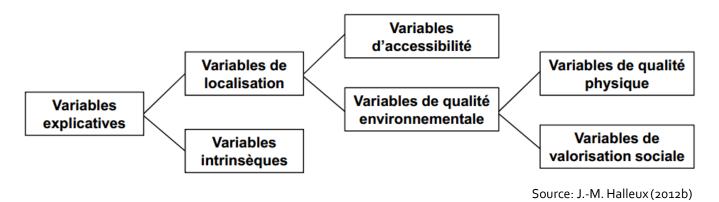


Aménités résidentielles et périurbanisation

Enseignements de l'approche hédonique appliquée au marché foncier liégeois

Hubert MALDAGUE Jean-Marie HALLEUX Lepur-Ulg

JRSS 10-11 décembre 2015


Introduction et concepts

En Wallonie...

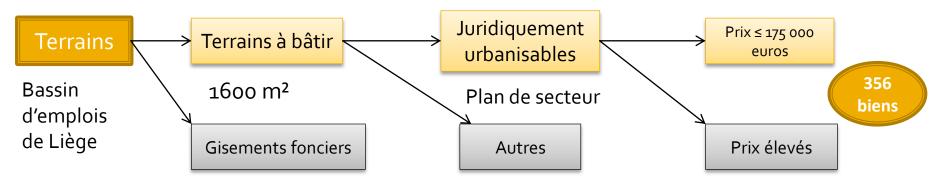
- Important phénomène de périurbanisation durant les dernières décennies
- Modèle privilégié de la « quatre façades » → densités faibles
- Multiples problèmes en termes d'aménagement
- Et autant de défis pour le futur
- Nécessité de mieux comprendre la formation des prix, via l'approche hédonique notamment
- Peu d'études concernant les marchés fonciers
- Quelques recherches concernant les marchés immobiliers effectuées ces dernières années à l'Université de Liège
 - Nécessité d'éclaircir le rôle des variables liées à la localisation et à l'environnement
- Terrain à bâtir : objet d'étude idéal pour éclaircir le rôle de ces déterminants (V. R. Sharma, 2013)

Approche hédonique et terrain à bâtir

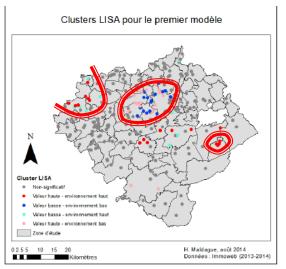
- 1) Le terrain comme <u>ensemble de caractéristiques « utiles »</u> (K. J. Lancaster, 1966)
 - Différentes catégories de caractéristiques et prépondérance des variables de localisation (P. Srikhum, 2012)

- 2) Le prix des caractéristiques est implicite (A. W. Evans, 1995)
- 3) Prix du terrain = combinaison des prix implicites et fonction du vecteur des caractéristiques (J.-M. Halleux, 2005; P. Srikhum, 2012)

Opportunités et objectifs


- En Wallonie, l'auto-promotion reste le mode dominant de production de logements neufs
 - → Opportunité pour le développement de modèles hédoniques
- A Liège, la périurbanisation se poursuit
 - Possibilité de quantifier les causes de cette périurbanisation par les modèles hédoniques
- Difficulté d'accès aux données notariales, alors qu'il existe d'autres sources d'information
 - → Possibilité de développer des modèles robustes à partir d'annonces immobilières?

Méthodologie


- Modélisation: méthodologie inspirée de F. Des Rosiers (2001) et de P. Dethier (2012)
- Statistiques descriptives
- 2) Analyse des corrélations entre variables indépendantes
- Régression linéaire multiple par MCO, test de colinéarité et test de Breusch-Pagan (hétéroscédasticité)
- Si présence d'hétéroscédasticité, nouvelle régression par MCG, test de colinéarité
- 5) Retrait des observations à résidus extrêmes et ajustement du modèle
- 6) Contrôle de l'absence d'autocorrélation spatiale entre résidus

Modélisation

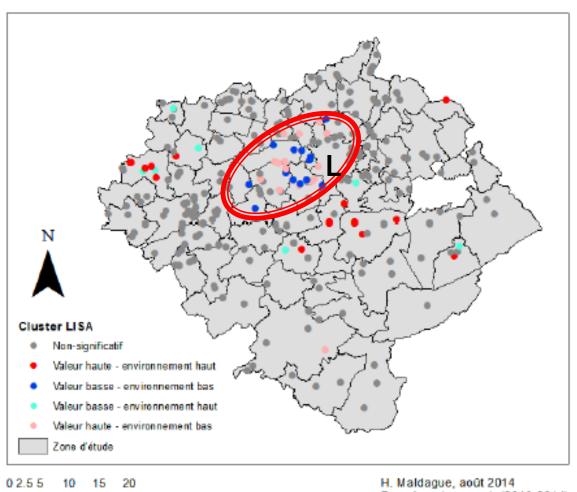
Phase préalable de sélection des observations

- Développement d'un modèle hédonique
 - Présence d'autocorrélation spatiale des résidus
 Ajout de nouvelles variables
- Développement d'un second modèle

Résultats

- Modèle performant
- Pouvoir prédictif acceptable

F	98,83153		
R² ajusté	0,818380		
Erreur relative	20,10 %		


- 15 variables significatives
- Impact discutable de certaines variables

Variable	B*	В
Superficie	0,63	54,16
Temps d'accès à Liège	-0,29	-14,55
Distance à Tihange	0,22	0,57
Temps d'accès aux nodules commerciaux	-0,18	-30,54
Revenu médian	0,16	1,12
Route > 20 000 véhicules/jour à moins de 200 m	-0,10	-21218,40
Appartenance à la commune de Spa	0,09	26109,50
Appartenance à l'agglomération opérationnelle	-0,08	-6089,70
Cours d'eau à moins de 100 m	0,08	-6105,10
Localisation dans un lotissement	0,07	-5028,80
Bruit du trafic aérien supérieur à 60 dB	-0,07	-11912,50
Temps d'accès à Bruxelles	-0,06	-2,66
Localisation dans un cul-de-sac	0,06	4738,63
Ligne à haute tension à moins de 500 m	-0,06	-3909,92
Distance aux arrêts de bus	0,06	5,20

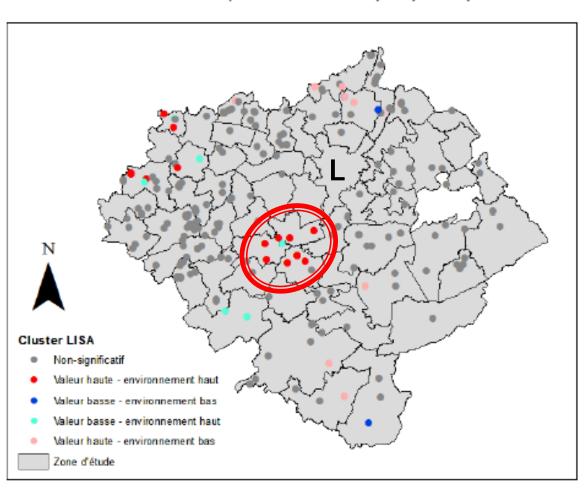
Résultats

Kilomètres

Clusters LISA pour le modèle général retenu

- Zone de prédiction médiocre correspondant à la vieille agglomération industrielle
- Influence de variables difficilement modélisables
- La région liégeoise serait divisée en deux marchés distincts

Résultats - Développement d'un modèle périphérique


- Modèle très performant
- 19 variables significatives
- Impact discutable de certaines variables
- La proximité des services contrôle les prix fonciers
- Ces services sont bien présents en périphérie

F	153,1510		
R² ajusté	0,922927		
Erreur relative	16,72 %		

Variable	B*	В
Superficie	0,58462	52,4875
Distance à Tihange	0,37520	0,8976
Temps d'accès à Liège	-0,25022	-13,3372
Revenu médian	0,21931	1,55375
Temps d'accès à Bruxelles	-0,20435	-7,67625
Temps d'accès aux nodules commerciaux	0,17671	-28,09
Part modale des modes lents	-0,13866	-125154
Ecole secondaire à moins de 120 secondes	0,13077	18621,2
Etablissement supérieur à moins de 5 min	0,10729	17537,4
Localisation dans un lotissement	0,10068	-6600,15
Commerces alimentaires à moins de 500 m	0,08978	10304,6
Appartenance à la commune de Spa	0,08463	20548,8
Chemin de fer à moins de 700 m	-0,07911	-6037,77
Gare L à moins de 500 m	0,07618	11835,7
Localisation dans un cul-de-sac	0,07477	5848,49
Cours d'eau à moins de 100 m	0,06801	- 4904,93
Distance aux arrêts de bus	0,06144	4,78982
Sortie d'autoroute à moins de 700 m	0,06089	-12117,4
Bruit aérien > 60 dB	0,04521	-9836,7

Résultats - Développement d'un modèle périphérique

Clusters LISA pour le modèle périphérique

 Apparition d'un autre phénomène: celui de la valorisation des communes aisées et verdoyantes au sud-ouest de Liège

H. Maldague, août 2014 Données: Immoweb (2013-2014)

Enseignements

- Forte opposition entre la vieille agglomération industrielle et sa périphérie verte et calme
- La vieille agglomération industrielle est frappée par une image négative et est dépréciée par les ménages, avec une conséquence sur les prix
- A l'inverse, les plateaux périphériques sont appréciés et connaissent les prix les plus élevés
- La décentration des services et des emplois a accompagné et accompagne toujours le phénomène de périurbanisation, et contrecarre l'utilité procurée par la proximité du centre de l'agglomération.

Limites et pistes d'amélioration

- Pollution de certains variables par d'autres influences, identifiées ou non
- Deux types de variables
 - Des variables dont l'influence est cohérente vis-à-vis de la littérature
 - Des variables dont les valeurs posent question
- Besoin d'un plus grand échantillon pour tenter de préciser les résultats

Conclusions

- Perspectives de l'utilisation de l'approche hédonique en Belgique
- Compréhension et quantification de l'influence des causes de la périurbanisation liégeoise
- Utilité de telles études pour définir les politiques futures de l'aménagement du territoire au regard des défis démographiques, économiques et environnementaux.

Merci pour votre attention

