PMd	

	

In	 a	 dynamic	 (i.e.	 not	 perceptually	 static)	 and	 complex	 environment,	 a	 sustained	 (i.e.	

constant)	integration	of	cognitive,	spatial,	and	multimodal	sensory	representations	with	

(perceptually	guided)	motor	commands	is	required.	The	present	study	has	shown	that	

these	representations	and	their	related	processes	may	be	neuroanatomically	organized	

in	a	mosaic	of	five	functionally	distinct	parts	within	the	right	PMd.	In	the	framework	of	

goal-directed	behavior,	recent	studies	suggest	that	lateral	prefrontal	regions	support	the	

maintenance	 of	 abstract	 goals	 (Hoshi	 2013).	 These	 regions	 interact	 with	 the	 rostral	

PMd,	which	maintains	 visuospatial	 cues	 related	 to	 the	 goals	 (Hoshi	 et	 al.,	 2013).	 Our	

study	 further	 suggests	 that	 this	 “cognitive”	 rostral	 part,	 in	 turn,	 interacts	 with	 the	

core/central	cluster,	which	coordinates	cognitive	information	with	motor	programming	

supported	 by	 the	 caudal	 PMd.	 Our	 study	 also	 suggests	 that	 the	 central	 cluster	 may	

integrate	maintained	 cognitive	 information	 and	motor	 programming	with	 eye-related	

processes	(such	as	eye	position	or	visual	scanning	of	the	environment)	supported	by	the	

ventral	 cluster.	 Finally,	 we	 showed	 that	 the	 caudal	 cluster	 interacts	 with	 a	 wide	

sensorimotor	network	to	control	action	execution.		

	

References	



	

Amiez	C,	Petrides	M.	2009.	Anatomical	organization	of	the	eye	fields	in	the	human	and	
non-human	primate	frontal	cortex.	Progress	in	neurobiology	89:220-230.	
Ashburner	J,	Friston	KJ.	2005.	Unified	segmentation.	NeuroImage	26:839-851.	
Carlin	JD,	Calder	AJ.	2013.	The	neural	basis	of	eye	gaze	processing.	Curr	Opin	Neurobiol	
23:450-455.	
Cauda	F,	Costa	T,	Torta	DM,	Sacco	K,	D'Agata	F,	Duca	S,	Geminiani	G,	Fox	PT,	Vercelli	A.	
2012.	 Meta-analytic	 clustering	 of	 the	 insular	 cortex:	 characterizing	 the	 meta-analytic	
connectivity	of	the	insula	when	involved	in	active	tasks.	Neuroimage	62:343-355.	
Cauda	 F,	 Geminiani	 G,	 D'Agata	 F,	 Duca	 S,	 Sacco	 K.	 2011.	 Discovering	 the	 somatotopic	
organization	 of	 the	 motor	 areas	 of	 the	 medial	 wall	 using	 low� frequency	 bold	
fluctuations.	Human	brain	mapping	32:1566-1579.	
Clos	 M,	 Amunts	 K,	 Laird	 AR,	 Fox	 PT,	 Eickhoff	 SB.	 2013.	 Tackling	 the	 multifunctional	
nature	of	Broca's	 region	meta-analytically:	 co-activation-based	parcellation	of	area	44.	
NeuroImage	83:174-188.	
Eickhoff	SB,	Bzdok	D,	Laird	AR,	Kurth	F,	Fox	PT.	2012.	Activation	likelihood	estimation	
meta-analysis	revisited.	NeuroImage	59:2349-2361.	
Eickhoff	SB,	Bzdok	D,	Laird	AR,	Roski	C,	Caspers	S,	Zilles	K,	Fox	PT.	2011.	Co-activation	
patterns	distinguish	 cortical	modules,	 their	 connectivity	and	 functional	differentiation.	
NeuroImage	57:938-949.	
Eickhoff	 SB,	 Laird	AR,	 Grefkes	 C,	Wang	 LE,	 Zilles	 K,	 Fox	 PT.	 2009.	 Coordinate�based	
activation	 likelihood	 estimation	 meta�analysis	 of	 neuroimaging	 data:	 A	 random�
effects	 approach	 based	 on	 empirical	 estimates	 of	 spatial	 uncertainty.	 Human	 brain	
mapping	30:2907-2926.	
Fusar-Poli	P,	Placentino	A,	Carletti	F,	Allen	P,	Landi	P,	Abbamonte	M,	Barale	F,	Perez	 J,	
McGuire	 P,	 Politi	 P.	 2009.	 Laterality	 effect	 on	 emotional	 faces	 processing:	 ALE	meta-
analysis	of	evidence.	Neuroscience	letters	452:262-267.	
Fusar-Poli	 P,	 Placentino	 A,	 Carletti	 F,	 Landi	 P,	 Allen	 P,	 Surguladze	 S,	 Benedetti	 F,	
Abbamonte	M,	Gasparotti	R,	Barale	F,	Perez	J,	McGuire	P,	Politi	P.	2009.	Functional	atlas	
of	emotional	 faces	processing:	a	voxel-based	meta-analysis	of	105	 functional	magnetic	
resonance	imaging	studies.	Journal	of	psychiatry	&	neuroscience	:	JPN	34:418-432.	
Hartigan	JA,	Wong	MA.	1979.	Algorithm	AS	136:	A	k-means	clustering	algorithm.	Journal	
of	the	Royal	Statistical	Society	Series	C	(Applied	Statistics)	28:100-108.	
Hoshi	 E.	 2013.	 Cortico-basal	 ganglia	 networks	 subserving	 goal-directed	 behavior	
mediated	by	conditional	visuo-goal	association.	Frontiers	in	neural	circuits	7:158.	
Kahnt	T,	Chang	LJ,	Park	SQ,	Heinzle	J,	Haynes	J-D.	2012.	Connectivity-based	parcellation	
of	the	human	orbitofrontal	cortex.	The	Journal	of	Neuroscience	32:6240-6250.	
Kato	M,	Miyauchi	S.	2003a.	Functional	MRI	of	brain	activation	evoked	by	intentional	eye	
blinking.	Neuroimage	18:749-759.	
Kato	 M,	 Miyauchi	 S.	 2003b.	 Human	 precentral	 cortical	 activation	 patterns	 during	
saccade	 tasks:	 an	 fMRI	 comparison	 with	 activation	 during	 intentional	 eyeblink	 tasks.	
Neuroimage	19:1260-1272.	
Kelly	 C,	 Toro	 R,	 Di	 Martino	 A,	 Cox	 CL,	 Bellec	 P,	 Castellanos	 FX,	 Milham	MP.	 2012.	 A	
convergent	 functional	 architecture	 of	 the	 insula	 emerges	 across	 imaging	 modalities.	
NeuroImage	61:1129-1142.	
Kelly	 C,	 Uddin	 LQ,	 Shehzad	 Z,	 Margulies	 DS,	 Castellanos	 FX,	 Milham	 MP,	 Petrides	 M.	
2010.	Broca’s	region:	linking	human	brain	functional	connectivity	data	and	non-human	
primate	tracing	anatomy	studies.	European	Journal	of	Neuroscience	32:383-398.	



Mayka	MA,	Corcos	DM,	Leurgans	SE,	Vaillancourt	DE.	2006.	Three-dimensional	locations	
and	boundaries	of	motor	and	premotor	cortices	as	defined	by	functional	brain	imaging:	
a	meta-analysis.	Neuroimage	31:1453-1474.	
Meilă	 M.	 2007.	 Comparing	 clusterings—an	 information	 based	 distance.	 Journal	 of	
Multivariate	Analysis	98:873-895.	
Rijntjes	M,	Dettmers	C,	Büchel	C,	Kiebel	S,	Frackowiak	RSJ,	Weiller	C.	1999.	A	blueprint	
for	movement:	 functional	and	anatomical	representations	 in	the	human	motor	system.	
The	Journal	of	neuroscience	19:8043-8048.	
Sabatinelli	D,	Fortune	EE,	Li	Q,	Siddiqui	A,	Krafft	C,	Oliver	WT,	Beck	S,	 Jeffries	 J.	2011.	
Emotional	perception:	meta-analyses	of	face	and	natural	scene	processing.	Neuroimage	
54:2524-2533.	
Satterthwaite	TD,	Elliott	MA,	Gerraty	RT,	Ruparel	K,	Loughead	J,	Calkins	ME,	Eickhoff	SB,	
Hakonarson	H,	Gur	RC,	Gur	RE,	Wolf	DH.	2013.	An	 improved	 framework	 for	 confound	
regression	 and	 filtering	 for	 control	 of	motion	 artifact	 in	 the	 preprocessing	 of	 resting-
state	functional	connectivity	data.	Neuroimage	64:240-256.	
Schubotz	 RI,	 Anwander	 A,	 Knösche	 TR,	 von	 Cramon	 DY,	 Tittgemeyer	 M.	 2010.	
Anatomical	 and	 functional	 parcellation	 of	 the	 human	 lateral	 premotor	 cortex.	
NeuroImage	50:396-408.	
Tomassini	V,	 Jbabdi	S,	Klein	JC,	Behrens	TEJ,	Pozzilli	C,	Matthews	PM,	Rushworth	MFS,	
Johansen-Berg	H.	2007.	Diffusion-weighted	 imaging	tractography-based	parcellation	of	
the	 human	 lateral	 premotor	 cortex	 identifies	 dorsal	 and	 ventral	 subregions	 with	
anatomical	and	functional	specializations.	The	Journal	of	neuroscience	27:10259-10269.	
Turkeltaub	 PE,	 Eickhoff	 SB,	 Laird	 AR,	 Fox	 M,	 Wiener	 M,	 Fox	 P.	 2012.	 Minimizing	
within�experiment	 and	 within�group	 effects	 in	 activation	 likelihood	 estimation	
meta�analyses.	Human	brain	mapping	33:1-13.	
	

Figures:	

	

Figure	 S1.	 MACM-CBP:	 deviants	 and	 stability.	 z-scores	 on	 median-	 filtered	 deviants	

(normalized	for	k).	The	vertical	lines	specify	the	ultimately	selected,	most	stable	range	of	

filter	 sizes	 (i.e.,	 range	 with	 least	 deviants	 across	 k).	 (A)	 The	 proportion	 of	 deviants	

computed	across	filter	sizes.	Warm/cold	colors	indicate	high/low	numbers	of	deviants.	

(B)	Maximum	z-	score	of	median-filtered	deviants.		

Figure	 S2.	 MACM-CBP:	 cluster	 solution	 criteria.	 (A)	 Variation	 of	 Information	 (VI)	

between	filter	sizes	across	the	10	cluster	solutions;	*Significant	increase	in	VI	from	the	

previous	(k-1)	to	current	(k)	cluster	solution.	(B)	Percentage	of	deviants	(misclassified	

voxels)	 across	 the	10	 cluster	 solutions;	 *Significant	 increase	 in	percentage	of	deviants	

between	k-	1	 and	k.	 (C)	Average	 silhouette	 value	 across	 cluster	 solutions;	 *Significant	

increase	in	silhouette	value	from	the	previous	(k-1)	to	current	(k)	cluster	solution.		

Figure	 S3.	 (A)	 MACM-CBP:	 Visualization	 of	 the	 five	 clusters’	 emergence	 in	 functional	

space	by	multidimensional	scaling	across	the	different	cluster	solutions	(from	k	=	2	to	k	



=	5).	 (B)	MACM-CBP:	 Coronal	 view	of	 each	 cluster	 (upper	 part);	 CG:	 center	 of	 gravity	

(coordinates	 refer	 to	Montreal	 Neurological	 Institute	 space);	 Nvox:	 Number	 of	 voxels	

included	 in	the	cluster.	Color	code:	red	=	rostral	cluster,	green	=	caudal	cluster,	blue	=	

central	cluster,	yellow	=	ventral	cluster,	light	blue	=	dorsal	cluster.		

Figure	S4.	Between-clusters	contrasts	across	behavioral	domains	and	paradigm	classes	

significantly	 associated	 with	 each	 cluster.	 In	 that	 context,	 “baserate”	 demotes	 the	 a-

priori	probability	of	any	focus	to	lie	in	either	of	the	two	compared	clusters.	A)	Contrast	

between	rostral	(red)	and	caudal	(green)	clusters.	B)	Contrast	between	rostral	(red)	and	

central	 (dark	 blue)	 clusters.	 C)	 Contrast	 between	 rostral	 (red)	 and	 ventral	 (yellow)	

clusters.	D)	Contrast	between	rostral	(red)	and	dorsal	(light	blue)	clusters.	E)	Contrast	

between	 caudal	 (green)	 and	 central	 (dark	blue)	 clusters.	 F)	Contrasts	between	 caudal	

(green)	and	ventral	 (yellow)	clusters.	G)	Contrasts	between	caudal	 (green)	and	dorsal	

(light	 blue)	 clusters.	 H)	 Contrasts	 between	 central	 (dark	 blue)	 and	 ventral	 (yellow)	

clusters.	 I)	 Contrasts	 between	 central	 (dark	 blue)	 and	 dorsal	 (light	 blue)	 clusters.	 J)	

Contrast	between	ventral	(yellow)	and	dorsal	(light	blue)	clusters.		
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