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Abstract The current paper presents simple and general analytic solutions to the op-
timal reconfiguration of multiple satellites governed by a variety of linear dynamic
equations. The calculus of variations is used to analytically find optimal trajectories
and controls. Unlike what has been determined from previous research, the inverse of
the fundamental matrix associated with the dynamic equations is not required for the
general solution in the current study if a basic feature in the state equations is met.
This feature is very common due to the fact that most relative motion equations are
represented in the LVLH frame. The method suggested not only reduces the amount
of calculations required, but also allows predicting the explicit form of optimal solu-
tions in advance without having to solve the problem. It is illustrated that the optimal
thrust vector is a function of the fundamental matrix of the given state equations,
and other quantities, such as the cost function and the state vector during the recon-
figuration, can be concisely represented as well. The analytic solutions developed in
the current paper can be applied to most reconfiguration problems in linearized rela-
tive motions. Numerical simulations confirm the brevity and accuracy of the general
analytic solutions developed in the current paper.
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1 Introduction

Satellite formation flying is used when a group of satellites need to perform a unified
space mission together. Many future space missions will necessitate the use of for-
mation flying technology for multiple satellites. Among the technologies associated
with satellites in a formation, a fuel-optimal reconfiguration (relocation) problem is
of great concern, as it is directly related to the traditional rendezvous problem. Vari-
ous researchers have investigated this problem extensively. Yang et al. [1] developed
a hybrid optimization algorithm to employ a distributed computational architecture.
As well, Kong and Miller [2] used the calculus of variations approach to handle the
traditional rendezvous problem. Richards et al. [3] proposed the use of Mixed In-
teger Linear Programming (MILP) techniques to find a solution in the presence of
avoidance constraints. Campbell [4] presented an algorithm for the reconfiguration
problem based upon Hamilton-Jacobi-Bellman optimality to generate a set of ma-
neuvers to move from an initial stable formation to a final stable formation. Aoude
et al. [5] presented a two-stage path planning technique for designing reconfigura-
tion maneuvers with various path constraints. They combined a Rapidly-exploring
Random Trees (RRT) algorithm with a Gauss pseudospectral method. These studies
mentioned have utilized numerical methods. Compared to analytic methods, these
numerical methods allow us to conduct more accurate and practical analyses. How-
ever, it is necessary for analytic solutions to be found because they provide insight
into the feedback controller, and thus they are easily applied to formation flying, if
they can be uncovered. Also, for the actual on-board control system, it is preferable
to have analytic solutions since they significantly reduce the computational loads. In
addition, a use of analytic solutions makes it possible to distinguish the other dif-
ferent perturbations, thus providing an opportunity to make a smart decision about
which perturbations are responsible for the different phenomena [6]. Vaddi et al. [7]
proposed an analytic two-impulse solution using Gauss’s variational equations. This
algorithm is based on the circular reference orbit described by the Hill-Clohessy-
Wiltshire (HCW) equations [8]. Palmer [9] presented an elegant analytic solution
for the problem by representing the continuous and variable thrust acceleration in a
Fourier series with a period equal to the maneuver time. He used the Parseval’s theo-
rem [10] to make the infinite sum into a closed form. However, this analytic solution is
limited to formation flying in only a circular or near-circular orbit because the HCW
equations are used. Using a similar approach, Cho et al. [11] extended the previous
result and obtained a solution to general-elliptic-orbit cases. In [11], the Tschauner-
Hempel (TH) equations [12] were used to describe relative motion in an eccentric
orbit and its fundamental matrix given by Yamanaka and Ankersen [13] was used.
Scott and Spencer [14] chose the calculus of variations to obtain an analytic solution.
They brought in the adjoint system to find an optimal thrust vector. This solution ap-
plies only to circular-reference-orbit case. Sharma et al. [15] solved the problem for
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non-zero eccentricity, and also included the effects of nonlinear differential gravity.
As shown by the results of the studies in [9, 11, 14, 15], the solutions need the inverse
of the fundamental matrix; consequently, it is very difficult to get an analytic solution.
Hence, it is very challenging to overcome this difficulty and simplify the procedure
in order to get the analytic solutions.

In the current paper, the fuel-optimal reconfiguration problem is analytically
solved for the general linear system with quadratic cost assuming unbounded low-
thrust burn throughout the transfer time. The calculus of variations approach is used,
as proposed by Refs. [14, 15]. But unlike these previous studies, the analytic solu-
tion in the current paper does not require calculating the inverse of the fundamental
matrix associated with the given state equations, but instead it shows that the opti-
mal thrusts (i.e. solutions) are the functions of this original fundamental matrix. The
method proposed in the current study significantly reduces calculations and read-
ily applies to general linear cases. Once dynamic equations that can be analytically
solved are given, the optimal solutions are immediately found by the succinct and
elegant method suggested in the current study. Furthermore, the state vector as well
as the cost function for desired configuration also can be analytically obtained.

The analysis in the current paper is summarized as follows. In Sect. 2, a basic
feature in state equations is figured out, which appears frequently in many linearized
relative equations of motion. The reason of this characteristic is also explained. In
Sect. 3, with this feature having been mentioned in Sect. 2, it is illustrated that the
optimal control vector is generally a function of the fundamental matrix associated
with the given state equations, and the inverse of this fundamental matrix is not gen-
erally required for the analytic optimal solution. Compared to previous researches
[9, 11, 14, 15], the method proposed in the current paper not only reduces the amount
of calculations, but also makes it possible to extract the explicit form of the optimal
solution in advance without solving the problem. In Sect. 4, the solutions obtained are
applied to fuel-optimal reconfiguration in a circular orbit. This verification demon-
strates the brevity of the method and the accuracy of the analytic solution presented
in the current paper. The conclusions are discussed in Sect. 5.

2 Basic Characteristic in the Satellite Relative Motions

Satellite formation flying consists of a group of satellites working together to perform
a unified space mission. There are two kinds of satellites in the artificial formation
flying. The main one is called the chief satellite, and the others are the deputy satel-
lites. The deputy satellites surround the central chief satellite. The orbit of the chief is
defined as the reference orbit, whereas the deputies revolve along an orbit that is rela-
tive to the reference orbit. The dynamics of relative motion should be known exactly
in order to describe the relative motion and to perform reconfiguration maneuvers in
formation flying. In an inertial coordinate, the relative motion between a chief and
its deputies is considered rather than the separate motion of each satellite. For this
reason, a reference orbit is needed to appropriately express the relative motion. The
local vertical, local horizontal (LVLH) reference coordinate is used as one of the ro-
tating reference coordinates. The origin of the LVLH coordinate is the position of
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the chief. The x(t) axis lies in the radial direction, the y(t) axis is in the along-track
direction, and the z(t) axis along the orbital angular momentum vector completes a
right-handed coordinate system. Relative position vector r = [x y z]T and relative
velocity vector v = [ẋ ẏ ż]T are defined as the difference of position and velocity
between the chief and deputy, respectively. Linearized equations of relative motion
have been introduced in many literatures.

Before deriving general analytic solutions, the dynamics of linearized relative mo-
tions is reviewed in this section. A certain basic feature is found in many equations
of relative motion. It is also shown that this characteristic is naturally implicated in
the relative motions. The insight into the basic characteristic is used to derive general
analytic solutions in the next section. For some cases, the fundamental matrices asso-
ciated with given state equations are also provided in this section. The fundamental
matrix is used to establish analytic solutions to the given system.

Let us consider general 3-dimensional state equations for linear, time, or any other
independent variable-varying systems which are of this form:

ξ ′(α) = A(α)ξ(α) + B(α)u(α), (1)

where α is used as an independent variable and the prime (′) represents differentiation
with respect to α. In addition, v = r ′, ξ = [rT vT]T, u(α) is a 3 × 1 control vector
(either actual or pseudo), and

A(α) =
[

03×3 I3×3

A1(α) A2(α)

]
, B(α) =

[
03×3

b(α)I3×3

]
. (2)

For simpler calculations, a basic feature in the state equations is set:

The matrices A1(α) and A2(α) are related by A1(α) − AT
1 (α) = A′

2(α).

This feature also indicates that the matrix A2(α) is skew-symmetric; that is, AT
2 (α) =

−A2(α). In the event that the matrix A2(α) is constant, the matrix A1(α) is symmet-
ric; that is, AT

1 (α) = A1(α). This feature may seem very limited, or that it can only
be applied to special cases; however, many linearized equations that describe relative
motion satisfy this feature. The following seven examples guarantee this assertion.

Example 2.1 First, the well-known HCW equations [8] for circular reference orbit
and nonperturbative relative motions are:

[
ṙ

v̇

]
=

[
03×3 I3×3

A1 A2

][
r

v

]
, (3)

where

A1 =
⎡
⎣

3n2 0 0

0 0 0

0 0 −n2

⎤
⎦ , A2 =

⎡
⎣

0 2n 0

−2n 0 0

0 0 0

⎤
⎦ , (4)

where n is the constant mean motion of the reference orbit. It is self-evident that A2
is constant as well as skew-symmetric and that A1 is symmetric. The fundamental
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matrix associated with the HCW equations is given by [16]:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 − 3 cosnt 0 0 1
n

sinnt 2
n
(1 − cosnt) 0

6(sinnt − nt) 1 0 2
n
(cosnt − 1) 4

n
sinnt − 3t 0

0 0 cosnt 0 0 1
n

sinnt

3n sinnt 0 0 cosnt 2 sinnt 0

6n(cosnt − 1) 0 0 −2 sinnt 4 cosnt − 3 0

0 0 −n sinnt 0 0 cosnt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Example 2.2 The Schweighart and Sedwick model [17], which modifies the HCW
equations in order to include the second zonal harmonic J2 effect, has the following
homogeneous form: [

ṙ

v̇

]
=

[
03×3 I3×3

A1 A2

][
r

v

]
,

where

A1 =
⎡
⎣

(3 + 5s)n2 0 0

0 0 0

0 0 −q2

⎤
⎦ , A2 =

⎡
⎣

0 2n
√

1 + s 0

−2n
√

1 + s 0 0

0 0 0

⎤
⎦ . (6)

Here, n,q , s are all constants that are outcomes of the J2 effects on the reference orbit
and the deputy’s orbit. The Schweighart and Sedwick model also satisfies the basic
feature. The fundamental matrix associated with this model is calculated by using the
following equation:

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−s

[
4(1 + s)

−(3 + 5s) cosγ t

]
0 0 1

n
√

1−s
sinγ t 2

√
1+s

n(1−s)
[1 − cosγ t] 0

2
√

1+s(3+5s)

(1−s)
√

1−s
[sinγ t − γ t] 1 0 2

√
1+s

n(1−s)
[cosγ t − 1] 1

1−s

[ 4(1+s)

n
√

1−s
sinγ t

−(3 + 5s)t

]
0

0 0 cosqt 0 0 1
q

sinqt

n(3+5s)√
1−s

sinγ t 0 0 cosγ t 2
√

1+s√
1−s

sinγ t 0

2n
√

1+s(3+5s)
1−s

[cosγ t − 1] 0 0 − 2
√

1+s√
1−s

sinγ t 1
1−s

[
4(1 + s) cosγ t

−(3 + 5s)

]
0

0 0 −q sinqt 0 0 cosqt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

where γ
�= n

√
1 − s.

Example 2.3 The Ross model [18] is also a linearized model that shows relative
motion in the presence of the J2 disturbance in a circular reference orbit, and it has
the following matrices A1(t) and A2:

[
ṙ

v̇

]
=

[
03×3 I3×3

A1 A2

][
r

v

]
,
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where

A1 = −(K + P(t)), A2 = −C,

K =
⎡
⎣

−3n2 0 0

0 0 0

0 0 n2

⎤
⎦, C =

⎡
⎣

0 −2n 0

2n 0 0

0 0 0

⎤
⎦,

P (t) = n2JR

⎡
⎣

12 sin2 i sin2 nt − 4 −4 sin2 i sin 2nt −4 sin 2i sinnt

−4 sin2 i sin 2nt 1 + sin2 i(2 − 7 sin2 nt) sin 2i cosnt

−4 sin 2i sinnt sin 2i cosnt 3 − sin2 i(2 + 5 sin2 nt)

⎤
⎦,

(8)
where n and i are the constant mean motion and inclination of a reference orbit,

respectively, and JR
�= 3J2R

2
e

2R2
0

. Re is the mean radius of the Earth, and R0 is a constant

radius of a reference orbit. Then, A1 is symmetric, and A2 is constant as well as
skew-symmetric.

Example 2.4 To describe the relative motion in elliptic orbits, the Tschauner-Hempel
(TH) equations [12] are used:

⎡
⎣

ẍ

ÿ

z̈

⎤
⎦ = −2

⎡
⎣

0 −θ̇ 0

θ̇ 0 0

0 0 0

⎤
⎦

⎡
⎣

ẋ

ẏ

ż

⎤
⎦ −

⎡
⎣

−θ̇2 0 0

0 −θ̇2 0

0 0 0

⎤
⎦

⎡
⎣

x

y

z

⎤
⎦

−
⎡
⎣

0 −θ̈ 0

θ̈ 0 0

0 0 0

⎤
⎦

⎡
⎣

x

y

z

⎤
⎦ + ρ(θ)3

	4

⎡
⎣

2x

−y

−z

⎤
⎦ +

⎡
⎣

Tx

Ty

Tz

⎤
⎦. (9)

In this equation, θ(t) and e refer to the true anomaly and the eccentricity of the

chief’s orbit; respectively, ρ(θ)
�= 1 + e cos θ and 	

�= h3/2/GM are defined, where
h is the magnitude of the orbital angular momentum of the chief satellite, G is the
universal gravitational constant, and M is the mass of the central body: Earth. The
dot (·) represents the differentiation with respect to time (t), and it is assumed that
the unconstrained thrust vector [Tx(t) Ty(t) Tz(t)]T can be continuously applied in
the desired directions during the maneuver. For brevity, when changing the indepen-
dent variable from time t to true anomaly θ , the following transformation is consid-
ered:

[ x̃ ỹ z̃ ]T = θ̇1/2 [x y z ]T ,

ũ = [ ũx ũy ũz ]T = [Tx Ty Tz ]T /θ̇3/2.

The tildes are used to represent pseudovalues. For a completely analytic analysis, the
TH equations are transformed into (10). Use of the same procedure as that derived
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by Humi [19] makes (9) very simple,

ξ̃ ′ = Ã(θ)ξ̃ + B̃(θ)ũ.

In this equation, the prime (′) represents differentiation with respect to true anomaly
and

ξ̃ = [ r̃T ṽT ]T = [ x̃ ỹ z̃ x̃′ ỹ′ z̃′ ]T ,

Ã(θ) =
[

03×3 I3×3

Ã1 Ã2

]
, B̃ =

[
03×3

I3×3

]
,

Ã1 =
⎡
⎣

3/ρ 0 0

0 0 0

0 0 −1

⎤
⎦ , Ã2 =

⎡
⎣

0 2 0

−2 0 0

0 0 0

⎤
⎦ .

(10)

It is found that the TH equations [12] are nonautonomous [20], but they also sat-
isfy the basic feature. It is noticed that Ã2 is constant and skew-symmetric and that
Ã1(θ) is symmetric. Yamanaka and Ankersen [13] provide the fundamental matrix
associated with the matrix Ã,

�̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −c 0 −s 3es
 − 2 0

1 s(1 + 1/ρ) 0 −c(1 + 1/ρ) 3ρ2
 0

0 0 c/ρ 0 0 s/ρ

0 −c′ 0 −s′ 3e(s′
 + s/ρ2) 0

0 2c − e 0 2s 3(1 − 2es
) 0

0 0 −s/ρ 0 0 c/ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

In this equation, s
�= ρ sin θ , c

�= ρ cos θ , and



�= 1

	2
(t − t0) =

∫ θ

θ0

1

ρ(ϕ)2
dϕ,

where t0 and θ0 are the time and true anomaly when thrusters start to fire.

Example 2.5 Théron et al. [21] modified the TH equations [12] in order to take into
account the J2 effect for an elliptic reference orbit, which has the following form:

[
ṙ

v̇

]
=

[
03×3 I3×3

A1 A2

][
r

v

]
,
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where

A1 = − n2ρ3(θ)

(1 − e2)3

⎡
⎣

−3 − e cos θ 2e sin θ 0

−2e sin θ −e cos θ 0

0 0 1

⎤
⎦ + kJ2

n2ρ5(θ)

(1 − e2)5

×
⎡
⎣

4 − 12 sin2 i sin θ̃ 8 sin2 i sin θ̃ cos θ̃ 8 sin i cos i sin θ̃

8 sin2 i sin θ̃ cos θ̃ 4 − 7 sin2 i cos2 θ̃ − 5 cos2 i −2 sin i cos i cos θ̃

8 sin i cos i sin θ̃ −2 sin i cos i cos θ̃ 4 − 7 cos2 i − 5 sin2 i cos2 θ̃

⎤
⎦ ,

A2 = − nρ2(θ)

(1 − e2)3/2

⎡
⎣

0 2 0

−2 0 0

0 0 0

⎤
⎦ .

(12)
Here, e, n, θ , i are the eccentricity, mean motion, true anomaly, and inclination of the

reference orbit, respectively. In addition, kJ2

�= 3
2J2(

Re

a
)2 and θ̃

�= ω + θ are defined,
where Re is the mean radius of the Earth, and a and ω are the semimajor axis and
the argument of the perigee of the reference orbit, respectively. It can be shown that
A1 − AT

1 = Ȧ2.

Example 2.6 The sixth example is that of the linearized equations including quadratic
atmospheric drag proposed by Carter and Humi [22]. They use normalized units and
the independent variable is the true anomaly of the reference orbit. A simple version
of these equations has the following form:[

r ′

v′

]
=

[
03×3 I3×3

A1 A2

][
r

v

]
, v = r ′,

and

A1 =
⎡
⎣

3(1 + 4χ2) 0 0

0 0 0

0 0 −1

⎤
⎦ , A2 =

⎡
⎣

0 2 0

−2 0 0

0 0 0

⎤
⎦ , (13)

where χ is a constant, including drag and the geometry of the satellite. Also, A1 is
symmetric and A2 is a constant and skew-symmetric matrix. The fundamental matrix
associated with these equations is

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1−12χ2

[
4 − 3(1 + 4χ2) cos γ̃ θ

]
0 0 1√

1−12χ2
sin γ̃ θ 2

1−12χ2 [1 − cos γ̃ θ ] 0

6(1+4χ2)

(1−12χ2)

√
1−12χ2

[sin γ̃ θ − γ̃ θ ] 1 0 2
1−12χ2 [cos γ̃ θ − 1] 1

1−12χ2

⎡
⎣

4√
1−12χ2

sin γ̃ θ

−3(1 + 4χ2)θ

⎤
⎦ 0

0 0 cos θ 0 0 sin θ

3(1+4χ2)√
1−12χ2

sin γ̃ θ 0 0 cos γ̃ θ 2√
1−12χ2

sin γ̃ θ 0

6(1+4χ2)

1−12χ2
[
cos γ̃ θ − 1

]
0 0 − 2√

1−12χ2
sin γ̃ θ 1

1−12χ2

[
4 cos γ̃ θ

−3(1 + 4χ2)

]
0

0 0 − sin θ 0 0 cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)

where γ̃
�= √

1 − 12χ2.
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Example 2.7 Luquette and Sanner [23] proposed relative motion equations based on
restricted three-body dynamics, which are not limited to circular cases and have the
following form: [

ṙ

v̇

]
=

[
03×3 I3×3

A1 A2

][
r

v

]
,

where

A1 = −(c1 +c2)I3×3 +3c1r̂E(t)r̂T
E(t)+3c2r̂S(t)r̂T

S (t)+Ẇ −W 2, A2 = −2WT.

(15)
Here, r̂E(t) is the unit vector from the Earth to the chief satellite in the rotating frame,
r̂S(t) is the unit vector from the Sun to the chief satellite in the rotating frame, and

c1 = GME

‖rE‖ , c2 = GMS

‖rS‖ , W =
⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ ,

where G is the gravitational constant, and ME and MS are the masses of the Earth
and the Sun, respectively. The rotating frame is rotating with respect to the inertial
frame at the angular velocity [ωx ωy ωz]T. It is not difficult to show that the matrices
A1 and A2 satisfy the feature mentioned.

Up to this point in the current study, some famous linearized equations have been
provided, which describe the relative motion in various circumstances. Why is this
characteristic so common in many cases of relative motion? This is related to the fact
that relative equations are generally represented in the LVLH (Local Vertical, Local
Horizontal) frame. For brevity, let us consider an autonomous system [20]. The well-
known transformation to obtain the acceleration relative to the rotating LVLH frame
is [16]:

(δr̈)R = δr̈ − 2ω × (δṙ)R − ω̇ × δr − ω × (ω × δr) (16)

where the acceleration (δr̈)R is relative to a rotating observer fixed in the LVLH
frame, and δr̈ is the relative acceleration to an observer in an inertial frame. It is well
known that the cross product is equivalent to the skew-symmetric matrix multiplica-
tion; that is, for an arbitrary 3 × 1 vector a = [ax ay az]T and angular velocity vector
of the LVLH frame ω = [ωx ωy ωz]T,

ω × a = Wa =
⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ [ax ay az ]T (17)

holds, and the matrix W is skew-symmetric. In addition, we linearize δr̈ about the
reference orbit r∗(t); then:

δr̈ = G(r∗)δr. (18)

Here, the symmetric matrix G(r) is calculated by [16],

G(r) = ∂g(r)

∂r
,
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where the gravitational acceleration g(r), a conservative force field, comes from the
original equations of motion,

r̈ = g(r).

Then, (16) can be newly represented in a matrix form,

(δr̈)R = Gδr − 2W(δṙ)R − Ẇδr − W 2δr

= (G − W 2 − Ẇ )δr − 2W(δṙ)R. (19)

It is noted that G and W 2 are symmetric and that W and Ẇ are skew-symmetric.
Equation (19) is a linearized equation of relative motion, so the matrices A1 and A2
can be defined as

A1
�= G − W 2 − Ẇ , A2

�= −2W. (20)

From (20), the following relationship is obtained:

A1 − AT
1 = −ȦT

2 = Ȧ2. (21)

Equation (21) is exactly the same as the basic feature, and this is why the feature
appears frequently in linearized relative motions.

3 General Analytic Solutions to the Fuel-Optimal Reconfiguration Problems in
Relative Motions

In this section, the analytic solutions are obtained for general fuel-optimal reconfig-
uration problems in relative motions. The basic feature in linearized relative motions
mentioned in Sect. 2 is also used in the procedure. The general solutions provide an-
alytic control history and analytic history of state variables, as well as cost function
value. The objective is to minimize the fuel consumption during the reconfiguration;
therefore, (1) is generally used as the state equation, and a cost function can be set as

J = k2

2

∫ αf

α0

{f (β)}2uTudβ, (22)

where k and f are a constant and a function, both of which are dependent on the
given problem; α0 and αf are the moments when thrusters start to fire and turn off,
respectively. β is used as an integration variable, and the Hamiltonian function is
defined as

H
�= k2

2
{f (α)}2 uTu + λT

r v + λT
v (A1r + A2v + b(α)u).

If we define the adjoint vector by

λ
�=

[
λr

λv

]
, (23)



J Optim Theory Appl (2009) 141: 495–512 505

then the following equations must be satisfied for the optimality conditions [24]:

λ′T = −∂H

∂ξ
,

∂H

∂u
= 0. (24)

For the system in this section, (24) yields

λ′
r = −AT

1 λv, λ′
v = −AT

2 λv −λr = A2λv −λr, u = − 1

k2

b(α)

{f (α)}2
λv. (25)

Here, the previous feature is used. Then, the state and adjoint equations are

⎡
⎢⎢⎢⎣

r ′

v′

λ′
r

λ′
v

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

03×3 I3×3 03×3 03×3

A1 A2 03×3 − 1
k2

{
b(α)
f (α)

}2
I3×3

03×3 03×3 03×3 −AT
1

03×3 03×3 −I3×3 A2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

r

v

λr

λv

⎤
⎥⎥⎥⎦. (26)

It is assumed that the fundamental matrix (�) of the state equations (see (1)) is al-
ready known. The fundamental matrix (�) has generally the following form:

� =
[

�A

�′
A

]
,

where both �A and �′
A are 3 × 6 matrices. Then, from (25) and the basic feature

mentioned in Sect. 2,

λ′′
v = A′

2λv + A2λ
′
v − λ′

r = A2λ
′
v + A1λv. (27)

It is noticed that λv and λ′
v have � as their fundamental matrix, which is also the

fundamental matrix of r and r ′, because r ′′ = A2r
′ + A1r , as shown in (1) and (2)

without a control vector. Then,

λv = �A�0, λ′
v = �′

A�0, (28)

where �0 is a 6×1 constant matrix determined by the boundary condition at α = αf .
Then, when substituting (28) into (25), the result is:

λr = A2λv − λ′
v = (A2�A − �′

A)�0. (29)

In sum, the fundamental matrix associated with the adjoint system is given by:

� =
[

A2�A − �′
A

�A

]
�=

[
�B

�A

]
. (30)

Since A2,�A, �′
A are already known, the fundamental matrix � is easily obtained.

Then,

�T� = [−�T
AA2 − �′T

A �T
A ]

[
�A

�′
A

]
= −�T

AA2�A − �′T
A �A + �T

A�′
A

= �T
A�′

A − (�T
A�′

A)T − �T
AA2�A = C, (31)
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where C is a constant matrix [25]. It is noted that, since �T
A�′

A − (�T
A�′

A)T and
�T

AA2�A are skew-symmetric, C is also skew-symmetric. Therefore, all diagonal
elements are zero, and only lower or upper triangular elements are needed. The matrix
C can be analytically obtained from (31) or inserting any value of α, for example
α = 0, yields the same results because C is constant and independent of α. Once the
matrix C is determined from (31), then the inverse of � is readily obtained,

�−1 = C−1�T = C−1 [�T
B �T

A ] . (32)

The optimal thrust functions are from (25):

u(α) = − 1

k2

b(α)

{f (α)}2
λv = − 1

k2

b(α)

{f (α)}2
�A�0. (33)

The solutions are functions of the upper half of the fundamental matrix, which is
needed only to determine a constant matrix �0. The solution of (1) is [26]:

ξ(α) = �(α)�−1(α0)ξ(α0) + �(α)

∫ α

α0

�−1(β)B(β)u(β)dβ. (34)

Considering (32) and (33), the function in the integration becomes

�−1Bu = C−1 [�T
B �T

A ]

[
03×3

b(α)I3×3

](
− 1

k2

)
b(α)

{f (α)}2
�A�0

= − 1

k2
C−1

({
b(α)

f (α)

}2

�T
A�A

)
�0. (35)

By substituting (35) into (34), and setting α = αf , the 6 × 1 matrix �0 is calculated
as follows:

�0 = −k2S−1
f CK, (36)

where

S(α)
�=

∫ α

α0

{
b(β)

f (β)

}2

�T
A�Adβ, Sf

�= S(αf ), K = �−1
f ξf − �−1

0 ξ0,

(37)

where ξ0
�= ξ(α0), ξf

�= ξ(αf ), the subscripts 0 and f refer to the values at α = α0
and α = αf , respectively. It is noted that the 6 × 6 matrix S is symmetric. Then,
the cost function (22) can be simplified because of the constant matrix K and the
definition of Sf ,

J = k2

2

∫ αf

α0

{f (β)}2uTudβ = k2

2

∫ αf

α0

{
b(β)

f (β)

}2

KTCTS−1
f �T

A�AS−1
f CKdβ

= k2

2
KTCTS−1

f CK. (38)

In sum, the optimal thrust vector is a function of the upper half (�A) of the funda-
mental matrix associated with the state equations and its inverse is not needed. All
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results are represented succinctly in the following form:

S(α) =
∫ α

α0

{
b(β)

f (β)

}2

�T
A�Adβ, K = �−1

f ξf − �−1
0 ξ0,

u(α) = b(α)

{f (α)}2
�AS−1

f CK, J = k2

2
KTCTS−1

f CK, (39)

ξ = �(�−1
0 ξ0 + C−1SS−1

f CK)

where � = [ �A

�′
A

]
, C = �T

A�′
A − (�T

A�′
A)T −�T

AA2�A, and Sf = S(αf ). The initial
(ξ0) and final (ξf ) states are given, and K is defined in (37). K contains the inverse
of the fundamental matrix (�), but both �0 and �f are constant so their inverses
are easily evaluated. Since the fundamental matrix (�) has already been revealed, the
symmetric matrix S is readily calculated, and the constant matrix C is given in (31).
Then, the cost function, J , the optimal control vector, u, and the state variables dur-
ing the reconfiguration, ξ , can be solved in a completely analytic way. In previous
research studies conducted [14, 15], S contains the inverse of the fundamental matrix
associated with the original system, which makes the required computations much
more complex. Furthermore, (39) in the current study reveals the fact that the optimal
control vector is a function of the fundamental matrix so the form of solutions can
be established without time-consuming calculations, while previous results [15] do
not present explicit forms of the solutions due to the complexity of the inverse of the
fundamental matrix. Equation (39) yields exactly the same results obtained in [9],
which will be shown in Sect. 4.

4 Application and Verification of the General Solutions

In this section, as an example, the general solution derived in Sect. 3 is applied to
fuel-optimal reconfiguration in a circular orbit. This example illustrates that the gen-
eral solutions obtained in the current study can be readily applied to many relative
motions. A fuel-optimal reconfiguration problem in circular orbits is the first case in
Sect. 2. Therefore, the state equations and the fundamental matrix in Sect. 2 are used
for this example. In this case, the independent variable is time and b(t) = 1. The cost
function is set as:

J = 1

2

∫ tf

0
uTudτ, (40)

so k = 1 and f (t) = 1. The fundamental matrix associated with the HCW equations
is well known [16] and also given in (5). Then, from (39),

S =
∫ t

0
�T

A�Adτ, K = �−1
f ξf − �−1

0 ξ0,

u(t) = �AS−1
f CK, J = 1

2
KTCTS−1

f CK,

ξ =
[

r

v

]
= �(�−1

0 ξ0 + C−1SS−1
f CK).

(41)
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In this case, a skew-symmetric constant matrix C is

C = �T
A�̇A − (�T

A�̇A)T − �T
AA2�A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2n 0 1 0 0

2n 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

In addition, the symmetric matrix S is

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 0 S14 S15 0

S21 S22 0 S24 S25 0

0 0 S33 0 0 S36

S41 S42 0 S44 S45 0

S51 S52 0 S54 S55 0

0 0 S63 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)

and each element is

S11 = 13

2n2
t − 8

n3
sinnt + 3

4n3
sin 2nt,

S12 = S21 = 3

n
t2 − 6

n2
t sinnt − 3

2n3
cos 2nt,

S14 = S41 = 1

4n2
(16 cosnt − 3 cos 2nt),

S15 = S51 = −11

n
t + 14

n2
sinnt − 3

2n2
sin 2nt,

S22 = 14

n2
t − 32

n3
sinnt + 3t3 − 3

n3
sin 2nt + 24

n2
t cosnt,

S24 = S42 = 6

n
t cosnt + 5

n
t − 8

n2
sinnt − 3

2n2
sin 2nt,

S25 = S52 = −9

2
t2 + 12

n
t sinnt + 4

n2
cosnt + 3

n2
cos 2nt,

S33 = − 1

4n3
(sin 2nt − 2nt), S36 = S63 = 1

4n2
cos 2nt,

S44 = 5

2
t − 3

4n
sin 2nt, S45 = S54 = 3

n
cosnt (cosnt − 2) ,

S55 = 1

n
(19nt − 24 sinnt + 3 sin 2nt), S66 = 1

4n
(2nt + sin 2nt).

(44)

The results, such as the optimal control vector u, the cost function J , and the state
variables during the maneuver ξ , are exactly the same as (30), (34)–(36), (44), (45),
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(49)–(51) in [9]. Thus, it is shown that the general analytic solutions in the current
paper can easily lead to the solutions found in previous literature.

As an example, the same problem as in [9] is considered. The chief satellite moves
in a circular orbit of radius 7000 km about the center of the Earth, and its mean
motion, n, is 0.00107801 sec−1. A transfer time, tf , is 691.8 sec, and two deputy
satellites flying in formation, designated as Sat 1 and Sat 2, are considered. Sat 1 has
the following initial and final conditions:

ξ0,Sat1

= [−200 (m) −200 (m) −10 (m) 0 (m/s) 0.431203 (m/s) 0 (m/s) ]T ,

(45a)
ξf,Sat1

= [ 200 (m) −200 (m) 10 (m) 0 (m/s) −0.431203 (m/s) 0 (m/s) ]T .

(45b)

Sat 2’s initial and final conditions are

ξ0,Sat2

= [ 200 (m) 200 (m) 10 (m) 0 (m/s) −0.431203 (m/s) 0 (m/s) ]T ,

(46a)
ξf,Sat2

= [−200 (m) 200 (m) −10 (m) 0 (m/s) 0.431203 (m/s) 0 (m/s) ]T .

(46b)

From (41), (42), (43), the matrices K , C, S are determined, and the cost function J

has a value of 4.99798 × 10−3 m2/s3 in common for each deputy satellite. The opti-
mal control vector u, which is a function of the upper half (�A) of the fundamental
matrix, is immediately calculated from (41) or (33),

u(t) = �AS−1
f CK = −�A�0

= −
⎡
⎢⎣

λ1(4 − 3 cosnt) + λ4
n

sinnt + 2λ5
n

(1 − cosnt)

6λ1(sinnt − nt) + λ2 + 2λ4
n

(cosnt − 1) + λ5(
4
n

sinnt − 3t)

λ3 cosnt + λ6
n

sinnt

⎤
⎥⎦ ,

where �0 = [λ1 λ2 λ3 λ4 λ5 λ6]T and λ1 = −4.52240 × 10−3, λ2 = −1.13478 ×
10−3, λ3 = −2.34571 × 10−4, λ4 = 1.24626 × 10−5, λ5 = 9.75035 × 10−6, and
λ6 = 6.46421 × 10−7 for Sat 1. Numerical simulations are shown graphically in
Figs. 1 and 2. Figure 1 shows the optimal trajectories (ξ ) of Sat 1 and Sat 2; this was
obtained from (41) during the reconfigurations on the y − x plane (i.e., z = 0 plane).
Sat 1 is moved from its position in front of the plane of the page to behind, and Sat 2
is reversed about the page. Squares and circles represent initial and final positions,
respectively. In Fig. 2 the thrust functions for each of the three thrusters for Sat 1 are
shown. Figures 1 and 2 are exactly the same as those in [9].
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Fig. 1 Optimal reconfiguration
trajectories of two deputy
satellites during the
reconfigurations in the y − x

plane for a circular reference
orbit. The squares and circles
represent initial and final
positions, respectively

Fig. 2 Thrust profiles of Sat 1 for each of the three thrusters for a circular reference orbit

5 Conclusions

A new analytic method for solving reconfiguration problems in relative motion is
presented, which does not need the inverse of the fundamental matrix. If the linear
dynamic equations are represented in a rotating LVLH frame, then the basic feature
shown in the current study is guaranteed in general. If this basic feature is met, the
state and adjoint systems hold half of the fundamental matrix in common. By nature,
optimal thrust functions contain the components of the fundamental matrix of the
original dynamic equations. Once this fundamental matrix is found, the optimal thrust
accelerations, cost function, and states during the maneuver are much more easily
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calculated than previous research has shown. Thus, optimal reconfiguration problems
can be easily solved in many linearized cases of relative motion. The results obtained
in the current paper allow one to predict the explicit form of the optimal solutions
in advance without solving a given problem, thus significantly reduce the amount of
calculations required. These results have been verified for brevity and to prove the
accuracy of the analytic solutions.
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