Manuscript prepared for J. Name with version 2014/09/16 7.15 Copernicus papers of the LATEX class copernicus.cls. Date: 22 October 2015

Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis

M. Westhoff¹, E. Zehe², P. Archambeau¹, and B. Dewals¹

 ¹Hydraulics in Environmental and Civil Engineering (HECE), University of Liege (ULg), Liege, Belgium
²Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Correspondence to: M. Westhoff (martijn.westhoff@ulg.ac.be)

Abstract.

S1 Sensitivity of relation between h and G_r and G_e

In the manuscript we used a linear relation between h and G_r , scaled between zero and unity. Here we test different the sensitivities of the assumed relation between h and one of the gradients.

S1.1 Quadratic relation $h = f(G_r^2)$

h is a function of $G_{\mathrm{r}}^2(k_{\mathrm{e}})$ scaled between zero and unity:

$$G_{\rm r}(h) = \min\left[G_{\rm r}^2(k_{\rm e})\right] + \left(\max\left[G_{\rm r}^2(k_{\rm e})\right] - \min\left[G_{\rm r}^2(k_{\rm e})\right]\right)h\tag{1}$$

To test the sensitivity of this relations, we constructed the Budyko curve for a dry spell of six months. Comparison with the Budyko curve obtained with the original relation were h is assumed to be linear with $G_r(k_e)$ shows that the sensitivity is very small (S1)

Figure S1. Sensitivity of a quadratic relation between h and $G_r(k_e)$.

S1.2 Linear relation between h and $G_e(k_e)$: $h = f(G_e)$

Another option is to assume that h is a linear function of $G_e(k_e)$, scaled between zero and unity. To applying this assumption, we had to adapt the gradients in such a way that i) at h = 0, $G_r = 0$ and ii) G_r is a monotonously increasing with h. These two requirements resulted in two different choices for adapting the gradients: the first is to let G_r at the its minimum between h > 0 and h at the minimum of G_r , while at h = 0, $G_r = 0$; the second is to set G_r to zero between h = 0 and hat the minimum of G_r (Fig. S2a and b). The resulting Budyko curves are completely different from the original one (Fig. S2c). The main reason for this is that, to fulfil the requirements mention above at small absolute values of $\mu_{\rm atm}$, the gradients have to be adapted over a too large range of relative wetness.

Figure S2. Gradients G_e and G_r for a) $\mu_{atm} = 0.7$ and b) $\mu_{atm} = 1.7$, and c) Budyko curves for the two different choices of adaptation of the gradients.

S1.3 Linear relation between h and $-k_e$: $h = f(-k_e)$

The last option we tested is the assumption of h being a linear function of $-k_e$, scaled between zero and unity. Both gradients have been derived as a function of k_e (Eq. 13 and 15). However, only the k_e values representing the falling limb of the Gaussian function of Eq. (13) are used. This is because k_e^* is in that section. Because we use the falling limb, we use h as a function of minus k_e in order to get monotonous increasing gradients.

Figure S3. Gradients $G_{\rm e}$ and $G_{\rm r}$ for a) $\mu_{\rm atm} = 0.7$ and b) $\mu_{\rm atm} = 1.7$, and c) Budyko curve.

S2 Boxplots of monthly precipitation and evaporation

Figure S4. Boxplots of monthly rainfall of catchments with a clear distinct dry period.

Figure S5. Boxplots of monthly temperature of catchment with at least one month of median monthly maximum temperatures below zero: these months are considered to have no actual evaporation.