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The current paper presents and examines a general analytical solution to the optimal reconfiguration
problem of satellite formation flying in an arbitrary elliptic orbit. The proposed approach does not
use any simplifying assumptions regarding the eccentricity of the reference orbit. For the fuel optimal
reconfiguration problem, continuous and variable low-thrust accelerations can be represented by the
Fourier series and summed into closed-form solutions. Initial and final boundary conditions are used
to establish the constraints on the thrust functions. The analytical solution can be implicated by the
Fourier coefficients that minimize propellant usage during the maneuver. This solution is found that
compares favorably with numerical simulations. Also, this analytical solution is very useful for designing
a reconfiguration controller for satellite formation flying in a general elliptic orbit.
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1. Introduction

In the future, advanced space applications will utilize forma-
tion flying technologies that involve multiple satellites. Therefore,
satellite formation flying requires technology drawn from vari-
ous research fields such as relative orbit determination, formation
keeping, formation reconfiguration, relative attitude determination,
relative attitude control, etc. Among these technologies, the cur-
rent paper focuses on formation reconfiguration. To build a desired
formation or to change a formation shape, it is necessary to re-
locate satellites into the desired relative positions between satel-
lites. The reconfiguration of satellites is achieved by optimizing
the thrust accelerations required. There has already been a vari-
ety of research dealing with the problem of minimum propellant
transfers for satellite reconfigurations in formation flying. Most of
solutions have been numerically obtained because this problem
is highly nonlinear. To employ a distributed computational archi-
tecture, a hybrid optimization algorithm is developed for satel-
lite formation reconfiguration [15]. As well, using the calculus of
variations approach, the optimal reconfiguration trajectories are
numerically determined [7]. An algorithm for the reconfiguration
problem is presented based upon Hamilton-Jacobi-Bellman opti-
mality to generate a set of maneuvers to move from an initial
stable formation to a final stable formation [3]. A reconfiguration
problem about an Earth-Sun libration point is solved by use of an
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algorithm with generating functions to provide two impulsive ma-
neuvers [4]. Finding the numerical solutions is somewhat difficult
because the necessary and optimality conditions must be numeri-
cally satisfied. However, analytic solutions would give insight into
the feedback controller, and therefore would be easily exploited
for formation flying, if they could be uncovered. For reconfigu-
ration maneuvers of formation flying, an analytical two-impulse
solution is proposed using Gauss’s variational equations [12]. This
algorithm is based on the circular reference orbit described by the
Hill-Clohessy-Wiltshire (HCW) equations. An analytic solution has
been published for the formation relocation of a satellite using
continuous and variable thrust acceleration in order to adopt low-
thrust maneuvers [8]. These analytic solutions are very useful in
their application to formation maintenance and relocation. How-
ever, this analytic solution is limited to formation flying in only a
circular or near-circular orbit because the HCW equations are used
in [8]. The relative motions in satellite formation become a more
realistic and complex problem when the non-zero eccentricity of
reference orbit (i.e.,, a Chief satellite’s orbit) is considered. There-
fore, the current paper extends the previous results in [8] to the
satellite formation relocation problem in a general elliptic orbit.
The proposed approach does not use any simplifying assumptions
regarding the eccentricity of the reference orbit. In particular, the
current paper provides the first presentation of the explicit closed-
form solutions to relocation of formation flying in an elliptic refer-
ence orbit (e # 0). The analytical method developed in this paper
yields closed-forms of accelerations, closed-forms of position and
velocity vectors and closed-form of performance index, for any for-
mation reconfiguration. The analytical solutions can be applied for
spacecraft formation reconfigurations in highly elliptic orbit such


http://dx.doi.org/10.1016/j.ast.2012.01.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:narziss@yonsei.ac.kr
mailto:spark@galaxy.yonsei.ac.kr
mailto:smyoo@galaxy.yonsei.ac.kr
mailto:khchoi@galaxy.yonsei.ac.kr
http://dx.doi.org/10.1016/j.ast.2012.01.005

162 H. Cho et al. / Aerospace Science and Technology 25 (2013) 161-176

as the Magnetosphere Multiscale Mission (MMS) [16]. The analy-
sis does not take account of orbital perturbations nor nonlinearity,
because Tschauner-Hempel equations [11] are used in the current
study.

In the control problem in the current paper, the relative dy-
namics in an elliptic reference orbit are used. The true anomaly
of the satellite is also used as an independent variable for con-
venience. The out-of-orbital plane motion is decoupled from the
in-plane motion, so it can be handled independently. Although the
in-plane motion is much more complicated than the out-of-orbit
plane motion, the procedure for deriving an in-plane solution is
similar to that for the case of an out-of-plane solution. To derive
the analytical solution to the optimal reconfiguration problem, the
inhomogeneous solution and the particular solution should be ana-
lytically formulated. Initial and final positions and velocities of the
Deputy satellites are calculated using Tschauner-Hempel equations
[11] in order to establish the constraints on the thrust functions.
These constraints can be incorporated into the performance in-
dex by introducing Lagrange multipliers. The analytical solution
is formed by the magnitude and direction of thrust accelerations
as a function of the true anomaly. It is assumed that there are
no restrictions on the thrust vector, and a transfer time is chosen
as a specific value. The satellites are assumed to have low-level
thrusters in three orthogonal directions which correspond to the
radial, in-track and cross-track directions, respectively. Thrusters
are fired during a significant fraction of an orbital period through-
out the maneuver. Any thruster acceleration can be represented
by the infinite Fourier series. With Parseval’s theorem, the Fourier
series can be summed into a closed-form solution. Analytical op-
timal solutions can be derived by extremizing the performance
index with respect to all of the Fourier coefficients. Then, the solu-
tion minimizes propellant usage for the reconfiguration of satellite
formation. Performing the analytical solutions, the satellites can
generate an optimal reconfiguration trajectory. The analytic solu-
tions are valid for an arbitrary elliptic orbit satisfying 0 <e <1 as
well as a circular orbit. The present paper describes thrust acceler-
ations in closed-form for the optimal satellite relocation problem
and the solution will be very useful for designing a controller for
satellite formation flying in a general elliptic orbit.

2. Relative orbital dynamics in an elliptic orbit

In this section, we briefly show relative dynamics for an ellip-
tic orbit. This also provides the necessary equations to be used.
Since the satellites are moving in an elliptical orbit, we should use
the Tschauner-Hempel equations instead of Hill's equations. These
equations, which were first derived by Tschauner and Hempel [11],
are as follows:

% 0 -6 0 X 62 0 0 X
y|l==216 0 o0 y|l-1 0o =62 0 y
b4 0 0 O z 0 0 0 z
0 -6 0 X 3 [ 2x Ty
v 9
—14 0 of|y +p;4) v |+l | O
0O 0 O z —Z T,

where the x(t) axis lies in the radial direction, the y(t) axis is in
the in-track direction, and the z(t) axis along the orbital angular
momentum vector completes a right-handed system (see Fig. 1),
while the dot (*) represents the differentiation with respect to
time (t). In addition, 6(t) and e refer to the true anomaly and the
eccentricity of the Chief satellite, respectively. p(#) =1 + ecosf
and I' = L3/2/GM are defined, where L = R%6 is the magnitude
of the orbital angular momentum of the Chief satellite, G is the
universal gravitational constant, and M is the mass of Earth. It
is assumed that the thrust [Tx(t), Ty(t), T,(®)]" can be applied at

Fig. 1. The description of relative motion [14].

the desired directions during the maneuver. Changing the indepen-
dent variable from time (t) to the true anomaly (6), Eq. (1) can be
rewritten as:
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where primer (') represents differentiation with respect to the
true anomaly, and thrust vector T=[Tx(6), Ty (9), T,(0)]" and state
vector [x(9), y(6),z(0)]T are now described by the true anomaly.
p, e, and I' are the same as noted above, and p’ = —esin6.
The true anomaly (6) is easily calculated from time using Ke-
pler’s equation. The in-plane (x(¢) and y(6)) motion and the out-
of-plane (z(0)) motion are decoupled, so we can deal with the
problems separately. Now, for brevity, let’s consider the following
transformation:

% 7.2]"' =[x, y,2]" 3)
u(6) = [ux(8), uy(©), uz)] = [Tx(6), Ty (0), T2(6)] /> (4)

where w = 6, the orbital rate of the Chief satellite. With the same
procedure as that derived by Humi [5], Egs. (2a) and (2b) become

very simple:
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It is important to note that the actual position (x, y, z) and velocity
(%, y,z) are related to the pseudo-position (X,y,z) and pseudo-
velocity (%', y',Z) as follows:
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3. Solutions to relative orbital dynamics in an elliptic orbit

In this section, we derive the solutions to relative orbital dy-
namics in an elliptic orbit. Egs. (5a) and (5b) are key equations
from which we start. Because the Z motion is less difficult to deal
with, we will consider the out-of-plane maneuvers first.

3.1. Solution to out-of-plane maneuvers
Eq. (5b) is of the form:

Z' =A;Z+Bu,

As is well known, it has the following solution:

HONE —1 Z(6o)

6
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where @,(0) is a fundamental matrix associated with A; = [f] (1)]

and @,(0)P, T(0y) is the state transition matrix associated with
Az(0). g is the true anomaly when the thruster starts to fire, and
T is used as an integration variable. The first term on the right in
Eq. (8) is a homogeneous solution, while the second is a particular
solution which contains the thrust u;. It is straightforward to show
that
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Thus, the homogeneous solution to Eq. (5b) is
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where we use the carat to denote its state in the absence of thrust;
be careful about the difference between the actual state (z) and
pseudo-state (). Z(6p) and Z'(6p) at 8y must be calculated from
the actual values z(6p) and z(6p) using Egs. (7a) and (7b). Inserting
e =0 into Eq. (10b) yields only the homogeneous solution of Hill’s
equations.

The particular solution to Eq. (5b) is
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where the following identity is used:

In summary, the z thruster fires at 6y and the satellite sweeps
out A9 during which the thruster fires continuously at a variable
thrust magnitude; after this, it is located at 6 = 6y + A¥ and its
position and velocity can be obtained by adding the homogeneous
solution to the particular solution:
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When the Chief satellite arrives at a final true anomaly (6f), the
thruster is turned off and the Deputy satellite is in the desired rel-
ative position. That is, Z(9r) and Z'(f) (or z(6F) and z(0f)) are our
predefined values, which give the constraints on the thrust func-
tion. Of course, they must be transformed from the actual position
and velocity by Egs. (7a) and (7b). Then,

zp(OF) | _ | 20F) | _ | 2(6F)

z,(0r) Z'(0r) 7' (6F)
where %(Gp) and 3/(9p) are the position and velocity at 6f if the
thrust has not been applied. We must find where the thrust u;(6)
meets Z,(0r) and 2;, (0F), as given in the above equation, so this

equation can be thought of as representing the boundary condi-
tions.

3.2. Solution to in-plane maneuvers

In-plane motion seems to be somewhat cumbersome because x
and y are coupled. This is because relative motion is described in
a noninertial frame. However, the analysis is parallel to the out-of-
plane case. The relative equation for in-plane motion (Eq. (5a)) is

E' = Ay E + ByyUyy

This equation has the following solution:
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As in the out-of-plane case, the first term on the right is a ho-
mogeneous solution which enables the Deputy satellite to follow
its own specific trajectory and the second is a particular solution
with which the Deputy can be forced to arrive at the desired state.
The fundamental matrix (@xy) associated with Ayy is that given by
Yamanaka and Ankersen [14]:
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where s = psind, c = pcos, s’ = cosd + ecos20, ¢’ = —(sinf +
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It is convenient to use K(#) because it is directly obtained by
observing the amount of time passed. Thus, the homogeneous so-
lution to Eq. (5a) is
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where the carat is again used to represent the state of the Deputy
satellite if the thrust has not been applied.

Next, the particular solution to Eq. (5a) must be found, which
requires the inverse of @xy(0). Let dﬁ;yl () take the following form:

P11 P12 P13 Pyg
Py1 Py Pz Pag
P31 P3z P33 Py
Pg1 P4z P43 Py

o) (0) =

where the components Pj; (i, j =1, 2, 3, 4) are given in Appendix A.
If we define
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and S(-) which means an integration is defined as

0
S(-):S[-(G)]:/-(r)dr
0o
After thrust is applied during A6, the satellite will reach a pre-
defined state [X(0F), X (9F), y(0F), ¥’ (0F)]T. This places constraints

on uy(@) and uy(0), creating the following relationships (from
Eq. (16)):

Q2(0F) P11 P12 P13 Pus Xp(0F)
Q3(0F) Py1 Py P23 Py X, (OF)
Q4(0F) P3; P3p P33 P3g Vp(OF)
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That is, we should find the ux(¢) and uy(0) which satisfy the
above equation at 6 = 6. Pj; (i, j=1,2,3,4) are given in Ap-
pendix A and the desired state [X(8F), X (0), ¥(OF), ¥’ (OF)]T is set
at the actual desired position (x, y,z) and velocity (X, y,z) using
Egs. (7a) and (7b).

In summary, when the Chief has 6 (6 < 6 < 6F), the Deputy’s
position and velocity in the x-y plane will be
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or
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The above equation could be rewritten as
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In the end, the Chief arrives at 6, then the x and y thrusters of
the Deputy are turned off and the Deputy satisfies the constraints
mentioned earlier:

Q2(0F) [ S(P12ux) + S(P1atty)
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Of course, the states above have pseudo-values, so they must be
evaluated from the actual values by Egs. (7a) and (7b).

4. Thrust accelerations in a Fourier series
Our objective is to relocate the Deputy to the desired position

relative to the Chief while minimizing fuel consumption. In gen-
eral, the following performance index is used for fuel-optimality

tp
J= / T'RTdt

OF J

t

= / T'RT— d¢
do

6o

Of T
:1"2/ TZRT do (17)
p%(0)

0o

where T= [Ty Ty T,]" is a thrust acceleration vector of the Deputy
and the matrix R is a 3 by 3 weight matrix. In this paper, however,
the following performance index is employed:

OF

J= /TT(‘C)T(‘C)dr _/T(r) dr (18)

o

where T is used as an integration variable, T(7)? = Tx(7)? +
Ty(‘L')Z + T,(7)?, and the low levels of thrusters are operated for
the Chief satellite’s 6y < 6 < 6¢. Although the control law devel-
oped from Eq. (18) is not strictly fuel-optimal and the effect of the
denominator p2(9) in Eq. (17) is not negligible for moderate or
high eccentricities, setting a performance index as Eq. (18) enables
a complete analytical approach as will be seen. Also, the effect of
p(0) can be mitigated by choosing an appropriate gain matrix R
and the use of Eq. (18) naturally penalizes the control effort near
perigee [10,9]. Because the out-of-plane motion is decoupled from
the in-plane motion, we can define the next two performance in-
dices from Eq. (18):

O
o= [ Ta@2dr (19a)
Ao
and
OF
Jay = /[Tx(r)z +Ty(1)?]dr (19b)
)

We must also incorporate the constraints formulated in the pre-
vious section and find the thrust functions in terms of the true
anomaly. The question is how we can represent general thrust
functions. Using a Fourier series can yield an appropriate answer.
While thrust functions may be discontinuous or impossible to dif-
ferentiate, generating a description of thrust function by a Fourier
series can solve this troublesome problem. Since it satisfies Dirich-
let conditions, that is, it has a finite number of finite discontinu-
ities and has a finite number of extrema, any thrust function can
be mathematically represented in a Fourier series that converges
to the function at continuous points and the mean of the posi-
tive and negative limits at points of discontinuity. In brief, we can
think of each thrust function as a Fourier series with the period
A6 = 0F — 0. Then, the thrust acceleration in a Fourier series with
domain 6y < 6 < 6F can be obtained. Therefore, the performance
indices can be represented by Fourier coefficients that satisfy the
preceding constraints.
Thrust functions in a Fourier series are obtained as follows:

axo 2nmw
Tx(0) = =4 Z(am Cc0S —— 9 ~+ byp Sin —— D 0) (20a)
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z - 2 o zn AQ n AG
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2 2 2nm
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6o 6o
2 f nm
bxn = 0 / Tx(0) sin Y3 6do
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If Parseval’'s theorem [2], which represents the relationship be-
tween the average of the square of T(6) and the Fourier coeffi-
cients, is used, the performance index for the z thrust function can
be written as

Jz= [ ia +b2,) }

and the performance index for the coupled x and y thrust acceler-
ations is

J M[ %0 4 S +b2)}
Xy = 2 2 Xxn xn

n=1
2 oo
A | @Yo
+ 7 |:% + Z(ain + bf,n)i|
n=1

Now, we must find those Fourier coefficients (axo, axn, bxn, ayo,
ayn, byn) which minimize the performance indices Jyy, and J,. In
doing so, we must not forget to incorporate boundary constraints.
For this, it is best to represent the boundary constraints in terms of
Fourier coefficients. We find those coefficients which yield the op-
timal thrust accelerations by minimizing the performance indices
with respect to the coefficients. Let us consider the out-of-plane
case first, and then the in-plane case.

(21a)

(21b)

4.1. Out-of-plane thrust functions

For the out-of-plane thrust function, there exist constraints on
Z(0F) and Z'(0F) because we wish to set the Deputy to a desired
state. The particular solutions which indicate the thrust neces-
sary to put the Deputy into the desired state can be thought of
as boundary conditions. Here, rather than the original constraints,
Z(0F) and Z'(6f), new transformed constraints Iy and I; are intro-
duced for a simpler calculation. This is just a coordinate transfor-

mation:
Ip] [ sin6r cos6f |[ zp(6F)
Iy | | —cosOr sinff 2’p(9p)
3 0F cost
I3 [ S5 T,(7) de o)

3 6
r feoF pSI(‘;;TZ(t)dr

Substituting Eq. (20c) into Eq. (22), we obtain

a
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OF
sint 2nmw
n=r| —— _sin=——rtdr 24b
82p (M) / (1+ecost)3 A0 (24b)
0o

where AO = 60f — 6p. It is noted that Eqs. (23a) and (23b) repre-
sent the constraints in terms of Fourier coefficients. Incorporating
the constraints (Eqs. (23a) and (23b)) using Lagrange multipliers
Ao and A, the augmented performance index J;que obtains the
following:

A e — -
]z,aug = 7 |:%0 + Zagn + Zbgn:|

+ Ao |:I - M - Zfza(n)azn Zfzb(n)bzni|

n=1

a
+ M |:I] - % - Zgza(n)azn - Zgzb(n)bzn:|

n=1 n=1

(25)

Then, partially differentiating Eq. (25) with respect to the respec-
tive Fourier coefficients a,g, azn, bz;, and setting the results equal
to zero, the coefficients for the optimal maneuver are obtained as
follows to minimize the performance index:

1
azo = E[Xofzo + 218201
1
az(n) = [A0fzn () + A18zn ()]
1
bm(n) = [)Lszb(”) + A 18z (n)] (26)

Substltutmg Eq. (26) into Egs. (23a) and (23b), Ip and I are
rewritten in terms of Ag and Aq:

Io|_|Po p1]]| 20
RN )

where

po= o i[f Mm%+ fm)?]
2A0 6 = “ z

p = L0820 [f (M &za () + f25 (M) g2 (M)]
ZAQ A9 —~ za za Zl Z
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[e e}

g20 1 2 2
24— Z[gza(n) + 8z (n) ]
=1

N=570" Ao

Do, P1, and gq; contain the infinite series. However, by Parseval’s
theorem, all of these infinite sums converge at constant values:

B FG/ cos®t
po= (1+ecos 1:)6

FG 2 2 .
=m[ 3¢ SIn5E+ 2e (22 + 3) sin4E

1
- ge(se4 +65¢% +34) sin E

1
— Ee(4e4 +29¢% + 12) sin3E
Ef

+ %(18e4 +41e +4)E + }1(594 +9e% +1) siHZE]
Eo

6 OF :
r cosTsinT

p1= 2 ) (1+ecost)b
)

rs 1 1
=————| ==’ cos5E — (e + 3)e® cos4E
2(1—e2)5| 80 32

7 1
+ ge(e2 +2)cosE + EE(SEZ +4) cos 3E
1 Er
— —(e* +9e? +2) cos ZE]
8 Eo
OF
It sin®
h=- (1+ecost)®
6o
re 1 o3 in5E - > 2 sindE 1e(ez+6) sinE
2(1 —¢2)9/2] 80 32 8
1 1 1 Er
2 . 2 .
—e(e 12)sin3E + —(3e“ +4)E — —sin2E
# gl 12)s3E (36" 4 4~ Lin2e|
where E is the eccentric anomaly corresponding to the true
anomaly 0, and the followings hold true [13]:

cosE —e sin Ea/1 — e2
cosf = ——, sinf=—-- —
1—ecosE 1—ecosE
6 1+e E
tan — = tan —

2 1—e 2

The last identity is very convenient because it alleviates the quad-
rant ambiguity. From Eq. (27), we have convenient closed-form
parameters to represent the Lagrange multipliers Ao and Aq:

*o 1 Q@ —pi ] [10}
= bogs — P2 28
[}‘1 ] Poq1 — p3 [—m po || I (28)

It is noted that pg, p1, q1, lo, and I; are all constants. Finally, we
use these parameters to express the optimal thrust acceleration
T,(0), producing:

T,(0)=— + Zazn cos(—&) + szn sm( )

=——( A
2A9( 0fz0 + A1820)

[e e}

1 2
v Z[/\ofza(n) +118a(M)] COS<Z—Z9>

o0

1 2
+ 55 n;‘[/\ofzb(n) + 1182 (M)] sin(ge) (29)

Eq. (29) can be simplified into the following closed-form solution
by Parseval’s theorem:

T2(0) = = [

Eq. (30) is the final result for T,(#) which is a z-component of
thrust for the optimal reconfiguration of satellites in an elliptic or-
bit. Furthermore, it is not difficult to show that Eq. (30) replicates
Palmer’s result (Eq. (30) in [8]) when e = 0. (See Appendix C.) We
use Eq. (28) to evaluate A¢ and XA in which Iy and I; are de-
termined from Eq. (22). The performance index Eq. (21a) is then
represented in a simple closed form as follows:

AQCOSO + Aq sm@] (30)

(14+ecos6)3

1
Jz=§(10)»0+11k1) (31)
In addition, if Eq. (30) is inserted into Eqs. (11a) and (11b), we can
obtain the variations in z and Z:

6

r
Zp(0) = [ko(sm9A1(9) — cos0A2(0))

+ 11(sin0A2(6) — cos0A3(0))]
6

. r
Z,0) = [Ao(cos 6A1(0) +sinfAz(0))
+ 11(cos0A2(6) + sin6A3(9))] (32)
where
0
A1) =S cos2 6 _/ cos? T dr
=21 008 |~ ] (tecost)b
0o
0
Ay©) =S cos O siné _ cosTSintT
0(6)6 (1+ecost)b
0o
and

sin? 9 sin® T
A3(9)=S[,0(9)5:| /(1—|—ecosr)6

are given in Appendix B. From Egs. (6a) and (6b), the actual posi-
tion and velocity for the z-component are, respectively,

r’
2p(0) =3 @) ———[1o(sin6A1(9) — cosHAz(6))

+ A1(sin0 A2(0) — cos0A3(0))]
5

. r .
2p(0) = — [0((e 4 cosO)A1(0) + sin6A2(6))
+ 11((e 4+ cos6)Az(0) + sin6 Az(6)) ] (33)

If z,() and z,(#) are found, we then know the z-component of
the Deputy’s position and velocity during the maneuver by adding
the homogeneous solutions of Eq. (10b).
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4.2. In-plane thrust functions

In the coupled case for in-plane motion, the equations are more
complicated while the process is similar to that for out-of-plane
motion, as described in the previous section. First the constraints
for the Deputy satellite at a desired 6 = 6r should be evalu-
ated. In doing so, we consider the transformed constraints I, I3,
Ia, I5 inTstead of the existing constraints [Q2(0F), Q3(6r), Q4(0F),
Qs(0p)]":

Iy e 1 00 Q2(6F)
Is ] (1 e 00 Q3(6F)
I4 |7 |0 0 e 1 Q4(0F)
Is 0 01°e Qs5(6F)
I 9‘? ;;(T’)Z’ costdr + I3 fgi" ;{g; 1+ p(r))sintdr
I [o 28 Besintp(n)K (r) — 2)dv 43072 [jF ZEK (D) d
= 3 (OF Ty(@)
-r f(’oF p¥r>3
i r3 fe‘” T:S; sintdr + I3 fe? ;{g; (14 p(r))cosTdt

(34)

The cue for these new constraints is taken from the di;y] (@)
form (see Appendix A). For example, P1; and P, are related by
[i;] = %[‘;l][zg] where D =e? — 1, ¢12 = —cos6p(¥), and
¢22 = 3esinfp (@)K () — 2. Inserting Eqs. (20a) and (20b) into

Eq. (34) gives

1 ) ) 1
I = Ehxoaxo + tha(n)axn + thb (Mbyn + EJyanO

n=1 n=1

o0 o0
+ ija(n)ayn + ijb(n)byn

n=1 n=1

1 - - 1
I3 = Sk + D kxa (M + 3k Mban + Slyoayo

n=1 n=1

oo oo
+ Zlya(n)ayn + Zlyb(n)byn

n=1 n=1

1 o0 o0
la = 5mMy08y0 + 3 Mya(Mayn + 3 S mypMbyn

n=1 n=1

1 > > 1
Is = Enxoaxo + Z Nxg (N)Axn + Z Nxh (Mbxn + Epyoayo

n=1 n=1
o0 o0
+Zpya(n)ayn+zpyb(n)byn (35)
n=1 n=1
where
GF 0F 2
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o
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1
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T 2
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o
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o
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P p . Ab
o

OF
K . 2
lyb(n)=3F3/—sin M dr
P A0
)

3 1 2nm
myg(n) =—I Fcos—tdr

OF
1
myo=—-I3 | —dr,
vo / 03 A0

E
1 2nmw

myb(n):—l"g’/—Bsin—rdt
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ABO
OF
sint sint nmw
Ny = I'? —dr Mg () = I3 —cos—rdr
x0 / xa() pz A
0o
O . 5
sint niw
ngm) =3 [ Z—sin=—rtdr
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o
95:1
Py0=F3/ +3pcosrd'c
6o p
T 2
+p nmw
n)=r3 cos T cos —t dt
Pya(n) /,03 A9
Ao
OF 9
+p niw
n=r3 cos T sin ——t dt 36
P =r? [ 5 = (36)
)

With Eq. (35) the constraints are thought of as the functions of the
Fourier coefficients. Next, we must incorporate the constraints of
Eq. (35) using constant Lagrange multipliers (A, A3, A4, A5) to get
an augmented performance index Jxy aug. We obtain the following:

A0 Gy 5 oy
]xy,aug = 7 7 + Zaxn + ben
n=1 n=1
2 oo oo
AB | dyo 2 2
7[7 + 2@+ Y bY
n=1 n=1
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1 ) o0
+ A2 |:12 - ihxoaxo - tha(n)axn - thb(n)bxn

n=1 n=1

- —]yoayO Z]ya(n)ayn Z]yb(n)byni|

n=1

1
+ 23 |:I3 - Ekxoaxo - kaa(n)axn - kab(n)bxn

n=1 n=1

lyoayo Z lya(Mayn, — Zlyb (”)byn:|

n=1

1
+ Aq |:I4 — Emy()ay() — I;mya(n)ayn

- Zmyb(n)byn:|

n=1

1
+ A5 |:15 3 = Nxo0x0 — Z Nxa (M) Axn — Z Nxp (M) by

= n=1

1
- Epyoayo - Zpya(n)ayn - Zpyb(n)bynj| (37)

n=1 n=1

After partially differentiating Eq. (37) with respect to the associ-
ated Fourier coefficients and setting the results equal to zero to
minimize the performance index, we get

1
ayo = A—G()\,zhx() + }\.3kx0 + )\-SnXO)

(A2hyxq 4 A3kxq + Asnxg)

axn = —
Xn A

1
bxn = E(Azhxb + A3kxp + Astixp)

1 .
1 .
ayn = E(}\,Z]ya + Aslyg + AaMyq + Aspyq)
1 .
byO = E()\.Z}yh +)\'3lyb + )"4myb + )"Spyb) (38)

If we substitute Eq. (38) into Eq. (35), the results from I, to I5
become as follows:

I P2 D3 P4 Ds A2
Is | _| p3s g3 q4 G5 A3
Is | | P4 qa 14 T5 A4 (39)
Is Ps qs TIs Ss A5
where
_ h>2<0 1 o h2 1 R2 150 1 o 2 2
P2=50 +EZ( xa t o )+2A9 +A_92(]y“+1ﬂ’)
n= n=
hokso 1 — Jyolyo
pP3 = ;Ag 79 nz_;(hxakxa + hxpkyp) + ;/Az
1 o0
+ E Z(jyalya + jyblyb)
n=1
jyomyo 1 o= . .
P4 = N + A_GZ(]yamya‘f‘]ybmyb)
n=1

hyonxo JyoPyo
D5 = ;Ag Z(hxanxa + hapnyy) + JéAg
1 . .
+ N Z(]yapya + JybDyb)
n=1
k2 1 & 12 1 &
x0 2 2 2
= — k k2 —— + — l l
=356 " 26 o (G +H) + 555+ 24 HZ(WJF )
lyomyo 1 as
qa = EYE + A_Q Z(lyamya +lypmyp)
kxonxo 0Pyo
= ;A; Z(kxanxa + kxpixp) + yZA;
1 o0
+ — 2D Z(lyapya +lybpyb)
n=1
20 1 oo
y 2 2
4= 320 + ag 2 Mat M)
n=
Myopyo 1
s = ;AGy +A—02(myapya+mybpyb)
n=1
o
ZAQ ana+ xb 2A9 Zpyﬂ+pyb

They can be transformed into this simple closed form by Parseval’s
theorem:

1-v6
p2 = = [A3(6r) + 3B1(6r) +2B2(6p) + Bs (6]

1-'6
Pa = - [2B2(65) + 6C2(0p)]

FG
ps= _7[€A2(‘9F) +2A4(0p)]
1-'6
ps = 7[A2(9F) + 2B3(6F)]

1"6
43 = —-[4A1(6F) + 4A3(0F) — 12¢B4(0F) +9¢%C3(0F)

+9E1(6p)]
316
qa = —TC4(9F)
FG
s = 7[—233(9F) +3eCs(0F) + 3C6(0F) + 3D1(6F) ]
6 6

r r
ra=—-[A10p) +A30p],  rs=—=-[AsOF) + B2(6p)]

F6
$5= [ A1(6F) + B1(6F) + eB2(6F) + 3B5(0r)] (40)

where A1, A,, etc., are given in Appendix B. For example, A1(6F) =

ffo‘r ;O(ST)T dr. Note that p, p3, pa4, etc., are all constants. Then,

from Eq. (39) we get the values of the Lagrange multipliers:

-1

A2 P2 P3 P4 Ds Iz
A3 | _ | P3 43 44 Qs I3
A | | Pa qs ra 15 I4
A5 pPs qs TIs Ss Is

When we express Ty and Ty using the above Lagrange multipliers,
the following equations are obtained:
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Tx(0) = — + Zaxn cos(—@) ben sm(—@)

= m(lzhxo + A3kxo + Asnixg)

o0
2nmw
0 n;(xzhm + Askyg + AsMyg) cos<E9>

o0
. (2nw
0 Z(lzhxb + Askxp + Asnyp) 5"1(@9) (41a)

+Zayncos<—0> +Zbyn sm( )

= m(/\zjyo + A3lyo + Aamyg 4+ Aspyo)

Ty(6) =

1 . .
+ D Z(kzlya + A3lyg + Agmyq + Aspyq)

n=1
nmw
x cos| —0
AO
o0
1 .
+ 0 ’;(Az]yb + Aslyp +Agmyp 4+ Aspyp)

2
X sin n_zre
AO

Egs. (41a) and (41b) can be simplified into the following closed
form by Parseval’s theorem:

(41b)

To(0) — F_3[—A2p(0)c050+k3(36p(9) SsinfK(©6) — 2)
xO) = (1+ecos6)3

A50(0)sin® } (422)
(14+ecos)3
I3[ hasin@(1+ p(0)) +3130(0)2K(0) — Aq
Ty(0) = 5 3
(1+4+ecosh)
AscosO(1 + ,0(9))] (42b)
(14+ecos6)3

Egs. (42a) and (42b) are the final results for Tx(9) and Ty (),
which are the x- and y-components of thrust for the optimal
reconfiguration of satellites in an elliptic orbit. Thus, we have ob-
tained the optimal thrust functions in terms of the true anomaly.
The performance index (21b) can then also be succinctly expressed
as:

1
Jxy = 5(12)»2 +I3A3 + I4hg + I5)s) (43)

Furthermore, substituting Eqs. (42a) and (42b) into Eq. (34) yields

FG

L) = 7[Az(Ag +3B1 +eBy + Bs) + A3(2B2 + 6C)
—Aq(eAz 4+ 2A4) + As(Az +2B3)]
1"5

I3(0) = [12(232 +6C7)

+ A3(4A1 +4A3 — 12eB4 + 9e?C3 + 9E1)

—32.4C4 + A5(—2B3 + 3eCs + 3C6 + 3D1) ]
FG
14(6) = - [A2(eAz +2A4) 4+ 313Cs — Aa(A1 + A3)

+ A5(As + B2)]

F6
Is(0) = 7[?\2(/‘\2 +2B3)
+ A3(—2eAy —2A4+3eC5+3C6 +3Dq)
— A4(As + B2) + As(A1 + By +eBa + 3Bs) |
Q2(0) -e 1 0 0 [(9)
Q@) | _ 1 1 —e 0 0 I3(9) (44)
Q4(0) 1—e2{ 0 0 —e 1 14(9)
Qs(0) 0 0 1 —el]Is®

For A4, Ay, etc., see Appendix B. Then, the x-y components of the
positions and velocities during the maneuver will be

Xp(0) 0 —s —C 3esK — 2
x,0) | _|o0 —s —c 3e(s'K +5/p2)
yp(©) 1 —c(14+1/p) s(1+1/p) 30°K
¥y () 0 2s 2—e 3(1 — 2esK)
Q2(0)
Q3(9)
16
“| Qa0 (18)
Qs(9)
and the actual positions and velocities of x and y are
?fp(@)
Xp(0)
¥p(9)
yp(©)
rr -
ey 000 0T R@)
_ | e 20 o 0 || X,0)
10 o -L. o Vp(©)
fine o0 | | 7,6)
esin
Y 0 romi ol P
M o —I'sinf —I'cosf F(3esin91<f%)
. 0 —Losb 2 sing 2 £ (sin +3p? cosOK)
- L —Icoso(1+1) rsino(1+ 1) 3IrpK
| eme SME14p?)  L(e+cosO(1+p2)  Ep(1—esindpK)
Q2(0)
Q3(0)
45
Q4(0) (43)
Qs5(9)

We can find the x-y components of the Deputy’s position and
velocity during the maneuver by adding the particular solutions
(Eq. (45)) to the homogeneous solutions (Eq. (15b)). These values
are useful when evaluating the numerical simulation. Furthermore,
it can be shown that when e = 0 Eqs. (42a) and (42b) are con-
verged into Palmer’s results (Eqs. (44) and (45) in [8]).

5. Applications

We have derived all the equations for analytical solution to the
reconfiguration of satellite formation using thrust acceleration. Let
us summarize the main steps.

(1) The relative dynamics in arbitrary elliptic orbit are described
by Egs. (5a) and (5b), which show the in-plane motion and the
out-of-plane motion, respectively.

(2) The solution to out-of-plane dynamics (Eq. (5b)) is found
to consist of the homogeneous solution (Eq. (10a)) and the
particular solution (Egs. (11a) and (11b)). The solution to
in-plane dynamics (Eq. (5a)) is also found by adding the
homogeneous solution (Eq. (15a)) to the particular solution

(Eq. (16)).
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(3) Thrust acceleration for the particular solutions is formulated in
a Fourier series. To minimize fuel consumption and satisfy the
constraints induced from initial and final boundary conditions,
appropriate Fourier coefficients are determined. Based on the
coefficients, the closed-form solutions for thrust acceleration
are derived for the x-component of acceleration (Eq. (42a)),
along with the y-component (Eq. (42b)) and z-component
(Eq. (30)).

(4) The position and velocity of the Deputy satellite during the
reconfiguration maneuvers are also derived in closed forms.
Egs. (10b) and (33) are for the z-component of the position
and velocity, whereas Eqs. (15b) and (45) are for the x- and
y-component of the position and velocity.

(5) The performance index can be also represented in a simple
closed form. Eq. (31) yields the performance index for the out-
of-plane motion, whereas Eq. (43) gives the performance index
for the in-plane motion.

5.1. Sample problems

To validate the results of the analytical solution mentioned
above, numerical simulations are carried out. We consider the re-
configuration problems of formation flying having periodic condi-
tions where the Chief moves in a reference orbit of eccentricities,
e =0,0.1, and 0.7, respectively. The numerical solutions are ob-
tained with a general purpose optimization code, the Sparse Opti-
mal Control Software (SOCS) [1]. SOCS solves the optimal control
problem using a direct transcription method by which the dynamic
system is converted into a problem with a finite set of variables
and utilizes the mesh refinement algorithm to improve the accu-
racy of the discretization. SOCS then determines numerical solu-
tions using sequential quadratic programming.

First, let us consider the case of e =0, in which the Deputy
is in a projected circular formation. The semi-major axis of the
Chief's orbit is a =7 x 10 m. The formation is required to change
its radius to from 500 m to 1000 m during one period of the ref-
erence orbit. Second, for the cases of e =0.1 and 0.7, the initial
and final states were determined by Eq. (46) to obtain a periodic
condition [6]:

Y'(0)/x(0) =—[(2+e)/(1+e)] (46)

Eq. (46) expresses the relation between y’(0) and x(0) in the
true anomaly domain. Therefore, 0 means that the Chief is lo-
cated at the perigee of the reference orbit, and the semi-major
axes of the Chiefs orbits are a = 7.78 x 10 m for e = 0.1 and
a=2.33 x 10’ m for e = 0.7, respectively. These values are chosen
because we want to fix the distance to a perigee by rp =7 x 106 m,
and the identity rp =a(1 —e) is used. In the case of e =0, three
Deputy satellites are simulated simultaneously, and the phase an-
gle between them is 120°. The initial and final conditions of each
satellite are given in Table 1. However, in the non-circular-orbit
cases, only one satellite is simulated, because it is difficult or
seems to be impossible to find the initial conditions for multi-
satellite reconfiguration in the same relative orbit plane. The initial
and final conditions of one satellite in each eccentricity (e = 0.1
and 0.7) are given in Table 2. Also, discretization method and the
numbers of nodes through mesh refinement algorithm by SOCS are
given in Table 3.

Fig. 2 shows the 3-dimensional trajectories in the local coordi-
nate frame for the cases of each eccentricity. The trajectories in the
x- and y-components are obtained from the sum of Eqs. (15b) and
(45) and the trajectories in the z-component are obtained from
the sum of Egs. (10b) and (33). These trajectories generated by
the analytical solutions are identical to the trajectories produced
by the numerical tool, SOCS, where the same performance index

Table 1
Initial and final conditions of three Deputy satellites for the formation case of e = 0.

Initial conditions Final conditions

Sat 1 Sat 2 Sat 3 Sat 1 Sat 2 Sat 3
X, m 250.00 —125.00 —125.00 500.00 —250.00 —250.00
% ms! 0.00 —-0.23 0.23 0.00 —-0.47 0.467
y, m 0.00 —433.01 433.01 0.00 —866.03 866.03
y, ms~! —0.54 0.27 0.27 —1.08 0.54 0.54
z, m 500.00 —250.00 —250.00 1000.00 —500.00 —500.00
z, ms™! 0.00 —0.47 0.47 0.00 -0.93 0.93

Table 2
Initial and final conditions of one Deputy satellite for the formations cases of e = 0.1
and 0.7.

Initial conditions Final conditions

e=0.1 e=0.7 e=0.1 e=0.7
X, m 250.00 250.00 500.00 500.00
% ms™! 0.00 0.00 0.00 0.00
y, m 0.00 0.00 0.00 0.00
y, ms~! —0.54 —0.56 —1.08 —1.12
Z, m 500.00 500.00 1000.00 1000.00
7, ms™! 0.00 0.00 0.00 0.00
Table 3
Summary of SOCS results.
e=0 e=0.1 e=0.7
Discretization method Trapezoidal Trapezoidal Trapezoidal
# of nodes 113 135 225

(Eq. (18)) is used for SOCS. Fig. 3 demonstrates thrust profiles as a
function of true anomaly using the analytical solutions (Egs. (30),
(42a), and (42b)). For the case when e = 0, the thrust profile of
satellite 1 among the three satellites is depicted. In addition, Fig. 4
shows the differences of thrust profiles between the analytical so-
lutions and numerical solutions from SOCS. Thrust accelerations
from the analytical method are coincident with those obtained
numerically within 0.02% error. Given in Table 4 is a comparison
of the performance indices resulting from the analytical method
(Egs. (31) and (43)) with those from numerical tool, SOCS. The
analytical results are found be same as those obtained by the nu-
merical method.

6. Conclusion

This paper derives novel closed-form solutions to the reconfigu-
ration of satellite formation in an arbitrary elliptic orbit. The thrust
accelerations are low level, continuous and of variable magnitude.
The analytical solution represents thrust accelerations minimizing
fuel consumption. For given initial and desired relative positions
of a Deputy satellite, we are able to immediately generate an ap-
propriate thrust acceleration and reconfiguration trajectory in a
closed form. The analytic solutions have no singularities and are
valid for an arbitrary elliptic orbit with 0 <e < 1 as well as for
a circular orbit. It is simple to apply the results because the so-
lutions are in closed forms. The solutions can be applied to any
value of eccentricity for a Chief satellite because the solutions have
no approximation on eccentricity. Additional Deputy satellites do
not need any further analysis or computation because the analytic
solutions require only given initial and desired final satellite posi-
tions. This paper also provides examples that show its use in the
reconfiguration of satellite formation flying in an elliptic orbit, and
the obtained analytical solutions are very consistent with numeri-
cal results.



172 H. Cho et al. / Aerospace Science and Technology 25 (2013) 161-176

(b) e=0.1

2000 3

-2000
=
N
-4000
600
-6000
-8000 &
0
00 1000
= -600
Y.m -1500
(c) e=07
Fig. 2. The reconfiguration trajectories for the Deputy satellites.
Table 4 Appendix A. The inverse of @y (6)
Comparison of performance indices for the analytical solution and the numerical
solutions from SOCS. _ 1
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Fig. 4. The differences of thrust profiles between the analytical solutions (Fig. 3) and

Fig. 3. Thrust profiles as the function of true anomaly using the analytical solutions
the numerical solutions from SOCS.

for the reconfigurations shown in Fig. 2.
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Appendix B. Integration results

Here, following identities [13] are useful. (E denotes an eccen-
tric anomaly.)
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Appendix C. The verification of Eq. (30) when e =0
We will show Eq. (30) becomes Palmer’s result (Eq. (30) in [8])

when e = 0. Hereafter barred ( ) notations mean Palmer’s values.
In the case of e =0, it is easy to show that

T
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where £2 is the constant orbital rate of the Chief satellite, 8 = 2tF,
and tr is the time when the thruster is switched off. Recollecting
Eq. (22), we have

Io =Zp(0F) sinOF + Z,, cos OF
It = —Zp(6F) cos O + Z), sinOF

With Palmer’s notations,

Io=2(zr — 2p), I=2F— 2
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Ko | _ B (B/2) [IQ] (c2)
Kq —cot(B8/2) 1 I
where zr = z(tf). Therefore, we obtain the following:
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0= o 1
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1 o B 1sin g (C3)

Coalescing Eqgs. (C.2) and (C.3) yields
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From Eq. (C4
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where I'2§2 =1 for the circular reference orbit is used and the
following is given in Eq. (28) of [8]:

1—cosB
)»0 = Z.QKO _—, = 1=—
B +sing B —sing

Using the trigonometric identity, cot(g) = ]iigofz 5 and e =0 for

the circular reference orbit, we finally have the optimal thrust ac-
celeration from Eq. (30):

3 _ _
L= [Ao cos(£2t) + Aq sin(£21)]

Tr (B M = MooMmo (B =
= [7 cot(5> — ?] cos(£2t) + [7 + 7cot(§>} sin(£2t)
=T cos(2t —¢) (C.6)

where

) _ S i _
3 CSC(g)‘,/(k02+A12), ;:ﬁ—i—g,

A1 =Aotanv

F:

Eq. (C.6) is exactly the same as Eq. (30) in [8], and this is the end
of the proof.
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