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This paper presents an analytic solution to the optimal

reconfiguration problem of satellite formation flying in J2 orbital

perturbation. Continuous and variable low-thrust accelerations

are represented by the Fourier series, and initial and final

boundary conditions are used to establish the constraints on

the thrust functions. The thrust functions are implemented by

optimal Fourier coefficients that minimize the cost during the

maneuver. The analytic solution composed of these Fourier

coefficients are simply represented in a closed form, and no

approximation is needed. Numerical simulations are conducted

to visualize and compare the results obtained in this paper

with those of previous papers with no perturbations. The

analytic solution developed in this paper is more accurate in

that the general behavior of the optimal control history and

reconfiguration trajectories are easily calculated even in the

presence of the J2 potential disturbance. The analytic solution

is useful for designing a reconfiguration controller for satellite

formation flying under J2 orbital perturbation.
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I. INTRODUCTION

Satellite formation flying is used when a group of

satellites needs to perform a unified space mission.

Satellite formation flying has been extensively studied

to enable space missions to obtain higher-resolution

imagery and interferometry, robust and redundant

fault-tolerant space systems, and more complex

networks of satellites [1]. Among the technologies

associated with satellites in a formation, the optimal

reconfiguration problem is of great concern. This

is because small satellites consisting of a formation

generally have a limited fuel budget. Originally, the

Hill-Clohessy-Wiltshire (HCW) equations [2, 3]

of relative motion were used to analyze relative

motion among satellites because they are the simplest

models governing the dynamics of relative motion;

these equations model relative motion in a local

vertical, local horizontal (LVLH) frame. The HCW

equations assume that 1) the reference orbit is circular,

2) the satellites (the chief and the deputy) orbit in

the absence of perturbations, and 3) the differential

gravity field is linear. If the chief’s orbit is eccentric,

if the gravitational field is perturbed, or if the relative

distance is not small, then the HCW equations are no

longer valid.

The problems associated with relative motion

under perturbations have attracted a lot of researchers.

Among the various perturbations, the dominant one

is Earth’s oblateness, especially the second spherical

harmonic of Earth’s geopotential, called J2 [4].

Kechichian [5] derives an exact formulation of the

relative motion of satellites under the J2 disturbance,

which requires numerical integration to predict the

motion of the satellites over time. Sedwick, et al.

[6] includes the effects of the J2 disturbance as a

forcing function that they apply to the right side of

the HCW equations. This causes the secular drift,

and they present the amount of changes in velocity

needed to counteract this secular term. Recently,

Hamel and de Lafontaine [7] propose a linearized

set of equations of relative motion concerning the

J2-perturbed elliptic reference orbit. The model uses

the linearized differential drift rate of mean orbit

elements to predict the impact of the J2 perturbation

on relative osculating satellite motion. However,

the most frequently used models that describe

relative motion under the J2 perturbation are those

presented by Schweighart and Sedwick [8] and

Ross [9]; both of which use the circular reference

orbit. The equations proposed by Schweighart and

Sedwick were chosen for this paper because they are

easily solved and they pick up where Ross leaves

off; that is, they account for the shift in orbital

period and ascending node associated with the J2
effect.
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Let us turn to the optimal reconfiguration

problem. This problem, which is directly related to

the traditional optimal rendezvous problem, is also

of great interest, especially because of Lawden’s

primer vector theory [10]. Most solutions have been

numerically obtained because this problem is highly

nonlinear. Zanon and Campbell [11] describe a

numerical method for constructing formation optimal

maneuvers using the Hamilton-Jacobi-Bellman

formulation. Tillerson, et al. [12] present optimal

control algorithms for formation keeping and

reconfiguration, which are based on the solutions

of linear and integer programming. Finding the

numerical solutions is somewhat difficult because

the necessary and optimality conditions must be

numerically satisfied. However, analytic solutions

would give insight into the feedback controller, and

therefore would be easily exploited for formation

flying, if they could be uncovered. Also, for the

actual on-board control system, it is preferable

to have analytic solutions because this makes

the computational load smaller. Vaddi, et al. [13]

propose an analytic two-impulse solution using

Gauss’s variational equations. This algorithm is

based on the circular reference orbit given by the

HCW equations. Palmer [14] presents an elegant

analytic solution for the problem by representing

the continuous and variable thrust acceleration in a

Fourier series with a period equal to the maneuver

time. He uses Parseval’s theorem [15] to make

the infinite sum into a closed form. However, this

analytic solution is limited to formation flying in

an unperturbed circular orbit because the HCW

equations are used. Using a similar approach, Cho,

et al. [16] extend the previous result and obtain

a solution to general-elliptic-orbit cases. In [16],

the Tschauner-Hempel equations [17] are used to

describe relative motion in an eccentric orbit, and

its fundamental matrix, given by Yamanaka and

Ankersen [18], is used. Scott and Spencer [19]

choose the calculus of variations to obtain an analytic

solution; they bring in the adjoint system to find an

optimal thrust vector. This solution applies only to

unperturbed circular-reference-orbit cases. Sharma,

et al. [20] solve the problem of frequently used

eccentricity and include the effects of nonlinear

differential gravity.

The control strategy for reconfiguration in

the presence of the J2 disturbance has also been

conducted by various researchers. Schaub and

Alfriend [21] discuss the effect of applying impulsive

control on the orbital elements, perturbed by the J2
effect. In [22], two approaches–impulsive control

and continuous control–are developed and compared.

The optimal impulsive controls are obtained from

a numerical method, and the continuous controls

law is derived from a candidate Lyapunov function.

Horneman [23] develops a multi-impulse guidance

scheme in the HCW frame for satellites flying in

formation based on a set of relative orbital elements,

including first-order effects of the J2 perturbations.

However, an analytic solution for fuel-optimal

reconfiguration is rarely presented. Yan and Alfriend

[24] show an approximate, analytic, low-thrust control

law using a pseudospectral method. The control law

is based on a state transition matrix, including the

J2 perturbations for linearized equations of relative

motion. The control law requires state values to

evaluate the control value at the current time, and

the values of the control between parameterized

points should be obtained by interpolation.

However, as evident in [24], this study shows

only an approximate control law for formation

reconfigurations. Thus, it is challenging to find a

method that can be used to obtain analytic solutions

of state histories and cost function, as well as control

histories for formation reconfigurations under the J2
perturbations.

We present an analytic solution to the satellite

formation reconfiguration (relocation) problem in a

J2-perturbed circular orbit using the Fourier series.

The procedure used in this paper to obtain the analytic

solution depends on that found in [14]. However,

we use a different dynamic model to include the

J2 orbital perturbations, and it obtains an analytic

solution that has been modified appropriately. The

J2 perturbations yield stronger effects near the bulge

of Earth, which means small orbital inclinations.

Hence, when the orbital inclination of the satellite

is small, our dynamic model used would be more

accurate than the HCW dynamic model in [14].

Consequently, our dynamic model gives more accurate

results in control simulation at small inclinations.

The analytic method developed in this paper yields

closed forms of accelerations, closed forms of position

and velocity vectors, and a closed form of cost

function. Initial and final positions and velocities of

the deputy satellites are calculated to establish the

constraints on the thrust functions. These constraints

are incorporated into the cost function by introducing

Lagrange multipliers. The analytic solutions are

formed by the magnitude and direction of continuous

thrust accelerations as a function of time. Presumably,

there are no restrictions on the thrust vector, and

a transfer time is chosen as a specific value. The

satellites are assumed to have low-level thrusters

in three orthogonal directions that correspond to

the radial, along-track, and cross-track directions.

Thrusters are fired during a significant fraction of

an orbital period throughout the maneuver. Any

thruster acceleration can be represented by the infinite

Fourier series. With Parseval’s theorem, the Fourier

series is summed up in a closed-form solution.

Analytic optimal solutions are derived by using an

extreme cost function with respect to all Fourier

coefficients. Then, the solution minimizes propellant
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usage for the reconfiguration of satellite formation.

The present paper describes thrust accelerations

in closed form for the optimal satellite relocation

problem. The solution is useful for designing a

feedback controller for satellite formation flying in

a J2-perturbed circular orbit. This study has addressed

multiple challenges, which are described here. First,

for formation reconfigurations, closed form solutions

to the circular orbits with J2 perturbations are found.

The analytic solutions include state histories and

cost function, as well as control histories. Second,

to provide the range of when our solutions play an

important role, the dynamic model used is compared

to a true nonlinear dynamic model including J2
perturbations. The underestimated drifts in both the

dynamic model used in this study and the dynamic

model used in [14] are calculated. Third, we evaluate

the accuracy of the solutions both in this paper and in

[14] for various orbits. For an inclination of less than

iref ¼ 54:735 deg, the solutions calculated here yield
smaller errors of final position than those found in

[14]. The new solutions can be used as a baseline in

the design of formation flying with an inclination of

less than iref ¼ 54:735 deg.

II. RELATIVE ORBITAL DYNAMICS UNDER J2
DISTURBANCE

In this section, relative dynamics in the presence

of J2 disturbance is briefly described. Schweighart and

Sedwick [8] modify the HCW equations to catch the

effect of the J2 disturbance as follows:

ẍ¡ 2n
p
1+ s _y¡ (3+5s)n2x= Tx (1a)

ÿ+2n
p
1+ s _x= Ty (1b)

z̈+ q2z = 2lqcos(qt+Á) +Tz

(1c)

where the x(t)-axis lies in the radial direction, the

y(t)-axis is in the in-track direction, and the z(t)-axis

along the orbital angular momentum vector completes

a right-handed system, while the dot ² above a
variable represents the differentiation with respect

to time t. In (1), n is the mean motion of the chief

satellite, Á is the phase difference between the chief

and the deputy satellite at the initial location, the

constant s emerges because of the shift of period of

a reference orbit, and q, which is also a constant, is

responsible for the change of the ascending node in

the presence of the J2 disturbance. Presumably, the

thrust functions Tx(t), Ty(t), and Tz(t) can be applied

at the desired directions during the maneuver. The

equations in (1) are initialized; that is, the cluster of

satellites passes the ascending node at t= 0. Let us

define ti and tf as the turn-on and turn-off points of

the thrusters, respectively. Furthermore, the following

are defined [8]:

s=
3J2R

2
e

8r2ref
(1+3cos2iref)

c=
p
1+ s, n=

r
¹

r3ref

k = nc+
3nJ2R

2
e

2r2ref
cos2 iref

iD =
_z0
krref

+ iC , ¢−0 =
z0

rref sin iref

°0 = cot
¡1
·
cot iC sin iD ¡ cos iD cos¢−0

sin¢−0

¸
©0 = cos

¡1[cos iD cos iC +sin iD sin iC cos¢−0]

_−D =¡
3nJ2R

2
e

2r2ref
cos iD

_−C =¡
3nJ2R

2
e

2r2ref
cos iC

q= nc¡ (cos°0 sin°0 cot¢−0¡ sin2 °0 cos iD)
£ ( _−D ¡ _−C)¡ _−D cos iD

l =¡rref
sin iD sin iC sin¢−0

sin©0
( _−D ¡ _−C)

msinÁ= z0, l sinÁ+ qmcosÁ= _z0

(2)

where the subscripts C and D mean the chief and

deputy satellites, respectively, J2 is the second

spherical harmonic of Earth’s geopotential, and Re
is the radius of Earth. In addition, rref is the radius of

the reference orbit, i is the inclination, and ¹´GMe,
where G is the gravitational constant and Me is the

mass of Earth. s emerges in the process of adjusting

the period of the reference orbit to that of the deputy

satellite’s orbit, resulting in a new angular velocity

of the reference orbit, which is responsible for c.

k is employed to force the ascending node of the

reference orbit to move at the same speed as the

deputy satellite’s orbit. The other quantities are

necessary for correcting the cross-track z motion.

When c= 1, q= n, and l = 0, the equations in (1) are

the same as the familiar HCW equations. Here, we

assume that the chief satellite’s orbit coincides with

the reference orbit.

III. SOLUTION TO THE MODIFIED HCW
EQUATIONS WITH J2 DISTURBANCE

In this section, the solutions to the modified HCW

equations in (1) are derived. Because the z motion is

decoupled from x and y, the out-of-plane maneuvers

are first considered.

A. Solution to Out-of-Plane Maneuvers

First, we solve the homogeneous form of (1c):

z̈+ q2z = 0: (3)
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The solution is·
zh(t)

_zh(t)

¸
=

24 cosqt
1

q
sinqt

¡qsinqt cosqt

35·z0
_z0

¸
(4)

where z0 ´ z(0), _z0 ´ _z(0), and the subscript h means
the homogeneous solution. If we want to use the
values at the turn-on time t= ti, we perform the
following transformation:·

z0
_z0

¸
=

24 cosqti
1

q
sinqti

¡qsinqti cosqti

35¡1 ·zi
_zi

¸

=

24 cosqti ¡1
q
sinqti

qsinqti cosqti

35·zi
_zi

¸
(5)

where zi ´ z(ti) and _zi ´ _z(ti). Inserting the J2
disturbance term 2lqcos(qt+Á) into the right-hand
side of (3), the solution is

zJ2(t) = ltsin(qt+Á)

_zJ2(t) = l sin(qt+Á)+ qltcos(qt+Á)
(6)

where the subscript J2 refers to the particular solution
because of the J2 disturbance term and tanÁ= qz0=_z0.
Next, let us consider another disturbance term: Tz(t).
Ignoring the J2 disturbance term, (3) is

z̈+ q2z = Tz: (7)

Utilizing the variation of parameters [25], we get

zp(t) =
1

q

Z t

ti

sinq(t¡ ¿)Tz(¿)d¿ and

_zp(t) =

Z t

ti

cosq(t¡ ¿ )Tz(¿ )d¿
(8)

where the subscript p means the particular solution

because of the thrust term. When t= tf , the thruster is

turned off and the deputy satellite is in the desired

relative position; that is, z(tf) and _z(tf) are our

predefined values, which give the constraints on the

thrust function. Therefore, the following constraints

must exist at t= tf :"
Ĩ0

Ĩ1

#
´
·
zp(tf)

_zp(tf)

¸

=

·
z(tf)

_z(tf)

¸
¡
·
zh(tf)

_zh(tf)

¸
¡
·
zJ2(tf)

_zJ2(tf)

¸
: (9)

We then find a thrust function Tz(t) that satisfies (9).

B. Solution to In-Plane Maneuvers

We solve the homogeneous form of (1a) and (1b):

ẍ¡2n
p
1+ s _y¡ (3+5s)n2x= 0

ÿ+2n
p
1+ s _x= 0:

(10)

It is straightforward to show that

26664
xh(t)

_xh(t)

yh(t)

_yh(t)

37775=©(t,0)
26664
x0

_x0

y0

_y0

37775=

266666666666664

1

1¡ s

·
4(1+ s)

¡(3+5s)cos¯t

¸
1

n
p
1¡ s sin¯t 0

2
p
1+ s

n(1¡ s) [1¡ cos¯t]

n(3+5s)p
1¡ s sin¯t cos¯t 0

2
p
1+ sp
1¡ s sin¯t

2
p
1+ s(3+5s)

(1¡ s)p1¡ s [sin¯t¡¯t]
2
p
1+ s

n(1¡ s) [cos¯t¡ 1] 1
1

1¡ s

" 4(1+ s)
n
p
1¡ s sin¯t

¡(3+5s)t

#
2n
p
1+ s(3+5s)

1¡ s [cos¯t¡ 1] ¡2
p
1+ sp
1¡ s sin¯t 0

1

1¡ s

·
4(1+ s)cos¯t

¡(3+5s)

¸

377777777777775

26664
x0

_x0

y0

_y0

37775

(11a)

where © is the state transition matrix and ¯ ´ np1¡ s.
If we use the values at t= ti rather than t= 0, then the

following transformation is performed in advance:

26664
x0

_x0

y0

_y0

37775=©¡1(ti,0)
26664
xi

_xi

yi

_yi

37775=

266666666666664

1

1¡ s

·
4(1+ s)

¡(3+5s)cos¯ti

¸
¡ 1

n
p
1¡ s sin¯ti 0

2
p
1+ s

n(1¡ s) [1¡ cos¯ti]

¡n(3+5s)p
1¡ s sin¯ti cos¯ti 0 ¡2

p
1+ sp
1¡ s sin¯ti

¡2
p
1+ s(3+5s)

(1¡ s)p1¡ s [sin¯ti ¡¯ti]
2
p
1+ s

n(1¡ s) [cos¯ti¡ 1] 1 ¡ 1

1¡ s

" 4(1+ s)
n
p
1¡ s sin¯ti
¡(3+5s)ti

#
2n
p
1+ s(3+5s)

1¡ s [cos¯ti ¡ 1]
2
p
1+ sp
1¡ s sin¯ti 0

1

1¡ s

·
4(1+ s)cos¯ti

¡(3+5s)

¸

377777777777775

26664
xi

_xi

yi

_yi

37775 :

(11b)
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Next, the particular solution to (1a) and (1b) must

be found. We again use the variation of parameters

[25] to get

266664
xp(t)

_xp(t)

yp(t)

_yp(t)

377775=

26666666664

2
p
1+ s

n(1¡ s) ¡2
p
1+ s

n(1¡ s) 0 0

0 0 2
p
1¡ s 0

¡3+5s
1¡ s t 0

4
p
1+ s

n
p
1¡ s

1

n(1¡ s)
¡3+5s
1¡ s

4(1+ s)

1¡ s 0 0

37777777775

26664
I2(t)

I3(t)

I4(t)

I5(t)

37775 (12)

where

I2(t)´
Z t

ti

Ty(¿ )d¿

I3(t)´
Z t

ti

Ty(¿ )cos¯(t¡ ¿)d¿

¡
p
1¡ s

2
p
1+ s

Z t

ti

Tx(¿)sin¯(t¡ ¿ )d¿
(13)

I4(t)´
p
1+ s

1¡ s
Z t

ti

Ty(¿) sin¯(t¡ ¿)d¿

+
1

2
p
1¡ s

Z t

ti

Tx(¿)cos¯(t¡ ¿ )d¿

I5(t)´ n(3+5s)
Z t

ti

Ty(¿)¿ d¿ ¡ 2
p
1+ s

Z t

ti

Tx(¿)d¿:

In (13), ¯ ´ np1¡ s. The singularity condition of (12)
occurs if 1¡ s= 0. However, this singularity rarely
occurs because s= (3J2R

2
e =8r

2
ref)(1+3cos2iref) is

rarely 1. As before, constraints must exist at t= tf :

266664
Ĩ2

Ĩ3

Ĩ4

Ĩ5

377775´
26664
I2(tf)

I3(tf)

I4(tf)

I5(tf)

37775=

26666666664

2
p
1+ s

n(1¡ s) ¡2
p
1+ s

n(1¡ s) 0 0

0 0 2
p
1¡ s 0

¡3+5s
1¡ s tf 0

4
p
1+ s

n
p
1¡ s

1

n
p
1¡ s

¡3+5s
1¡ s

4(1+ s)

1¡ s 0 0

37777777775

¡1266664
x(tf)¡ xh(tf)
_x(tf)¡ _xh(tf)
y(tf)¡ yh(tf)
_y(tf)¡ _yh(tf)

377775

=

266666664

2n
p
1+ s 0 0 1

n(3+5s)

2
p
1+ s

0 0 1

0
1

2
p
1¡ s 0 0

2n2
p
1+ s(3+5s)tf ¡2p1+ s n(1¡ s) n(3+5s)tf

377777775

266664
x(tf)¡ xh(tf)
_x(tf)¡ _xh(tf)
y(tf)¡ yh(tf)
_y(tf)¡ _yh(tf)

377775 (14)

We then find the thrust functions Tx(t) and Ty(t) that

satisfy (14) at t= tf .

IV. THRUST FUNCTIONS IN A FOURIER SERIES

Our objective is to relocate the deputy to the

desired position and velocity relative to the chief at

t= tf while minimizing control energy. Therefore, the

cost function is

J =

Z tf

ti

T2(¿ )d¿ (15)

where T2(t) = T2x (t) +T
2
y (t)+T

2
z (t) and the low levels

of thrusters are operated for the chief satellite’s ti ·
t· tf . Because the out-of-plane motion is decoupled
from the in-plane motion, we divide them into the

following two cost functions:

Jz =

Z tf

ti

T2z (¿)d¿ (16a)

Jxy =

Z tf

ti

[T2x (¿) +T
2
y (¿)]d¿: (16b)

Defining ¢t´ tf ¡ ti, we represent each thrust
function as a Fourier series with the period
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of ¢t:

Tx(t) =
ax0
2
+

1X
n=1

·
axn cos

μ
2n¼

¢t
t

¶
+ bxn sin

μ
2n¼

¢t
t

¶¸
(17a)

Ty(t) =
ay0

2
+

1X
n=1

·
ayn cos

μ
2n¼

¢t
t

¶
+ byn sin

μ
2n¼

¢t
t

¶¸
(17b)

Tz(t) =
az0
2
+

1X
n=1

·
azn cos

μ
2n¼

¢t
t

¶
+ bzn sin

μ
2n¼

¢t
t

¶¸
(17c)

where

ax0 =
2

¢t

Z tf

ti

Tx(¿ )d¿

axn =
2

¢t

Z tf

ti

Tx(¿ )cos
2n¼

¢t
¿ d¿

bxn =
2

¢t

Z tf

ti

Tx(¿ )sin
2n¼

¢t
¿ d¿

ay0 =
2

¢t

Z tf

ti

Ty(¿)d¿

ayn =
2

¢t

Z tf

ti

Ty(¿)cos
2n¼

¢t
¿ d¿

byn =
2

¢t

Z tf

ti

Ty(¿)sin
2n¼

¢t
¿ d¿

az0 =
2

¢t

Z tf

ti

Tz(¿)d¿

azn =
2

¢t

Z tf

ti

Tz(¿)cos
2n¼

¢t
¿ d¿

bzn =
2

¢t

Z tf

ti

Tx(¿ )sin
2n¼

¢t
¿ d¿:

If Parseval’s theorem [15], which represents the

relationship between the average of the square of T(t)

and the Fourier coefficients, is used, the cost functions

are expressed in terms of the Fourier coefficients:

Jz =
¢t

2

"
a2z0
2
+

1X
n=1

(a2zn+ b
2
zn)

#
(18a)

Jxy =
¢t

2

"
a2x0
2
+

1X
n=1

(a2xn+b
2
xn)

#

+
¢t

2

"
a2y0

2
+

1X
n=1

(a2yn+ b
2
yn)

#
: (18b)

Now, we must find those Fourier coefficients that

minimize the cost functions Jz and Jxy. As mentioned

earlier, in doing so we must not forget to incorporate

boundary constraints. Let us consider the out-of-plane

case first and then the in-plane case.

A. Out-of-Plane Optimal Thrust Function

For brevity, we introduce new constraints K0 and

K1 rather than the original constraints of Ĩ0 and Ĩ1,

respectively:·
K0

K1

¸
´
·
qsinqtf cosqtf

¡qcosqtf sinqtf

¸"
Ĩ0

Ĩ1

#

=

"R tf
ti
Tz(¿)cosq¿ d¿R tf

ti
Tz(¿ )sinq¿ d¿

#
: (19)

Substituting (17c) into (19) yields

K0 =
fz0az0
2

+

1X
n=1

fza(n)azn+

1X
n=1

fzb(n)bzn (20a)

K1 =
gz0az0
2

+

1X
n=1

gza(n)azn+

1X
n=1

gzb(n)bzn

(20b)
where

fz0 =

Z tf

ti

cosq¿ d¿

fza(n) =

Z tf

ti

cosq¿ cos
2n¼

¢t
¿ d¿ (21a)

fzb(n) =

Z tf

ti

cosq¿ sin
2n¼

¢t
¿ d¿

gz0 =

Z tf

ti

sinq¿ d¿

gza(n) =

Z tf

ti

sinq¿ cos
2n¼

¢t
¿ d¿ (21b)

gzb(n) =

Z tf

ti

sinq¿ sin
2n¼

¢t
¿ d¿:

Incorporating the constraints (20) using Lagrange

multipliers ¸0 and ¸1, the augmented cost function

Jz,aug obtains the following:

Jz,aug =
¢t

2

"
a2z0
2
+

1X
n=1

a2zn+

1X
n=1

b2zn

#

+¸0

"
K0¡

fz0az0
2

¡
1X
n=1

fza(n)azn¡
1X
n=1

fzb(n)bzn

#

+¸1

"
K1¡

gz0az0
2

¡
1X
n=1

gza(n)azn¡
1X
n=1

gzb(n)bzn

#
:

(22)
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Then, partially differentiating (22) with respect to each

Fourier coefficient az0, azn, and bzn, and setting the

results equal to zero, the coefficients for the optimal

maneuver are obtained as follows to minimize the cost

function:

az0 =
1

¢t
[¸0fz0 +¸1gz0]

azn =
1

¢t
[¸0fza(n)+¸1gza(n)]

bzn =
1

¢t
[¸0fzb(n) +¸1gzb(n)]:

(23)

Substituting (23) into (20), K0 and K1 are rewritten

in terms of ¸0 and ¸1:"
K0

K1

#
=

"
p0 p1

p1 q1

#"
¸0

¸1

#
(24)

where

p0 =
f2z0
2¢t

+
1

¢t

1X
n=1

[f2za(n)+f
2
zb(n)]

p1 =
fz0gz0
2¢t

+
1

¢t

1X
n=1

[fza(n)gza(n) +fzb(n)gzb(n)]

q1 =
g2z0
2¢t

+
1

¢t

1X
n=1

[g2za(n) + g
2
zb(n)]:

By Parseval’s theorem, p0, p1, and q1 converge at

constant values:

p0 =
1

2

Z tf

ti

cos2 q¿ d¿ =
1

2

·
¿

2
+
sin2q¿

4q

¸tf
ti

p1 =
1

2

Z tf

ti

sinq¿ cosq¿ d¿ =
1

2

"
sin2 q¿

2q

#tf
ti

q1 =
1

2

Z tf

ti

sin2 q¿ d¿ =
1

2

·
¿

2
¡ sin2q¿

4q

¸tf
ti

where [f(¿)]
tf
ti ´ f(tf)¡f(ti). From (24), we have

convenient closed-form parameters to represent the

Lagrange multipliers:·
¸0

¸1

¸
=

1

p0q1¡p21

·
q1 ¡p1
¡p1 p0

¸·
K0

K1

¸
: (25)

All parameters in (25) are constant from (19) and

Parseval’s theorem.

Finally, using (23), we use these parameters

to express the optimal thrust function Tz(t),

producing

Tz(t) =
az0
2
+

1X
n=1

azn cos
2n¼

¢t
t+

1X
n=1

bzn sin
2n¼

¢t
t

=
1

2¢t
[¸0fz0 +¸1gz0]

+
1

¢t

1X
n=1

[¸0fza(n) +¸1gza(n)]cos
2n¼

¢t
t

+
1

¢t

1X
n=1

[¸0fzb(n) +¸1gzb(n)] sin
2n¼

¢t
t:

(26)
Equation (26) is simplified into the following

closed-form solution using Parseval’s theorem:

Tz(t) =
1

2
[¸0 cosqt+¸1 sinqt] = ¡ cos(qt¡ ³)

(27)

where ¡ ´ 1
2

q
¸20 +¸

2
1 and tan³ ´ ¸1=¸0. Equation

(27) is the final result for Tz(t) which is a z-component

of thrust for the optimal rendezvous of satellites

under the J2 disturbance. Equation (27) may also be

readily derived from the out-of-plane solution in [14]

by considering the two terms on right-hand side of

(1c) as a pseudothrust. When we set z-components

(z(tf), _z(tf)) of the final position and velocity, the

original constraints (Ĩ0, Ĩ1) are evaluated by (9).

When z0 and _z0 are given, zh(tf), _zh(tf), zJ2(tf), and
_zJ2(tf) are easily estimated using (4) and (6). We

use (25) to evaluate ¸0 and ¸1, in which K0 and K1
are determined from (19). If (27) is substituted for

(16a), it is easily shown that the cost function (18a) is

represented in a simple closed form as follows:

Jz =
1
2
[K0¸0 +K1¸1]: (28)

Furthermore, if (27) is inserted into (8), we obtain the

variations in zp and _zp during the maneuver:

zp(t) =
1

2
sin(qt¡ ³)(t¡ ti) +

1

4q
[cos(2q¿ ¡ qt¡ ³)]tti

(29a)

_zp(t) =
1

2
cos(qt¡ ³)(t¡ ti) +

1

4q
[sin(2q¿ ¡ qt¡ ³)]tti :

(29b)

Once zp(t) and _zp(t) are found, we then know the

z-component of the deputy’s position and velocity

during the maneuver by adding the homogeneous and

J2 disturbance-induced solutions of (4) and (6).

B. In-Plane Optimal Thrust Functions

For brevity, we consider new constraints K2 to K5
rather than the original Ĩ2 to Ĩ5, respectively:
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26664
K2

K3

K4

K5

37775´
26666664

1 0 0 0

0
p
1+ ssin¯tf ¡(1¡ s)cos¯tf 0

0
p
1+ scos¯tf (1¡ s)sin¯tf 0

1 0 0 ¡ 2

n(3+5s)tf

37777775

266664
Ĩ2

Ĩ3

Ĩ4

Ĩ5

377775

=

26666666664

2n
p
1+ s 0 0 1

n

2
(3+5s) sin¯tf ¡1

2

p
1¡ scos¯tf 0

p
1+ ssin¯tf

n

2
(3+5s)cos¯tf

1

2

p
1¡ ssin¯tf 0

p
1+ scos¯tf

¡2np1+ s 4
p
1+ s

n(3+5s)tf
¡2 1¡ s
(3+5s)tf

¡1

37777777775

266664
x(tf)¡ xh(tf)
_x(tf)¡ _xh(tf)
y(tf)¡ yh(tf)
_y(tf)¡ _yh(tf)

377775

=

266666666666664

Z tf

ti

Ty(¿)d¿

¡
p
1¡ s
2

Z tf

ti

Tx(¿)cos¯¿ d¿ +
p
1+ s

Z tf

ti

Ty(¿) sin¯¿ d¿

p
1¡ s
2

Z tf

ti

Tx(¿) sin¯¿ d¿ +
p
1+ s

Z tf

ti

Ty(¿ )cos¯¿ d¿

4
p
1+ s

n(3+5s)tf

Z tf

ti

Tx(¿ )d¿ +

Z tf

ti

Ty(¿ )

Ã
1¡ 2¿

tf

!
d¿

377777777777775
: (30)

Inserting (17a) and (17b) into (30) yields

K2 =
1

2
hy0ay0 +

1X
n=1

hya(n)ayn+

1X
n=1

hyb(n)byn

K3 =
1

2
jx0ax0 +

1X
n=1

jxa(n)axn+

1X
n=1

jxb(n)bxn

+
1

2
jy0ay0 +

1X
n=1

jya(n)ayn+

1X
n=1

jyb(n)byn

K4 =
1

2
kx0ax0 +

1X
n=1

kxa(n)axn+

1X
n=1

kxb(n)bxn

+
1

2
ky0ay0 +

1X
n=1

kya(n)ayn+

1X
n=1

kyb(n)byn

K5 =
1

2
lx0ax0 +

1X
n=1

lxa(n)axn+

1X
n=1

lxb(n)bxn

+
1

2
ly0ay0 +

1X
n=1

lya(n)ayn+

1X
n=1

lyb(n)byn

(31)

where

hy0 =

Z tf

ti

d¿

hya(n) =

Z tf

ti

cos
2n¼

¢t
¿ d¿

hyb(n) =

Z tf

ti

sin
2n¼

¢t
¿ d¿

jx0 =¡
p
1¡ s
2

Z tf

ti

cos¯¿ d¿

jxa(n) =¡
p
1¡ s
2

Z tf

ti

cos¯¿ cos
2n¼

¢t
¿ d¿

jxb(n) =¡
p
1¡ s
2

Z tf

ti

cos¯¿ sin
2n¼

¢t
¿ d¿

jy0 =
p
1+ s

Z tf

ti

sin¯¿ d¿

jya(n) =
p
1+ s

Z tf

ti

sin¯¿ cos
2n¼

¢t
¿ d¿

jyb(n) =
p
1+ s

Z tf

ti

sin¯¿ sin
2n¼

¢t
¿ d¿

kx0 =

p
1¡ s
2

Z tf

ti

sin¯¿ d¿

kxa(n) =

p
1¡ s
2

Z tf

ti

sin¯¿ cos
2n¼

¢t
¿ d¿

kxb(n) =

p
1¡ s
2

Z tf

ti

sin¯¿ sin
2n¼

¢t
¿ d¿

ky0 =
p
1+ s

Z tf

ti

cos¯¿ d¿

kya(n) =
p
1+ s

Z tf

ti

cos¯¿ cos
2n¼

¢t
¿ d¿

kyb(n) =
p
1+ s

Z tf

ti

cos¯¿ sin
2n¼

¢t
¿ d¿

CHO, ET AL.: ANALYTIC SOLUTION TO OPTIMAL RECONFIGURATIONS OF SATELLITE FORMATION 2187



lx0 =
4
p
1+ s

n(3+5s)tf

Z tf

ti

d¿

lxa(n) =
4
p
1+ s

n(3+5s)tf

Z tf

ti

cos
2n¼

¢t
¿ d¿

lxa(n) =
4
p
1+ s

n(3+5s)tf

Z tf

ti

sin
2n¼

¢t
¿ d¿

ly0 =

Z tf

ti

Ã
1¡ 2

tf
¿

!
d¿

lya(n) =

Z tf

ti

Ã
1¡ 2

tf
¿

!
cos

2n¼

¢t
¿ d¿

lyb(n) =

Z tf

ti

Ã
1¡ 2

tf
¿

!
sin
2n¼

¢t
¿ d¿:

Next, we must incorporate the constraints of (31)

using constant Lagrange multipliers (¸2, ¸3, ¸4, ¸5) to

get an augmented cost function Jxy,aug. We obtain the

following:

Jxy,aug =
¢t

2

"
a2x0
2
+

1X
n=1

a2xn+

1X
n=1

b2xn

#
+
¢t

2

"
a2y0

2
+

1X
n=1

a2yn+

1X
n=1

b2yn

#

+¸2

"
K2¡

hy0ay0

2
¡

1X
n=1

hya(n)ayn¡
1X
n=1

hyb(n)byn

#

+¸3

"
K3¡

jx0ax0
2

¡
1X
n=1

jxa(n)axn¡
1X
n=1

jxb(n)bxn¡
jy0ay0

2
¡

1X
n=1

jya(n)ayn¡
1X
n=1

jyb(n)byn

#

+¸4

"
K4¡

kx0ax0
2

¡
1X
n=1

kxa(n)axn¡
1X
n=1

kxb(n)bxn¡
ky0ay0

2
¡

1X
n=1

kya(n)ayn¡
1X
n=1

kyb(n)byn

#

+¸5

"
K5¡

lx0ax0
2

¡
1X
n=1

lxa(n)axn¡
1X
n=1

lxb(n)bxn¡
ly0ay0

2
¡

1X
n=1

lya(n)ayn¡
1X
n=1

lyb(n)byn

#
: (32)

After partially differentiating (32) with respect to each

Fourier coefficient and setting the results equal to zero

to minimize the cost function, we get

ax0 =
1

¢t
(¸3jx0 +¸4kx0 +¸5lx0)

axn =
1

¢t
(¸3jxa+¸4kxa+¸5lxa)

bxn =
1

¢t
(¸3jxb +¸4kxb+¸5lxb)

ay0 =
1

¢t
(¸2hy0 +¸3jy0 +¸4ky0 +¸5ly0)

ayn =
1

¢t
(¸2hya+¸3jya+¸4kya+¸5lya)

byn =
1

¢t
(¸2hyb +¸3jyb +¸4kyb+¸5lyb):

(33)

If we substitute (33) into (31), the results from K2
to K5 become26664

K2

K3

K4

K5

37775=
26664
p2 p3 p4 p5

p3 q3 q4 q5

p4 q4 r4 r5

p5 q5 r5 s5

37775
26664
¸2

¸3

¸4

¸5

37775 (34)

where

p2 =
h2y0

2¢t
+
1

¢t

1X
n=1

(h2ya+ h
2
yb)

p3 =
hy0jy0

2¢t
+
1

¢t

1X
n=1

(hyajya+hybjyb)

p4 =
hy0ky0

2¢t
+
1

¢t

1X
n=1

(hyakya+ hybkyb)

p5 =
hy0ly0

2¢t
+
1

¢t

1X
n=1

(hyalya+ hyblyb)

q3 =
j2x0
2¢t

+
1

¢t

1X
n=1

(j2xa+ j
2
xb) +

j2y0

2¢t
+
1

¢t

1X
n=1

(j2ya+ j
2
yb)

q4 =
jx0kx0
2¢t

+
1

¢t

1X
n=1

(jxakxa+ jxbkxb)

+
jy0ky0

2¢t
+
1

¢t

1X
n=1

(jyakya+ jybkyb)

q5 =
jx0lx0
2¢t

+
1

¢t

1X
n=1

(jxalxa+ jxblxb)

+
jy0ly0

2¢t
+
1

¢t

1X
n=1

(jyalya+ jyblyb)
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r4 =
k2x0
2¢t

+
1

¢t

1X
n=1

(k2xa+ k
2
xb)

+
k2y0

2¢t
+
1

¢t

1X
n=1

(k2ya+ k
2
yb)

r5 =
kx0lx0
2¢t

+
1

¢t

1X
n=1

(kxalxa+ kxblxb)

+
ky0ly0

2¢t
+
1

¢t

1X
n=1

(kyalya+ kyblyb)

s5 =
l2x0
2¢t

+
1

¢t

1X
n=1

(l2xa+ l
2
xb)

+
l2y0

2¢t
+
1

¢t

1X
n=1

(l2ya+ l
2
yb):

Parseval’s theorem simplifies the preceding results:

p2 =

h
¿

2

itf
ti

p3 =¡
p
1+ s

2¯
[cos¯¿]

tf
ti

p4 =

p
1+ s

2¯
[sin¯¿]

tf
ti

p5 =
1

2

·
¿ ¡ 1

tf
¿ 2
¸tf
ti

q3 =
1¡ s
8

·
¿

2
+
1

4¯
sin2¯¿

¸tf
ti

+
1+ s

2

·
¿

2
¡ 1

4¯
sin2¯¿

¸tf
ti

q4 =
3+5s

8

·
sin2 ¯¿

2¯

¸tf
ti

(35)

q5 =¡
p
1¡ s2

n(3+5s)tf

·
1

¯
sin¯¿

¸tf
ti

+

p
1+ s

2

·
¡ 1
¯
cos¯¿ ¡ 2

tf

μ
sin¯¿

¯2
¡ ¿ cos¯¿

¯

¶¸tf
ti

r4 =
1¡ s
8

·
¿

2
¡ 1

4¯
sin2¯¿

¸tf
ti

+
1+ s

2

·
¿

2
+
1

4¯
sin2¯¿

¸tf
ti

r5 =

p
1¡ s2

n(3+5s)tf

·
¡ 1
¯
cos¯¿

¸tf
ti

+

p
1+ s

2

·
1

¯
sin¯¿ ¡ 2

tf

μ
cos¯¿

¯2
+
¿ sin¯¿

¯

¶¸tf
ti

s5 =
8(1+ s)

n2(3+5s)2t2f
[¿]

tf
ti
+
1

2

·
4

3t2f
¿3¡ 2

tf
¿2 + ¿

¸tf
ti

:

Then, from (34), we get the values of the Lagrange

multipliers:266664
¸2

¸3

¸4

¸5

377775=
266664
p2 p3 p4 p5

p3 q3 q4 q5

p4 q4 r4 r5

p5 q5 r5 s5

377775
¡1266664

K2

K3

K4

K5

377775 : (36)

When we express Tx and Ty using the preceding

Lagrange multipliers and (33), the following equations

are obtained:

Tx(t) =
ax0
2
+

1X
n=1

axn cos
2n¼

¢t
t+

1X
n=1

bxn sin
2n¼

¢t
t

=
1

2¢t
[¸3jx0 +¸4kx0 +¸5lx0]

+
1

¢t

1X
n=1

[¸3jxa+¸4kxa+¸5lxa]cos
2n¼

¢t
t

+
1

¢t

1X
n=1

[¸3jxb+¸4kxb+¸5lxb]sin
2n¼

¢t
t (37a)

Ty(t) =
ay0

2
+

1X
n=1

ayn cos
2n¼

¢t
t+

1X
n=1

byn sin
2n¼

¢t
t

=
1

2¢t
[¸2hy0 +¸3jy0 +¸4ky0 +¸5ly0]

+
1

¢t

1X
n=1

[¸2hya+¸3jya+¸4kya+¸5lya]cos
2n¼

¢t
t

+
1

¢t

1X
n=1

[¸2hyb+¸3jyb+¸4kyb +¸5lyb] sin
2n¼

¢t
t:

(37b)

Using (35) and Parseval’s theorem, (37) is

simplified into the following closed form:

Tx(t) =¡¸3
p
1¡ s
4

cos¯t+¸4

p
1¡ s
4

sin¯t

+¸5
2
p
1+ s

n(3+5s)tf

=
2
p
1+ s

3+5s
T1 +

¤

2

p
1¡ ssin(¯t¡Ã) (38a)

Ty(t) =
¸2
2
+
¸3
2

p
1+ ssin¯t+

¸4
2

p
1+ scos¯t

+
¸5
2

Ã
1¡ 2

tf
t

!

= T0¡T1(nt)+¤
p
1+ scos(¯t¡Ã) (38b)
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where

¯ ´ n
p
1¡ s

T0 ´
1

2
(¸2 +¸5)

T1 ´
¸5
ntf

¤´ 1
2

q
¸23 +¸

2
4

tanÃ ´ ¸3
¸4
:

The equations in (38) are the final results for

Tx(t) and Ty(t), which are the x- and y-components

of thrust, respectively, for the optimal rendezvous in

the presence of the J2 disturbance. The equations in

(38) can also be derived from the in-plane solutions

obtained in [14] by using the baseline described

in [26], which separates the in-plane motion into

an oscillation because of eccentricity in the orbit

and an along-track drift because of a shift in the

semimajor axis. When we set the x and y components

(x(tf), _x(tf),y(tf), _y(tf)) of the final position and

velocity, the original constraints (Ĩ2, Ĩ3, Ĩ4, Ĩ5) are

evaluated by (14). The homogeneous solutions

(xh(tf), _xh(tf),yh(tf), _yh(tf)) are easily estimated using

(11) when x0, _x0, y0, and _y0 are given. We use (36) to

evaluate ¸2, ¸3, ¸4, and ¸5, in which K2, K3, K4, and

K5, respectively, are determined from the first part of

(30). If the equations in (38) are inserted into (16b),

the cost function (18b) is then succinctly expressed as

Jxy =
1

2
[K2¸2 +K3¸3 +K4¸4 +K5¸5]: (39)

Furthermore, substituting (38) for (13) yields:

I2(t) = T0[¿]
t
ti
¡ n
2
T1[¿

2]tti +
¤

¯

p
1+ s[sin(¯¿ ¡Ã)]tti

I3(t) =
¤(5+3s)

8
p
1+ s

cos(¯t¡Ã)[¿ ]tti ¡
T0
¯
[sin¯(t¡ ¿)]tti

+
T1p
1¡ s [¿ sin¯(t¡ ¿ )]

t
ti
¡ 4nT1(1¡ s)
¯2(3+5s)

[cos¯(t¡ ¿)]tti

+
¤(3+5s)

16¯
p
1+ s

[sin(2¯¿ ¡¯t¡Ã)]tti
(40)

I4(t) =
¤(5+3s)

8(1¡ s) sin(¯t¡Ã)[¿ ]
t
ti
+
T0
p
1+ s

¯(1¡ s) [cos¯(t¡ ¿ )]
t
ti

¡ T1n
p
1+ s

¯(1¡ s) [¿ cos¯(t¡ ¿)]
t
ti

¡ 4T1
p
1+ s

n(1¡ s)(3+5s) [sin¯(t¡ ¿ )]
t
ti

+
¤(3+5s)

16¯(1¡ s) [cos(2¯¿ ¡¯t¡Ã)]
t
ti

I5(t) =¡
4T1(1+ s)

3+5s
[¿]tti +

T0
2
n(3+5s)[¿2]tti

¡ T1
3
n2(3+5s)[¿ 3]tti

(40)

+
¤

¯
n(3+5s)

p
1+ s[¿ sin(¯¿ ¡Ã)]tti

+

p
1+ s

¯2

μ
¤n(3+5s) +

4¯T1
p
1+ s

3+5s

¶
[cos(¯¿ ¡Ã)]tti :

These values can then be substituted back into (12) to

obtain the position and velocity of the deputy satellite

during the maneuver.

We have derived all equations for an analytic

solution to the maneuvers of relative motions using

thrust acceleration. Let us summarize the main steps.

The results in this study can be clearly utilized for

relative motions by following these steps:

1) The initial position (x0, y0, z0) and the velocity

( _x0, _y0, _z0) of the deputy satellite are given. The

final position (x(tf),y(tf),z(tf)) and the velocity

( _x(tf), _y(tf), _z(tf)) are also given for the deputy.

2) The x-y components (xh(t),yh(t), _xh(t), _yh(t))

of homogeneous solutions are estimated using (11).

The z-component (zh(t), _zh(t)) of homogeneous

solutions is easily calculated using (4), whereas

the z-component (zJ2(t), _zJ2(t)) of the particular

solution resulting from the J2 perturbations are

obtained by (6). From these solutions, we know the

values of (xh(tf),yh(tf),zh(tf), _xh(tf), _yh(tf), _zh(tf)) and

(zJ2(tf), _zJ2(tf)).

3) Equation (19) is used to get K0 and K1 after

having Ĩ0 and Ĩ1 in (9). The second part of (30) is

used to evaluate K2, K3, K4, and K5.

4) Equation (25) is used to calculate ¸0 and ¸1,

and (36) is used to determine ¸2, ¸3, ¸4, and ¸5.

5) Based on ¸0, ¸1, ¸2, ¸3, ¸4, and ¸5, the

closed-form solutions for thrust acceleration are

derived. The x-y components of thrust acceleration

for the optimal maneuver are obtained by (38a) and

(38b), whereas the z-component of thrust acceleration

is calculated by (27).

6) Equation (40) is used to estimate I2(t), I3(t),

I4(t), and I5(t).

7) The x-y components (xp(t),yp(t), _xp(t), _yp(t))

of particular solutions are found using (12), and the

z-component (zp(t), _zp(t)) of particular solutions is

found using (29).

8) The position and velocity of the deputy

satellite during maneuvers are also derived in closed

forms. The x-y components of the position and

velocity are obtained by adding the homogeneous

solutions (xh(t),yh(t), _xh(t), _yh(t)) to the particular

solutions (xp(t),yp(t), _xp(t), _yp(t)). The z-component

of the position and velocity are found by adding the

particular solution (zp(t), _zp(t)) to the homogeneous
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(zh(t), _zh(t)) and J2 disturbance-induced (zJ2(t), _zJ2(t))

solutions.

9) The performance index is also represented

in a simple closed form. Equation (39) yields the

performance index for the in-plane motion, whereas

(28) gives the performance index for the out-of-plane

motion.

V. SIMULATION RESULTS

To visualize the results obtained, a numerical

simulator is employed in this section. The numerical

simulator includes only the effects of J2 perturbation

and ignores higher-order perturbations. In the first

simulation, the satellites, which are initially placed

into a “free-orbit ellipse,” have a rendezvous. A

free-orbit ellipse describes the formation configuration

in which the projection of the satellites’ relative

motion in the cross-track direction is a 2-by-1

ellipse, in the in-track direction is a line, and in

the radial direction is a circle [8]. Presumably, the

reconfiguration (rendezvous) during the chief’s five

orbital periods starts from the ascending node, that is,

ti = 0. The semimajor axis and the inclination (iref) of

the reference orbit, which coincides with the chief’s

orbit, are 7£106 m and 35±, respectively. For the
rendezvous, the initial conditions are x= 707:1 m,
_x= 0:7615 m/s, y = 1414:2 m, _y =¡1:525 m/s,
z = 1414:2 m, and _z = 1:526 m/s; final conditions

are x= 0 m, _x= 0 m/s, y = 0 m, _y = 0 m/s, z =

0 m, and _z = 0 m/s. Although the initial conditions

for the free-orbit ellipse are already given in [27],

Schweighart and Sedwick [8] propose the following

initial conditions for the J2-perturbed case:

x0 =
½0
2
cosÁ, y0 = ½0 sinÁ

z0 = ½0 sinÁ, _x0 =
ny0
2

(1¡ s)p
1+ s

_y0 =¡2nx0
p
1+ s, _z0 = ½0qcosÁ

(41)

where ½0 is a radius of the circle, which is projected

in the radial direction, and Á is the initial location

of the deputy (the phase angle). Here, ½0 and Á are

chosen to be 2000 m and 45 deg, respectively.

Figure 1 shows thrust accelerations in each axis

during the rendezvous. The solid line represents the

values of Tx, the dotted line represents the values

of Ty, and the dash-dotted line represents the values

of Tz. From (27) and (38), it is found that Tx and

Tz are sinusoidal and periodic, whereas Ty slightly

increases with oscillations. The total simulation

time in Figs. 1—4 is the chief satellite’s five orbital

periods. Fig. 2 shows the difference between the thrust

accelerations obtained by (38) and (27) in this paper

and those calculated by [14], which uses the HCW

equations assuming no perturbations. They differ by

about 1% in total thrust for the case. It is found that

the difference of the accelerations is changed as the

inclination of reference orbit varies. The difference

is maximized (2.3%) when iref = 0 or 180 deg.

The relatively small difference in the accelerations

occurs because the coefficients of the modified HCW

equations differ only slightly from those of the HCW

equations. Because the time average of the gradient

of the J2 potential is used, the orbital period of the

reference orbit has been adjusted to match the period

of the satellite, and the reference orbit’s ascending

node is forced to move at the same speed as the

ascending node of the satellite’s orbit. Fig. 3 shows

the three-dimensional optimal trajectory in the LVLH

frame during the rendezvous. The square and circle

are used to show the initial and final relative position,

respectively. The narrow line is a trajectory with

the initial condition without consuming thrusts. The

solid line represents the optimal trajectory, which is

obtained from the analytic solutions ((4), (11), (12),

and (29)). After five periods, the deputy successfully

has a rendezvous with the chief. Fig. 4 shows the

difference between position vectors when the linear

dynamic model given in (1a)—(1c) is used; the position

vector given in Fig. 3 is subtracted from that obtained

when the thrust accelerations given by [14] have the

same initial conditions. Because the homogeneous

solutions are the same, this figure directly denotes

the difference between the two particular solutions.

The difference is getting larger, as expected. This

indicates that the effect of the J2 perturbation cannot

be ignored. An important feature is that there is

a large drift in the along-track (y) direction. This

results from the particular solution of the along-track

direction having a relatively large secular term,

namely, the t3 term in I5(t) in (40). Physically, the

J2 effect invokes a small relative tangential velocity

difference between the deputy and the chief satellites,

and it is magnified with time. Although this feature

captures the general behavior of the relative distance

in the presence of the J2 disturbance, the linear models

in [14] and in this paper tend to underestimate the

drift in the along-track direction. The initial conditions

for the free-orbit ellipse cancel the drift in the linear

model but not in the nonlinear model. Moreover,

the nonlinear gravity, which is not incorporated in

the linear model, amplifies the secular drift, yielding

drifts in the radial and cross-track directions. To

evaluate the underestimated amounts by either of

the two linear models, numerical simulations are

performed using the nonlinear model (~Fobl), including

J2 perturbations in

~Fobl =¡
¹

r3
~r¡¹J2R2e

·
3Z

r5
k̂+

μ
3

2r5
¡ 15z

2

2r7

¶
~r

¸
+ ~TECI

(42)
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Fig. 1. Thrust accelerations in each axis for rendezvous

maneuver with J2 perturbations during chief’s five orbital periods

(deputy’s initial ½0 and Á are chosen to be 2000 m and 45 deg).

Figure 3 shows three-dimensional optimal trajectory in LVLH

frame during rendezvous.

Fig. 2. Difference between thrust accelerations in Fig. 1 and

those calculated by [14] with no J2 perturbations.

where ~r = Xî+Yĵ+Zk̂ is the satellite position vector

in the Earth-centered inertial (ECI) frame and ~TECI
is the thrust acceleration obtained using the two

linear models (HCW equations used in [14] and the

linear dynamics model given here by (1a)—(1c)).

The thrust acceleration can be analytically calculated

in the LVLH coordinate using the results in this

paper or in [14] and can be converted to the value

in the ECI coordinate system. The nonlinear model

gives the absolute motion of satellite in the ECI

frame. The motion of satellite is then converted to

the LVLH coordinate. To check the accuracy of

our linear dynamic model and the linear dynamic

model in [14], the nonlinear model of (42) and the

two linear dynamic models are used to calculate the

satellite motions without the thrust acceleration. The

conditions of (41) are used as initial conditions for

the simulations. Here, ½0 and ' are chosen to be

2000 m and 45 deg, respectively. For the initial orbital

elements of the reference orbit, the semimajor axis is

7000 km; the mean eccentricity is 0; the inclination

varies from 0 to 90 deg; the other elements are set to

Fig. 3. Three-dimensional optimal trajectory of rendezvous in

LVLH frame when accelerations in Fig. 1 are applied with J2
perturbations.

Fig. 4. Difference between position vectors in Fig. 3 obtained in

this paper and position vectors obtained by thrust accelerations in

[14] for same rendezvous problem.

0. The satellite motions obtained from the nonlinear

model are compared to those from the two linear

models to check the accuracy of the two linear models

with respect to the nonlinear model. The orbit of the

satellite is numerically propagated for 12 h using the

nonlinear model in an ECI frame with J2 perturbation,

and then it is transformed into the LVLH frame.

Figure 5 demonstrates the root mean square

(RMS) of the position differences between the

two linear models and the nonlinear model after

the simulation time of 12 h. The RMS values of

each component are shown as the inclination of

the chief satellite varies. As expected, the drift in

the along-track direction (y-component) by both

linear models is dominant for most inclinations of

the satellite. The drift of the cross-track direction

(z-component) in the HCW linear dynamic model

cannot be ignored for lower inclinations, and it can

reach its maximum as the inclination goes to 0 deg.

For the rendezvous problem, the thrust acceleration

is analytically calculated using our results or those of

[14], and it is applied to the nonlinear dynamic model

given by (42). As the inclination of the chief satellite

varies, the numerical simulations are performed in

the same initial conditions and final conditions used
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TABLE I

Position Errors of Rendezvous Problem in Nonlinear Dynamic Model when Thrust Accelerations are used from this Paper (TJ2) and

[14] (THCW)

½ (m) x-axis (m) y-axis (m) z-axis (m)

i (deg) TJ2 THCW TJ2 THCW TJ2 THCW TJ2 THCW

0.1 60.32 146.77 ¡21:40 ¡12:85 37.19 116.39 ¡42:40 ¡88:48
5 68.09 154.87 ¡21:09 ¡12:63 49.01 127.07 ¡42:29 ¡87:62
15 90.58 169.62 ¡20:03 ¡12:33 77.68 148.22 ¡42:06 ¡81:55
25 118.65 181.08 ¡18:49 ¡12:21 109.51 166.46 ¡41:73 ¡70:22
35 147.52 188.18 ¡16:65 ¡12:30 140.67 179.61 ¡41:18 ¡54:78
45 172.77 190.06 ¡14:73 ¡12:58 167.34 186.02 ¡40:37 ¡36:90
55 190.78 186.21 ¡12:98 ¡13:02 186.23 184.81 ¡39:34 ¡18:69
65 199.06 176.53 ¡11:60 ¡13:56 195.00 175.99 ¡38:28 ¡2:41
75 196.46 161.47 ¡10:75 ¡14:13 192.56 160.55 ¡37:47 9.76

85 183.34 142.08 ¡10:52 ¡14:66 179.23 140.39 ¡37:13 16.17

89.9 173.54 131.46 ¡10:66 ¡14:90 169.17 129.52 ¡37:19 16.90

Note: The error varies with respect to the inclination of the chief satellite. ½ is the total absolute error of the final position, and the

x-, y-, and z-axes indicate the component in radial, along-track, and cross-track directions, respectively.

Fig. 5. Position errors of HCW linear model and linear dynamic

model (in [8]) used in this paper are numerically analyzed using

nonlinear dynamic model given in (42) without thrust acceleration.

Vertical axis is RMS of position error for simulation time of 12 h,

and horizontal axis is inclination of chief satellite. ½ is total

absolute error, and x-, y-, and z-axes note component in radial,

along-track, and cross-track directions, respectively.

for Figs. 1—4. The errors of final positions from the

numerical simulations are compared in Table I.

The error varies with respect to the inclination of

the chief satellite. In Table I, ½ is the total absolute

error of final position, and the x-, y-, and z-axes

indicate the component in radial, along-track, and

cross-track directions, respectively. For an inclination

of less than iref ¼ 54:735 deg, the thrust acceleration
(TJ2) that we calculated gives smaller errors of the

final position than those found when the thrust

acceleration (THCW) calculated in [14] is used. The

error of the final position by the thrust acceleration

in this paper is reduced by up to 59% of the error

yielded by the thrust acceleration in [14] as the

inclination of satellite approaches 0 deg. The reason

for this phenomenon results from the linear dynamic

model used to establish the thrust acceleration. As

shown in Fig. 5, dynamic errors from the linear

dynamic model used in this paper are less than

the dynamic errors from the linear dynamic model

used in [14] when the inclination is less than iref ¼
54:735 deg. The J2 perturbations yield stronger effects

near the bulge of Earth, which means small orbital

inclinations. Hence, when the orbital inclination

of the satellite is small, our dynamic model would

be more accurate than the HCW dynamic model

in [14]. Consequently, our dynamic model gives

more accurate results in control simulation at small

inclinations. However, the trend is reversed for the

inclination larger than iref ¼ 54:735 deg. Hence, it is
found that the accuracy of thrust acceleration depends

on the accuracy of the linear dynamic model used

to analytically calculate the thrust acceleration. The

relative orbital dynamics in (1a)—(1c) under the J2
disturbance used in this paper is different from that in

the HCW equations used in [14]. Our relative orbital

dynamics contains some parameters, such as s, c,

q, and l, that are determined by the inclination iref
and the radius rref of the reference orbit. When s=0,

where s= (3J2R
2
e =8r

2
ref)(1+3cos2iref), the in-plane

motion of the dynamics is the same as that of the

HCW equations. Therefore, when iref ¼ 54:735 or
125.265 deg, which implies s= 0, the solutions of

optimal trajectory using the two dynamics become

the same. In addition, the solutions from the two

dynamics have the largest differences when iref = 0 or

180 deg, which implies that s has the maximum value.

As a second simulation, the deputy satellite, which

is initially placed in a free-orbit ellipse, resizes its

configuration twice; that is, in (41), ½0 is chosen to be

2000 m at first and increases into 4000 m in the end.

The phase angle Á is 45 deg for both the initial and
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Fig. 6. Thrust accelerations in each axis for formation

reconfiguration maneuver during chief’s five orbital periods.

Figure 8 shows three-dimensional optimal trajectory in LVLH

frame during reconfiguration.

Fig. 7. Difference between thrust accelerations in Fig. 6 and

those calculated by [14] with no J2 perturbations.

the final conditions. For the formation reconfiguration,

the initial conditions are x= 707:1 m, _x= 0:7615 m/s,

y = 1414:2 m, _y =¡1:525 m/s, z = 1414:2 m, and
_z = 1:526 m/s; the final conditions are x= 1414:2 m,
_x= 1:523 m/s, y = 2828:4 m, _y =¡3:050 m/s, z =
2828:4 m, and _z = 3:053 m/s. The maneuver time is

five periods of the reference orbit.

Figure 6 shows thrust accelerations in each axis

during the maneuver. Tx and Tz are sinusoidal, but

Ty slightly decreases with oscillations in this case

because the sign of T1 (or ¸5) in (38) is positive. The

total simulation time in the Figs. 6—9 is the chief

satellite’s five orbital periods. Figure 7 shows the

difference between the thrust accelerations determined

from the analytic solutions in (38) and (27) here and

those given by [14], which uses the HCW equations

assuming no perturbations. They differ by about

5% in total thrust, and the difference grows smaller

with respect to time for every axis. The difference

of the accelerations is changed as the inclination of

reference orbit varies. The difference is maximized

(6.2%) when iref = 0 or 180 deg. Comparing the two

frequencies in the thrust accelerations for each axis,

we find that they differ slightly from each other, so

Fig. 8. Three-dimensional optimal trajectory of reconfiguration in

LVLH frame when accelerations in Fig. 6 are applied with J2
perturbations.

Fig. 9. Difference between position vectors in Fig. 8 obtained in

this paper and position vectors obtained by thrust accelerations in

[14] for same reconfiguration problem.

Fig. 7 represents a “beat”-like phenomenon. Figure 8

shows the three-dimensional optimal trajectory in the

LVLH frame during the resizing. The elements of the

figure are as explained previously for Fig. 3. After

the chief revolves five times, the deputy is placed at

the final desired state. Figure 9 shows the difference

between position vectors when the linear dynamic

model given in (1a)—(1c) is used; the position vector

given in Fig. 8 is subtracted from that obtained when

the thrust accelerations given by [14] with the same

initial conditions. The difference grows larger, which

indicates that the effect of the J2 perturbation cannot

be ignored. As in Fig. 4, there is a secular drift in the

along-track direction.

For the reconfiguration problem, the analytic

thrust accelerations from the two linear dynamic

models are applied to the nonlinear dynamic model

of (42). The results of the numerical simulations are

compared to the final positions of the reconfiguration

problem, as shown in Table II. As with the rendezvous

problem, for an inclination of less than iref ¼
54:735 deg, our calculated thrust acceleration gives

smaller errors of the final position than those found

when the thrust acceleration calculated in [14] is

used. The error of the final position by the thrust

acceleration in this paper is reduced by up to 25%
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TABLE II

Position Errors of Reconfiguration Problem in Nonlinear Dynamic Model when Thrust Accelerations are used from this Paper (TJ2) and

[14] (THCW)

½ (m) x-axis (m) y-axis (m) z-axis (m)

i (deg) TJ2 THCW TJ2 THCW TJ2 THCW TJ2 THCW

0.1 286.37 382.14 ¡66:75 ¡45:97 247.45 286.04 ¡127:75 ¡249:19
5 314.03 404.05 ¡66:73 ¡46:17 279.21 316.28 ¡127:29 ¡247:16
15 369.06 441.47 ¡65:22 ¡46:47 341.79 373.56 ¡123:00 ¡230:64
25 415.76 466.40 ¡61:90 ¡46:60 394.81 419.17 ¡114:68 ¡199:13
35 447.61 476.30 ¡57:18 ¡46:56 431.76 447.59 ¡103:31 ¡156:07
45 460.35 469.98 ¡51:63 ¡46:36 448.46 455.43 ¡90:25 ¡106:38
55 452.45 447.73 ¡45:92 ¡46:02 443.46 441.83 ¡77:12 ¡55:94
65 425.02 411.24 ¡40:74 ¡45:56 417.96 408.56 ¡65:53 ¡10:99
75 381.42 363.20 ¡36:72 ¡45:05 375.36 359.68 ¡56:89 22.73

85 326.73 307.08 ¡34:35 ¡44:52 320.69 301.07 ¡52:23 40.85

89.9 297.76 277.86 ¡33:88 ¡44:29 291.30 270.88 ¡51:58 43.24

Note: The error varies with respect to the inclination of the chief satellite. ½ is the total absolute error of the final position, and the

x-, y-, and z-axes indicate the component in radial, along-track, and cross-track directions, respectively.

of the error yielded by the thrust acceleration in [14]

as the inclination of the satellite approaches 0 deg.

However, the trend is reversed for the inclination

larger than iref ¼ 54:735 deg. As mentioned for the
rendezvous problem, this phenomenon results from

the approximations of linear dynamic models used to

calculate the analytic thrust acceleration.

Our analytic solution is a modification of

the solution given by [14] to adopt the J2 orbital

perturbations, but it has some drawbacks because of

the drawbacks of the modified dynamic model used

to derive the solution. The main drawback is that the

modified HCW equations presented by Schweighart

and Sedwick [8] are sensitive to initial conditions.

In the process of averaging the gradient of the J2
disturbance over one period, some information within

the orbital period is lost, so the appropriate initial

conditions are mandatory, and several coefficients

in the cross-track direction are obtained through

spherical geometry. Our optimal solution is as simple

as that given in [14]; it must be more accurate even in

the presence of the J2 potential disturbance when the

inclination of satellites in formation flying is less than

54.735 deg. For the maneuvers treated in this study,

the magnitude of the thrust accelerations is no larger

than about 1:5£10¡4 N/kg. This order of magnitude
is easily achieved by current engine technology.

Thus, the results in this study can be utilized for the

relative maneuvers. To extend the applications, it is

challenging to evaluate analytic solutions for bounded

thrust. This is beyond the scope of this study, and we

plan to address this problem in a future study.

VI. CONCLUSIONS

We derive novel closed-form solutions to the

optimal reconfiguration of satellites flying in a

formation under the J2 perturbation. Our procedure

to obtain the analytic solution is similar to that in

[14]. However, we use a different dynamic model

to include the J2 orbital perturbations and obtain an

analytic solution that has been modified appropriately.

The thrust accelerations are low level, continuous,

and of variable magnitude. For the given initial

and desired relative states of a satellite under the J2
disturbance, we immediately generate an appropriate

thrust acceleration and reconfiguration trajectory in a

completely analytic method. With the analytic solution

obtained in this paper, a reconfiguration controller

can be easily designed to relocate the satellites into

desired states even when the J2 disturbance cannot

be ignored. The numerical simulations show the

difference between our solution and those given in the

previous research, assuming no perturbation. For an

inclination of less than iref ¼ 54:735 deg, the thrust
acceleration calculated in this paper gives smaller

errors of the final position than those found when the

thrust acceleration calculated in [14] is used. Thus,

our solutions can be applied to any linear relative

motions of a satellite with an inclination of less than

iref ¼ 54:735 deg to improve the results by including
the J2 perturbations. This analytic solution can be

employed in preliminary analysis as a more practical

tool, used as an initial approximation for finding an

exact solution, and used as a base at early stages of

space mission design.
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