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Abstract.



S1 Sensitivity of relation betweenh andGr and Ge

In the manuscript we used a linear relation betweenh andGr, scaled between zero and unity. Here

we test different the sensitivities of the assumed relationbetweenh and one of the gradients.
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)
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To test the sensitivity of this relations, we constructed the Budyko curve for a dry spell of six months.

Comparison with the Budyko curve obtained with the originalrelation wereh is assumed to be linear

with Gr(ke) shows that the sensitivity is very small (S1)
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Figure S1.Sensitivity of a quadratic relation betweenh andGr(ke).



S1.2 Linear relation betweenh andGe(ke): h = f(Ge)

Another option is to assume thath is a linear function ofGe(ke), scaled between zero and unity.

To applying this assumption, we had to adapt the gradients insuch a way that i) ath= 0, Gr = 0

and ii) Gr is a monotonously increasing withh. These two requirements resulted in two different

choices for adapting the gradients: the first is to letGr at the its minimum betweenh > 0 andh at

the minimum ofGr, while ath= 0, Gr = 0; the second is to setGr to zero betweenh= 0 andh

at the minimum ofGr (Fig. S2a and b). The resulting Budyko curves are completelydifferent from

the original one (Fig. S2c). The main reason for this is that,to fulfil the requirements mention above

at small absolute values ofµatm, the gradients have to be adapted over a too large range of relative

wetness.
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Figure S2.GradientsGe andGr for a)µatm = 0.7 and b)µatm = 1.7, and c) Budyko curves for the two different

choices of adaptation of the gradients.



S1.3 Linear relation betweenh and−ke: h = f(−ke)

The last option we tested is the assumption ofh being a linear function of−ke, scaled between zero

and unity. Both gradients have been derived as a function ofke (Eq. 13 and 15). However, only the

ke values representing the falling limb of the Gaussian function of Eq. (13) are used. This is because

k∗
e

is in that section. Because we use the falling limb, we useh as a function of minuske in order to

get monotonous increasing gradients.
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Figure S3.GradientsGe andGr for a)µatm = 0.7 and b)µatm = 1.7, and c) Budyko curve.



S2 Boxplots of monthly precipitation and evaporation

J F M A M J J A S O N D

0

200

400

600
MOPEX ID = 11025500:   t

dry
= 6 months 

P
re

ci
pi

ta
tio

n 
[m

m
/y

]

J F M A M J J A S O N D

0

200

400

600

800
MOPEX ID = 11080500:   t

dry
= 6 months 

J F M A M J J A S O N D

0

200

400

600

MOPEX ID = 11138500:   t
dry

= 6 months 

P
re

ci
pi

ta
tio

n 
[m

m
/y

]

J F M A M J J A S O N D

0

100

200

300

400

500

MOPEX ID = 11210500:   t
dry

= 5 months 

J F M A M J J A S O N D

0

200

400

600

MOPEX ID = 11213500:   t
dry

= 6 months 

P
re

ci
pi

ta
tio

n 
[m

m
/y

]

J F M A M J J A S O N D

0

100

200

300

400

500

MOPEX ID = 11222000:   t
dry

= 4 months 

J F M A M J J A S O N D

0

100

200

300

MOPEX ID = 11224500:   t
dry

= 6 months 

P
re

ci
pi

ta
tio

n 
[m

m
/y

]

J F M A M J J A S O N D

0

100

200

300

Mupfure Catchment   t
dry

= 7 months 

Figure S4.Boxplots of monthly rainfall of catchments with a clear distinct dry period.
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Figure S5.Boxplots of monthly temperature of catchment with at least one month of median monthly maximum

temperatures below zero: these months are considered to have no actual evaporation.


